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Abstract

To decide whether a given sequence is “truely” random, or independent and identically distributed,

we need to resort to nonparametric tests for randomness. Six tests: the ordinary run test, the sign test,

the runs up and down test, the Mann-Kendall test, the Bartels’ rank test and the test based on entropy

estimators are introduced in this report and their weaknesses are analyzed. Combining the decisions

made by each test, we can further improve the confidence on the randomness of a given sequence. As an

example, the tests are applied to test the randomness of DCT coefficient channels of images. Surprisingly,

the results show that almost half of DCT AC coefficient channels are decided “i.i.d” for the image Lena,

while only three are decided “i.i.d” for the image Baboon.

I. Introduction

In statistical literature, a “truly random” process refers to a process that can produce

independent and identically distributed (i.i.d) samples. If an observed value in the se-

quence is influenced by its position in the sequence, or by the observations which proceed

it, the process is not truly random. Here, the “randomness” really equals to the property

of i.i.d. This property is essential for the theoretical bases of many classical statistical

tests [1], signal detection and estimation methods [3], capacity calculation formula [4] and

so on. Even when the observations are not truly random, which is true in many prac-

tical applications, we can still perform those simple and neat theoretical results with a

certain degree of confidence if we can tell how close to random the data can be. Also, it

is of great interests in cryptographic security, where it is necessary to examine the real

randomness of various “random” number generators, and Monte Carlo simulations, where

the randomness of casted number greatly affect the accuracy of integrals.

Investigations of randomness of a given sequence often require statistical tools for dis-

tribution comparison. Among them, goodness-of-fit tests and entropy estimates are two

well-understood concepts [5]. However, when the distribution of the observed data is

unknown, the hypotheses simply are





H0 : Sequence is i.i.d (random)

H1 : Sequence is not i.i.d (random).
(1)

Then we have to resort to nonparametric tests, using some distribution-invariant properties

of random processes. For example, if the observations can be transformed to some symbols
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that can reflect some properties of their relative positions or magnitudes, then the pattern

of the resulting symbol sequence can serve as a measure of the randomness of the original

process.

The pattern of the symbols can be analyzed using runs, or entropy estimators if we

can know the distribution of the symbols. In this report, we first introduce the tests

of randomness based on runs or trends, such as the ordinary run test, the runs up and

down test, the sign test, the Mann-Kendall test and the Bartels’ rank test. Then the test

based on entropy estimators is described in section III. Since these tests are only based on

partial information of the sequence, some of them even fail to detect the randomness of a

deterministic sequence as discussed in section IV. In section V, we applied these tests to

examine the usual i.i.d assumption for the block DCT AC coefficient channels and to find

out whether watermarking can affect the randomness of certain sequences taken from the

image processes. The last section concludes this report.

II. Tests based on Runs

In any ordered sequence with two types of symbols, a run is defined as a succession of

one or more identical symbols, which are followed and proceeded by a different symbol or

no symbol at all [1]. For example, the males and females in a line can have patterns such

as M F M F M F M F and M M M M F F F F , which have 8 and 2 runs, respectively.

Both the number of runs and their lengths can be used as a measure of the randomness of

the ordered symbol sequence. Too few runs, too many runs, a run of excessive length, etc.,

are very rare in truly random sequences, therefore they can serve as statistical criteria for

the rejection of H0. Also, these criteria are related with each other. Too few runs means

that some runs are too long; too many runs results in short runs. So we can be only

concerned with the total number of runs.

In the above two examples, symbols arise naturally. For quantitative observations, we

need to impose some dichotomizing criterion to symbolize the sequence. Every number is

compared to a focal point, commonly the median or mean of the samples, and is denoted

as “+” or “-”, according to whether the number is larger or smaller than the focal point.

Also, the relative magnitudes or ranks of adjacent numbers can provide information on

the trend or autocorrelation of the sequence.
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A. The ordinary run test based on the median

Using the median of all observations as a focal point, the dichotomy for the ordinary

run tests compares each observation with the median and assigns “+” to those samples

larger than the median and “-” to the samples less than or equal to the median. Under

the null hypothesis of randomness, every arrangement of “+” and “-” signs is supposedly

equiprobable. Assume that the ordered sequence has n samples, n1 of “+”, n2 of “-” and

n = n1 + n2. Also, we denote the number of runs of “+” as R1 and the number of runs of

“-” as R2, then the total number of runs is R = R1 + R2.

By simple knowledge of permutations and combinations, we can get the joint probability

distribution of R1 and R2, the respective marginal probability distributions of R1 and R2,

and the probability distribution of R [2]. The last one is

fR(r) =





(
n1−1
r/2−1

) (
n2−1
r/2−1

)
/

(
n1+n2

n1

)
, if r is even;

[(
n1−1

(r−1)/2

) (
n2−1

(r−3)/2

)
+

(
n1−1

(r−3)/2

) (
n2−1

(r−1)/2

)]
/

(
n1+n2

n1

)
, if r is odd.

