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Abstract— Particle filter and mean shift are two important
methods for tracking object in video sequence, and they are
extensively studied by researchers. As their strength complements
each other, some effort has been initiated in [1] to combine
these two algorithms, on which the advantage of computational
efficiency is focused. In this paper, we extend this idea by
exploring even more intrinsic relationship between mean shift
and particle filter, and propose a new algorithm, CamShift guided
particle filter (CAMSGPF). In CAMSGPF, two basic algorithms -
CamShift and particle filter - can work cooperatively and benefit
from each other, so that the overall performance is improvedand
some redundancy in algorithms can be removed. Experimental
results show that the proposed method can track objects robustly
in complex environment, and is much faster than the existing
methods.

I. I NTRODUCTION

Tracking visual objects through image frames has been
a fundamental topic in computer vision field and is widely
applied to surveillance, robotics, human machine interface,
object based video coding, etc. However, the task of robust
tracking is challenging regarding fast motion, occlusion,struc-
tural deformation, illumination variation, background clutters,
real-time restriction, etc.

To handle these problems, many efforts have been paid to
devise good tracking algorithms. One promising category is
sequential Monte Carlo methods, also known as particle filers,
which estimate the most likely posterior with discrete sample-
weight pairs in a Bayesian Network frame. The basic idea is
introduced by Hammersley et al in [2], and is implemented
into various improved versions over the last decade. Due
to particle filters’ non-Gaussian non-linear assumption and
multiple hypothesis property, they are successfully applied
to visual tracking, e.g. in [3], [4], and show extra merits in
cluttered environment. However, the inefficiency in sampling
and the huge computational complexity limit the usefulnessof
particle filter in on-line tracking.

Another popular tracking method is mean shift procedure,
which finds the local maximum of probability distribution in
the direction of gradient. Comaniciu et al. propose a mean
shift based tracking method in [5]. Bradski [6] extends it to
CamShift by adaptively changing the scale of search window.
As a deterministic method, mean shift keeps single hypothesis
and thus is computationally efficient. But it may run into
trouble when similar objects are presented in background or
when occlusion happens.

Based on the pros and cons of particle filter and mean shift,
Shan et al. [1] proposed a new algorithm, the Mean Shift

Embedded Particle Filter (MSEPF), to integrate the advantages
of the two methods for object tracking. In MSEPF, mean shift
is performed on each of the particles after they are propagated,
so that the particles are “herded” to nearby local modes
with large weights. In this way, the posterior can be better
estimated even with a smaller sample set, and the computation
complexity of particle filter is reduced proportionally.

In MSEPF, mean shift is just used as a subsidiary tool to
draw better samples for particle filter. In fact, we find particle
filter can also play a role in assisting the mean shift procedure.
Therefore, in this paper, we extend the idea of MSEPF and
propose a novel algorithm, CamShift Guided Particle Filter
(CAMSGPF). In CAMSGPF, CamShift facilitates particle fil-
ter in drawing a good sample set as it is in MSEPF; and in
return, particle filter helps to improve the scale estimation and
simplify the complexity of CamShift. In this way, CamShift
and particle filter can work together coherently. The proposed
CAMSGPF algorithm is efficient and robust, and surpasses
other particle filters and mean shift based trackers in general.

The remainder of the paper is organized as follows. We
present in detail how CAMSGPF integrates CamShift into
particle filter in Section II, and then show experimental results
in Section III, and finally conclude the paper in Section IV.

II. CAM SHIFT SHIFT GUIDED PARTICLE FILTER

The main frame of CAMSGPF proposed in this paper is
based on the well-known Sequential Importance Resampling
(SIR) [7] particle filter, with CamShift integrated. In the
algorithm, the state probability distribution of the target is
estimated via a finite set ofN samples (particles) with
state
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to each sample by evaluating

their likelihood against observationzt at the new state and
taking into account the biasing effect of CamShift previously
applied. Finally, a resample step multiplies samples with large
weight and generates an unweighted sample set
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,

which corresponds to the target distribution at current time.
In this way, CAMSGPF can recursively find the latest target
state. The flowchart of CAMSGPF is illustrated in Fig. 1.