(2)

When both n1 and n2 are large, we can get the normal approximation for the null

distribution of R, for which the mean is

µ1 = 2n1n2/n + 1, (3)

and the variance is

σ2
1 = 2n1n2(2n1n2 − n)/n2(n− 1). (4)

Set the probability of false alarm PFA as α, then the critical region is

|R− µ1| ≥ Q(α/2)σ1, (5)

where Q(α) = 1√
2π

∫∞
α e−t2/2dt.

B. The runs up and down test

For numerical observations, we can also look at the difference between two consecutive

samples: X2 − X1, X3 − X2, ..., Xn − Xn−1. Ignoring the zero differences, we record

the sequence difference using plus signs for Xi − Xi−1 > 0, and minus signs otherwise.

Naturally, for a random process, we expect that there are roughly equal numbers of both

signs. By the central limit theorem, the number of positive signs P converges weakly to
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N (m/2,m/4) if there are m non-zero values of Xi−Xi−1. This simple fact can also serve

as a test for randomness, which is called the sign test.

However, the sign test certainly can not reject the case such as half positive signs followed

by half negative signs. The cluster of positive signs means that an up trend happens in the

sequence; The cluster of negative signs corresponds to a down trend. Lasting up or down

trends certainly should not appear in a random sequence. So, again we look at the number

of runs of consecutive positive or negative differences: R. A run up starts with a plus sign

and a run down starts with a minus sign. The exact distribution of R under the null

hypothesis of randomness can be obtained by calculating all possible permutations and

combinations [2]. When the number of observations is large, say n > 25, the asymptotic

distribution of R is R ∼ N (µ2, σ
2
2), where µ2 = (2m − 1)/3 and σ2

2 = (16m − 29)/90.

Similarly, the critical region is

|R− µ2| ≥ Q(α/2)σ2, (6)

if the false alarm probability PFA is α.

C. Other test against trends

As mentioned in last subsection, we should reject the null hypothesis if there is any

trend in the sequence. The following are two tests against trend by looking at the signs

of sample differences and the rank variation of successive samples.

C.1 Mann-Kendall test

Originally, Kendall’s tau statistic is used as a measure of association in a bivariate

population (X,Y ) [2]. If we treat the time, {1, 2, ..., n}, of an observed sequence as X

and the set of time-ordered observations, {Y1, Y2, ..., Yn}, as Y , then the association

between X and Y can be considered as an indication of a trend. Unlike the runs up and

down test, the signs of relative magnitude of each observation relative to every preceding

observation are considered in the Kendall’s sample tau coefficient. The test statistic is

T =
n∑

i=2

i−1∑

j=1

sign(Yi − Yj), (7)
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which converges to a normal random variable under the null hypothesis of randomness:

T ∼ N (0, σ2
3), where σ2

3 = n(n− 1)(2n + 5)/18. The critical region is

|T | ≥ Q(α/2)σ3, (8)

if the false alarm probability PFA is α.

C.2 Bartels’ rank test

Instead of comparing the magnitude of each observation with its preceding samples,

Bartels’ rank test ranks all the samples from the smallest to the largest. The rank is

the corresponding sequential number of Xi: R(Xi). Under the null hypothesis of ran-

domness, any rank arrangement from all n! possibilities should be equiprobable. Once

again, through calculating permutations and combinations, the probability for the test

statistic NM =
∑n−1

i=1 [R(Xi) − R(Xi+1)]
2 can be obtained. The large-sample approxi-

mation for NM/(n(n2 − 1)/12) is a normal random variable with mean 2 and variance

σ2
4 = 4(n− 2)(5n2 − 2n− 9)/5n(n + 1)(n− 1)2. Correspondingly, the critical region is

|NM − 2| ≥ Q(α/2)σ4, (9)

if the false alarm probability PFA is α.

III. Tests Based on Entropy Estimators

As discussed earlier in section II, the positive and negative signs for the ordinary run test

and the runs up and down test should be equiprobable, i.e. P (+) = 1/2 and P (−) = 1/2.

Also every element in the sequence of signs should be i.i.d. This mean we know exactly how

the sign sequence should behave. Under the null hypothesis of randomness, the entropy

rate of the sequence should be 1. If there is any dependence between the samples, the

entropy rate should be strictly less than 1. That is, the new hypotheses are





H0 : H(P ) = 1

H1 : H(P ) < 1.
(10)

When we estimate H(P ) from a given sequence {Xi}n
i=1, the entropy rate H(P ) can be

calculated by many means if the sequence is i.i.d. The direct one is to get the approximate
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probability distribution P̂ (a) = #{0 < i ≤ n,Xi = a}/n, then H(P̂ ). Both P̂ and H(P̂ )

converge to their true value almost surely by the strong law of large numbers. Moreover, we

can obtain Ĥ by looking at the approximate probability distribution P̂ (r)(n) of overlapping

r-tuples of successive sign samples: X̃
(r)
l = (X̃l, X̃l+1, ..., Xl+r−1). For an i.i.d sequence,

Ĥ
(r)
f = H

(
P̂ (r)(n)

)
−H

(
P̂ (r−1)(n)

)
a.s.→ H(P ). (11)

Moreover, it is proved that even if the sequence is an ergodic chain of order k, (11) holds

true for all r > k [5]. Therefore, (11) can actually have an extra merit of providing us

a measure to decide the correlation between samples since Ĥf will fall to the true value

after r passes k.

To form a test with certain false alarm probability PFA, it is necessary to find a statistic

with a distribution function. It is proved that for an ergodic and independent sequence,

2n(log2(m)− Ĥ
(r)
f )

d.→ χ2
mr−mr−1 , (12)

where m is the cardinality of the random variable space. For our case, m = 2. The critical

region is

Ĥ
(r)
f < 1−

(
χ2

2r−2r−1

)−1
(α), ∀ r > 0. (13)

IV. Comparison of tests for randomness

By far, we have introduced six tests for randomness: run test based on sample median,

sign test, runs up and down test, Mann-Kendall test, Bartels’ rank test and test based

on entropy estimators. Apparently, the sign test is the weakest one since it accepts H0

as long as there are approximately equal numbers of positive and negative signs from

sign(Xi−Xi−1). Other tests are also likely to flounder for some specific processes according

to their own weaknesses. We can compare the power of these tests by using some typical

processes. In the following comparison, we will use PT = 2Q(|T − µT |/σT ) as a measure

of detection power since all the statistics for the above tests, except the test based on

entropy estimators, can be approximated as normal random variables in large sample

scenario. Therefore, all t’s such that |t− µT | > |T − µT | fall out of the confidence level of

PT for accepting H0 and conversely H0 is rejected with error probability of PT . Certainly,

T = µT gives full confidence on accepting H0 and a large deviation of T from µT gives
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high confidence on rejecting H0. For the test based on entropy estimators, the statistic

T = 2n(log2(m) − Ĥ
(r)
f ) is one-sided, so we define PT = P (T > t). T = 0 gives full

confidence on accepting H0.

First, we perform all the tests on a 1000-sample sequence with alternating +1 and −1’s.

We observe the following phenomena:

• The sign test accepts H0 with confidence level of 0.9563 since the positive and negative

signs for {Xi −Xi−1} are almost equiprobable.

• The Mann-Kendall test also accepts H0 with confidence level of 0.9622 since the alter-

nating structure of +1 and −1 makes
∑i−1

j=1 sign(Xi−Xj) and
∑i

j=1 sign(Xi+1−Xj) almost

cancel out with each other, hence T ≈ µT = 0.

• The entropy test accepts H0 with confidence level of 0.9994 if just Ĥ
(1)
f = H(P̂ (1))

is used. But once the entropy is estimated using Ĥ
(r)
f = H(P̂ (r)) − H(P̂ (r−1)), r > 1,

the estimated entropy drops to 0 abruptly from r = 2, which indicate that the signs

of difference between samples and their median form a totally deterministic sequence,

therefore the original sequence must not be a random process.

Then, we gradually increase the repetition periods of +1’s and −1’s. The sign test and

Mann-Kendall test will more and more likely to reject H0 with the increasing number of

consecutive +1’s or −1’s in one repetition. The test based on Ĥ
(1)
f will always accept

H0. However, it is interesting to notice that the ordinary run test and the test based on

Ĥ
(2)
f accepts H0 only when there are {+1, +1,−1,−1} in one repetition, otherwise they

can always correctly reject H0. The reason for the ordinary run test’s failure is that the

mean for the number of runs is µ1 ≈ n/2 and coincidentally T ≈ µ1 in this case. For

the calculation of H(P̂ (2)), there happens to be (1, 1), (1,−1), (−1,−1) and (−1, 1) in

one repetition. Both the rank test and the runs up and down test can correctly reject H0

irrespective to the change. PT , the confidence of accepting H0, is shown in Fig.1 versus

the number of consecutive +1’s or −1’s in one reptition period for all the random tests.

It seems that the rank test and the runs up and down test are the most powerful in

the above setup. However, we can always construct some deterministic sequence such

that the sequence can make their test statistics T near to µT . For example, a sequence

1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, ... induces +, +,−, +,−,−, +, +,−, +,−,−, +..., in which
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the number of runs is about the mean µ2 ≈ 2n/3. Similarly, we may also find a deter-

ministic sequence that flounders the rank test. Certainly, it will be very difficult to make

it periodic since the rank of one sample is relative to the whole sequence. It is verified

by Bartels [6] that the rank test is superior to the runs up and down test in many cases.