In CAMSGPF, CamShift is adopted for active scale adap-
tation. And more importantly, the cooperative relationship
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Fig. 1. The framework of CAMSGPF. Each blob’s position and area represent
the state and weight of a sample. The highlighted color signifies weights
evaluated directly from observation model.

between particle filter and CamShift is fully exploited. On
one hand, the particles are concentrated by CamShift to higher
probability nearby modes, in terms of both the position and
scale of the target. On the other hand, CamShift can achieve
a better scale adaptationthan being used alone with particle
filter’s multi-hypothesis nature; and CamShift can be applied
in a much simplified way to furtherboost the algorithm
efficiencydue to the 2nd AR dynamic model prediction. In
the following paragraphs, we shall explain in detail how these
points are attained in CAMSGPF.

A. System Models

In our system, the target to be tracked in video sequence is
modeled by a state vector:

x = (xc, yc, w, h)T (1)

so that a rectangle box centered at coordinate(xc, yc) with
width w and heighth just covers the target area. The dynamic
of state transition corresponds to a standard 2nd order autore-
gressive process:

xt = xt−1 + (xt−1 − xt−2) + nt (2)

That is, the current statext is predicted as the sum of three
terms: the previous state at timet − 1, the displacement of
last transition, and a gaussian noise,nt. This simple model
can well simulate most ordinary object motions, and plays a

vital role in simplifying the overall algorithm as can be seen
in later discussion.

Following [4], we use HSV color histogram to build the
observation model. Given the current observationzt (i.e. the
current image frame), the candidate color histogramq(xt) is
calculated onzt in the region specified byxt. Then it is com-
pared with the reference color histogramq∗ by Bhattacharyya
similarity metricD[, ], resulting to the likelihood distribution:

p(zt|xt) ∝ e−λD2[q∗,q(xt)] (3)

whereλ is set to 20 for most applications.

B. Efficient Position Shift

In CAMSGPF, the samples
{

x̃i
t

}

i=1...N
drawn according to

state dynamic Eq. (2) are first shifted in their position subspace
by mean shift vector [5] for a few iterations. Let’s denote the
current position of a samplex asp ≡ [xc, yc]

T , then its new
position after one iteration will be:
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(4)

where{ai}i=1...M are pixel coordinates within the rectangle
area specified by statex, w(ai) is the weight indicating the
ratio of histogram bin values corresponding toai in the current
and reference color histogram.g() is a kernel profile function,
andh is window radius to normalize the coordinateai.

In MSEPF, the mean shift iteration in Eq. (4) is applied on
every sample in sample set, and goes on until convergence or
maximum number of iterations is reached. It is claimed in [1]
this will greatly reduce the time consumption on particle filter,
because fewer particles are required to accomplish tracking.
Unfortunately, this improvement in efficiency will be partly
canceled out by the introduction of mean shift, which will take
extra time for the whole algorithm. What’s worse, a traditional
mean shift procedure [5] is more complicated than a generic
particle filter recursion cycle, so each particle in MSEPF will
spend most of its time in the mean shift step.

To further improve the algorithm efficiency, we must sim-
plify the mean shift procedure in CAMSGPF. This is ap-
proached in the following three ways:

1) Mean shift is applied only on some particles randomly
selected.

2) Only a small and fixed number of iterations are carried
out on each sample.

3) Unlike the original mean shift procedure, which checks
the correctness of mean shift vector in each iteration,
we omit it at all in CAMSGPF.

Because the total time consumed on mean shift is proportional
to the number of particles subjected to it and the number of
iterations each individual mean shift undergoes, our simplifi-
cation will boost the algorithm speed substantially.

Moreover, it can be found that, in the context of particle
filtering, the simplifications above will have little influence
on the performance of mean shift. The reason lies in the
displacement term of Eq. (2). Once a particle is shifted, the



effect of mean shift will be built into the displacement term
and carried to the future transitions. Then even if a particle is
not shifted at every time step, or is not shifted thoroughly
to the maximum nearby mode in a restricted number of
iterations, the particle will still move in the direction tothe
maximum “inertially” as long as the distribution does not
change dramatically.

Furthermore, with the resampling step of particle filter, there
is no need to worry about the correctness of mean shift in
each iteration. In CAMSGPF, badly shifted particles will be
removed by resampling, and particles shifted towards local
modes will be resampled more than once. In this way, particle
filter performs the evaluation on mean shift iterations and
further simplifies the mean shift procedure.