“Its asymptotic relative efficiency is 0.91 with respect to the ordinary serial correlation

coefficient against the alternative of first-order autocorrelation under normality.” [2]

Although the asymptotic relative efficiency of test based on entropy estimators compared

with the rank test is unknown, the nice thing about test based on entropy estimators is

that the order of the sequence k can be estimated according to the property of Ĥ
(r)
f ,

which will quickly converge to the true value of H(P ) once r is larger than k. If the final

convergence is zero, the sequence must be deterministic.

From the above analysis, most of the tests are vulnerable to a certain set of sequences,

which are deterministic but accepted as random processes. Since different tests have

different weaknesses, we can combine the decisions from all the tests to minimize the error

probability of missing H1. Moreover, we can only to be sure a sequence is not random if any

of the tests rejects H0. However, even all above tests decide a sequence to be random, it is

still very possible that the sequence is actually non-random since only partial information

about the sequence is used in any of the above tests: signs of magnitude difference of

samples relative to the median, signs of relative magnitude of samples and so on.

V. Testing the Randomness of 64 8× 8 DCT Coefficient Channels

The 8×8 DCT transformation generates 64 equal-size data. Usually, it is assumed that

the data in each AC channel is i.i.d, then goodness-of-fit tests are used to estimate the

probability distribution, which is widely accepted as generalized Gaussian or Laplacian [7].

Using the above tests for randomness, we decide a channel to be i.i.d only if it passes all

the tests with the false alarm probability of 0.05 for each test. The number in each entry of

the following table shows the decision of randomness on 8×8 DCT coefficients from image

Lena, where 1 means that the channel is i.i.d. Almost half of the channels can be accepted

as i.i.d with some confidence. Most i.i.d channels are from higher AC frequencies. Usually

the coefficients in the DC channel are correlated. Fig.2 shows the estimated entropy of the

signs for the relative magnitude between samples and their median: Ĥ
(r)
f vs. the tuples of
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overlapping samples used in the estimation r. For the DC channel, the entropy of signs

drops abruptly at r = 2, which implies that the sign sequence may be close to an order-1

Markov chain. The trends for AC coefficient channels at (1, 2) and (1, 3) are almost the

same. The curves drop deeply to about 0.1 from r = 10 to r = 15, which may imply that

the sign sequence is more like a high-order Morkov chain with low entropy. But we should

be cautious on making any more claim on the original DCT coefficient sequence since we

are only observing the behavior of {sign(Xi −Xmedian)}.
0 0 0 0 0 1 0 0

0 0 1 1 1 0 0 1

0 0 0 1 0 0 1 0

0 0 0 1 1 1 1 1

0 0 0 0 0 1 1 0

0 1 0 1 1 1 1 1

1 0 1 1 1 0 1 1

0 1 0 1 0 1 1 0

It is interesting to notice that for image Baboon, only AC channels of (1, 3), (1, 4) and

(2, 6) are decided to be i.i.d by the combination of all the tests. Especially, the rank test

rejects the randomness of most AC channels. Taking the AC coefficient channel at (4,4) as

an example, Fig.3 compares the values of the 500th to 700th samples in that channel for

images Baboon and Lena, while Fig.4 compares the ranks corresponding to these samples.

Looking at the values alone, we can only conclude that the dynamic range of the DCT

coefficients is large in Baboon than in Lena since the former has large areas with noise-like

textures. However, the ranks for Baboon are more clustered than for Lena, which hence

means that the sample values for Baboon is more clustered that they appear because of

the large dynamic range. The test statistic NM =
∑n−1

i=1 [R(Xi)−R(Xi+1)]
2 for Baboon is

therefore much smaller than that of an i.i.d sequence and H0 is rejected.

VI. Conclusions

We combines decisions of six tests for randomness on deciding a sequence’s randomness.

Since all the tests only use partial information of the sequence, be it the signs of value

differences or the ranks of the samples, we actually only have valid confidence when we
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reject the null hypothesis of randomness. When we accept a null hypothesis, the acceptance

is conditional on what aspects of the sequence we have examined.

The above tests of randomness can also be applied to some sequences from an original

image and its watermarked version, which can be the DCT coefficients in each AC chan-

nels or the pixel value difference sequence from the image[8], to see whether and how the

watermarking process affects the randomness of those sequences. However, some prelimi-

nary results show that the watermark detectable by [8] does not significantly change the

decision on the randomness of selected sequences. So tests of randomness may not be a

good steganalysis tool. The final conclusion still needs to be investigated.
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