Now we can safely apply the simplified mean shift on part
of the samples at each time step. To keep every particle being
mean-shifted evenly, once for a while, we sort the samples
according to their weights and determine whether to apply
mean shift or not by their modular-ed index:

{

MeanShift∗(xi, I) if i%Ns < n1

No Mean Shift otherwise
(5)

where i is the index of the sorted particles,Ns is a fraction
of particle numberN , andn1 is an integer usually taken to
be half ofNs. We have usedMeanShift∗(, ) to denote the
simplified mean shift, which takes argumentxi as the initial
search position, andI as the number of iterations. As particles’
weights are changed dynamically, this operation will guarantee
all the samples a fair chance to get mean-shifted.

C. Adaptive Scale Adjustment

After the samples in
{

x̃i
t

}

i=1...N
are mean-shifted in posi-

tion subspace, they are further refined in scale subspace using
CamShift algorithm in CAMSGPF. As noted in [6], CamShift
extends the mean shift algorithm so that the size of the
searching window can be adjusted to fit the changing scale of
the target. The calculation is based on pixel’s likelihood weight
w(ai), which is the byproduct in evaluating mean shift vector
according to Eq. (4). Since a denser pixel weight distribution
(larger zeroth moment of the likelihood distribution image)
implies a larger target size, the window size is estimated
empirically in [6] as a function of the zeroth moment:

l = k

√

M00

256
(6)

wherel is the width or height of the window,k is a constant.
And the zeroth momentM00 of the corresponding rectangle
window area of the current statex is calculated by

M00 =
∑M

i=1
w(ai) (7)

where{ai}i=1...M and w(ai) are defined as they are in Eq.
(4). The moment should be first normalized by the maximum
value of probability distribution (256 in the 8-bit case).

Since the relationship between zeroth moment and target
size in Eq. (6) is found empirically, it is practical only in some
specific cases. For example, with parameter setting in [6],
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Fig. 2. With the moment-size relationship of Eq. (6), CamShift succeeds in
tracking a man’s face (a); while the scale adaptation fails when tracking a red
car in field (b).

CamShift can track human face successfully, but may fail to
adjust the window size properly in more general applications
(Fig. 2).

In CAMSGPF, we apply CamShift with different moment-
size-estimation functions on different particles. Some ofthese
functions tend to scale the particles’ size up or down, while
others do not change the size at all (in this case, CamShift
degrades to mean shift). After doing some manipulations on
Eq. (6), we can obtain two scale factors used in our method,
su for scaling up andsd for scaling down:

su = k1

√

M00

256× w × h
(8a)

sd = k2

√

M00

256× w × h
(8b)

wherew and h are the width and height component of the
current sample statex; k1 and k2 are constants satisfying
k1 > k2. The scale subspace of the statex is thus updated
to be:

w ← s× w (9a)

h← s× h (9b)

wheres is the scaling factor. It is randomly selected fromsu,
sd and 1 for each particle, so that different scales are tried
on different particles. Then after these particles are evaluated
using observation model, the better scaled ones can be picked
out, while some inappropriately scaled ones will be eliminated
by resampling. Asw andh can both increase and decrease in
the scale subspace, they will eventually settle on the exactsize
of the target. With this multi-hypothesis and test paradigm, we
can adjust the size to the best without knowing the precise
moment-size-estimation function.

To ensure that all the particles will have equal opportunity
to try on different choices of scales, we employ the technique
similar to Eq. (5). The scaling factors is selected for a sorted
particlexi as:

s =







su if i%Ns = n2

sd if i%Ns = n3

1 otherwise
(10)

where parametersn2 andn3 can be any integers less thann1

in Eq. (5), as particles to be scaled must be mean-shifted at



first hand. And in our implementation they are taken as1 and
2 for simplicity. The physical meaning ofNs is also clear from
Eq. (10): it is defined such that each one out ofNs particles
will be scaled up and down.

To combine Eq. (5) and Eq. (10) in a more compact form,
let CamShift∗(, , ) (to be elaborated in Table II later) be the
concatenation of the simplified mean shiftMeanShift∗(, )
and a subsequent CamShift scaling, and the selective mean-
shifting and scaling mechanism can be rewritten in the form:















No CamShift if i%Ns ≥ Ns/2
CamShift∗(xi, I, +1) if i%Ns = 1
CamShift∗(xi, I,−1) if i%Ns = 2
CamShift∗(xi, I, 0) otherwise

(11)

where the 3rd argument inCamShift∗(, , ) signals the choice
of scaling factor.

So far, we can find that in CAMSGPF, the function of
CamShift is to give the particles some crude implications on
the direction to propagate (for both position and scale), while
the judgment and feedback is left to particle filter. It is because
of this interactive relationship that we name this algorithm
CamShift “guided” particle filter.

D. Weight Evaluation

Having CamShift-ed samples from
{

x̃i
t

}

i=1...N
to

{

x̄i
t

}

i=1...N
, we are ready to update their weights

{

wi
t

}

i=1...N

at the new states. The new weight of each sample is found as
follows:

wi
t ∝ wi

t−1

p(zt|x̄i
t)p(x̄i

t|x
i
0:t−1)

q(x̄i
t|x

i
0:t−1, zt)

(12)

whereq(x̄i
t|x

i
0:t−1, zt) is the proposal distribution,p(zt|x̄i

t) is
given by Eq. (3), and prior distributionp(x̄i

t|x
i
0:t−1) can be

derived from state dynamic Eq. (2) to be:

p(x̄i
t|x

i
0:t−1) = N (2xi

t−1 − xi
t−2, σ) (13)

whereN (, ) denotes Gaussian distribution,σ is the covariance.
The difficulty to evaluate Eq. (12) lies in finding the

proposalq(). Before CamShift is embedded into particle filter,
q() just takes the same form as the prior Eq. (13). However, in
CAMSGPF, the effect of CamShift should also be taken into
account; otherwise, the posterior estimated by

{

x̄i
t, w

i
t

}

i=1...N

would be biased. We can view CamShift as a subsequent
sample drawing step conditioned on the samples

{

x̃i
t

}

i=1...N
,

which is drawn beforehand according to the prior distribution.
Then the new proposal distribution becomes:

q(x̄i
t|x

i
0:t−1, zt) =

∫

p̄(x̄i
t|x̃

i
t, zt)p(x̃i

t|x
i
0:t−1)dx̃i

t (14)

where p̄(x̄i
t|x̃

i
t, zt) is the probability that statẽxi

t will be
CamShift-ed tox̄i

t given the observationzt. As CamShift
is deterministic, the value of̄p() is either 1 or 0, and can
be determined explicitly by checking whether the result of
CamShift-ingx̃i

t by Eq. (11) will collide with x̄i
t. However,

doing CamShift on all possiblẽxi
t is time-exhausting, in

practice we use a Gaussian model similar to [8] to approximate
p̄():

p̄(x̄i
t|x̃

i
t, zt) ≈ N (x̃i

t, Σ) (15)

whereΣ is a diagonal covariance matrix. As CamShift will
not shift a sample too far away from its initial state, the
approximation in Eq. (15) can counterbalance CamShift’s
biasing on posterior to some extent.

E. Summary of CAMSGPF

For clarity, we briefly encapsulate the overall CAMSGPF
algorithms in Table I, which mathematically describes the
flowchart in Fig. 1.

TABLE I

ALGORITHM OF CAM SHIFT GUIDED PARTICLE FILTER

˘
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t, w
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t

¯

i=1...N
= CAMSGPF (

˘

xi
t−1

, wi
t−1

¯

i=1...N
)

• for (i = 1 : N )
– Propagate particlexi

t−1
by Eq. (2) to get̃xi

t

– Selectively CamShift̃xi
t to x̄i

t according to Eq. (11)
– Evaluate the observation likelihoodp(zt|x̄i

t) by Eq. (3)
– Update weightwi

t by Eq. (12)
• endfor
• Sort

˘

x̄i
t, w

i
t

¯

i=1...N
according to weightwi

t

• Resample
˘

x̄i
t, w

i
t

¯

i=1...N
, producing un-weighted sample set

˘

xi
t, 1/N

¯

i=1...N

And the modifiedCamShift∗(, , ) algorithm in Eq. (11) is
shown in Table II.

TABLE II

ALGORITHM OF THE MODIFIED CAM SHIFT

x̄ = CamShift∗(x̃0, I, ǫ)

• Set the current search window to the rectangle represented by x̃j−1

• Evaluate all the pixel weightw(ai) inside the window
• Shift the position component(xc, yc)T of x̃j−1 by Eq. (4) :
• if (ǫ = +1) Find scaling factors by Eq. (8a)

elseif (ǫ = −1) Find scaling factors by Eq. (8b)
else sets = 1

• Update the scale componentw andh of x̃j−1 using Eq. (9a), (9b)
• if (j = I) stop, set̄x = x̃j

else j++, and return to the first step

III. E XPERIMENTAL RESULTS

In this section, the performance of CAMSGPF is compared
with other trackers in a number of aspects. In the experiments,
the parameters of CAMSGPF are set as follows:k1 = 1.2;
k2 = 1; Ns = 10; I = 2. All the tests are carried out on
320× 240-pixel sequences with a Pentium IV 2.8G PC.

We compare the general tracking ability of different algo-
rithms by examining the minimal number of particles required
by each of them to barely achieve successful tracking. From
the experiments on “hockey” sequence (shown in Fig. 3,
tracking results by CAMSGPF only), we observe that this
number is 35 at least for generic particle filter, while 10 for
both of MSEPF and CAMSGPF. It is clear that mean shift or



 

 Fig. 3. “hockey” sequence successfully tracked by CAMSGPF with 10
particles (frame 56, 211, 429)

 

Fig. 4. “soccer” sequence tracked by MSEPF, CamShift and CAMSGPF (in
the columns from left to right). (frame 114, 123, 176, 193)

CamShift can help the particle filter a lot, reducing the number
of particles by 71%.

The ability of scale adaptation is tested in the “soccer”
sequence, as shown in Fig. 4. The tracking result of CAMS-
GPF is displayed in the third column, in comparison with
those tracked by MSEPF and CamShift (with moment-size-
estimation functions tuned to this sequence), in the first and
second column. Our method turns out to adapt to scale change
of the target best, since the boundary box best matches the
target size.

To validate the significance of applying the simplified
CamShift on part of the particles, we compare the time con-
sumption of CAMSGPF with MSEPF on several sequences.
Both of the algorithms can track the targets correctly most
of the time, as Fig. 5(d) demonstrates. The average time
consumed per frame by the two is plotted in Fig. 5 (a)-(c)
correspondingly, with regard to different number of particles
used. For all tests, the time consumption grows linearly with
the number of particles, and CAMSGPF is consistently faster
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Fig. 5. Comparison of time consumption versus particle number between
CAMSGPF and MSEPF. (a) “redteam”; (b) “hockey”; (c) “egtest01”; (d)
tracking samples corresponding to (a)-(c)

than MSEPF. The curves in Fig. 5 do not pass through the
origin, due to some fixed tasks in each frame (video file
reading, color space conversion and displaying). So we deduct
the fixed time for both of the two algorithms and compare the
average time consumption per particle for each sequence, i.e.,
the slopes of the lines in Fig. 5, in the left columns of Table III.
We can see it takes about 20%~50% less time for CAMSGPF
to process a particle than MSEFP. In the right columns of Table
III, the average Bhattacharyya distance between the tracked
area and the target template is shown as an indicator of the
tracking accuracy. All the 3 tests confirm that the influence
due to simplification in CAMSGPF on the tracking accuracy
is trivial with respect to the time saved.

IV. CONCLUSIONS

A novel tracking algorithm, CAMSGPF, has been proposed
by exploring the interaction between particle filtering and
CamShift. With the aids of CamShift, the particles are guided
to more possible modes of observation, so that the sampling
efficiency is improved greatly. At the same time, CamShift is
conducted under the supervision of particle filtering. In this
way, the scale adaptation of CamShift becomes functional in
more universal situations; and CamShift can be applied on
particles in a more economic way without much sacrifice
in performance. The experimental results demonstrate that
CAMSGPF outperforms CamShift and MSEPF in both track-
ing robustness and efficiency.
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TABLE III

COMPARISON OF EFFICIENCY AND ACCURACY BETWEENMSEPFAND CAMSGPF
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∗ a smaller distance indicates a better match between two objects.
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