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Abstract— Particle filter and mean shift are two important  Embedded Particle Filter (MSEPF), to integrate the ad\gesa
methods for tracking object in video sequence, and they are of the two methods for object tracking. In MSEPF, mean shift
extensively studied by researchers. As their strength conipments is performed on each of the particles after they are propagat

each other, some effort has been initiated in [1] to combine that th ticl “herded” t by | I d
these two algorithms, on which the advantage of computatical S0 tha € parlicies are “herde 0 nearby local modes

efficiency is focused. In this paper, we extend this idea by With large weights. In this way, the posterior can be better
exploring even more intrinsic relationship between mean sift estimated even with a smaller sample set, and the computatio
and particle filter, and propose a new algorithm, CamShift guded  complexity of particle filter is reduced proportionally.

particle filter (CAMSGPF). In CAMSGPF, two basic algorithms - In MSEPF, mean shift is just used as a subsidiary tool to

CamsShift and particle filter - can work cooperatively and berefit . . . -
from each other, so that the overall performance is improvedand draw better samples for particle filter. In fact, we find pzieti

some redundancy in algorithms can be removed. Experimental filter can also play a role in assisting the mean shift prooedu
results show that the proposed method can track objects rotstly ~Therefore, in this paper, we extend the idea of MSEPF and

in complex environment, and is much faster than the existing propose a novel algorithm, CamShift Guided Particle Filter
methods. (CAMSGPF). In CAMSGPF, CamShift facilitates particle fil-
ter in drawing a good sample set as it is in MSEPF; and in
return, particle filter helps to improve the scale estinatod
Tracking visual objects through image frames has begfmplify the complexity of CamShift. In this way, CamShift
a fundamental topic in computer vision field and is widelgnd particle filter can work together coherently. The prepos
applied to surveillance, robotics, human machine intexfacCAMSGPF algorithm is efficient and robust, and surpasses
object based video coding, etc. However, the task of robusher particle filters and mean shift based trackers in géner

I. INTRODUCTION

tracking is challenging regarding fast motion, occlusktn,c- The remainder of the paper is organized as follows. We
tural deformation, illumination variation, backgroundiitérs, present in detail how CAMSGPF integrates CamShift into
real-time restriction, etc. particle filter in Section I, and then show experimentalitss

To handle these problems, many efforts have been paiditioSection I, and finally conclude the paper in Section IV.
devise good tracking algorithms. One promising category is
sequential Monte Carlo methods, also known as particlesfiler
which estimate the most likely posterior with discrete semp The main frame of CAMSGPF proposed in this paper is
weight pairs in a Bayesian Network frame. The basic idealimsed on the well-known Sequential Importance Resampling
introduced by Hammersley et al in [2], and is implementeBIR) [7] particle filter, with CamShift integrated. In the
into various improved versions over the last decade. Dadgorithm, the state probability distribution of the tarde
to particle filters’ non-Gaussian non-linear assumptionl arestimated via a finite set ofV samples (particles) with
multiple hypothesis property, they are successfully mplistate{xi}izle. Given the sample set at the previous time,
to visual tracking, e.g. in [3], [4], and show extra merits iz} ;} _, ., the CAMSGPF starts by propagating each
cluttered environment. However, the inefficiency in samgpli sample with a stochastic displacement according to dynamic
and the huge computational complexity limit the usefulress model. The resulting sample{s?:;ﬁ}izlmN are further shifted
particle filter in on-line tracking. by a modified version of CamShift, so that the new sample set,

Another popular tracking method is mean shift proceduré;’ci}izlnw, will be more close to distribution modes. Then
which finds the local maximum of probability distribution inwe assign weight{wg’}izle to each sample by evaluating
the direction of gradient. Comaniciu et al. propose a mednmeir likelihood against observatiosy at the new state and
shift based tracking method in [5]. Bradski [6] extends it ttaking into account the biasing effect of CamShift previgus
CamsShift by adaptively changing the scale of search windoapplied. Finally, a resample step multiplies samples véthe
As a deterministic method, mean shift keeps single hypiheweight and generates an unweighted sample{ﬁ}i:l_w,
and thus is computationally efficient. But it may run intavhich corresponds to the target distribution at currentetim
trouble when similar objects are presented in background larthis way, CAMSGPF can recursively find the latest target
when occlusion happens. state. The flowchart of CAMSGPF is illustrated in Fig. 1.

Based on the pros and cons of particle filter and mean shiftin CAMSGPF, CamsShift is adopted for active scale adap-
Shan et al. [1] proposed a new algorithm, the Mean Shifition. And more importantly, the cooperative relatiopshi
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A vital role in simplifying the overall algorithm as can be see

FA i=1, ..., N=8 particle: in later discussion.
N o Following [4], we use HSV color histogram to build the
e @° o Wi} observation model. Given the current observatipr(i.e. the
. . current image frame), the candidate color histogedmny ) is
/l\‘ “P“’paga“” calculated ory; in the region specified by,. Then it is com-
o pared with the reference color histograinby Bhattacharyya
°  @ccce Oe ik similarity metric D[, ], resulting to the likelihood distribution:
27 %
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v where )\ is set to 20 for most applications.
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y B. Efficient Position Shift
A‘ Weight In CAMSGPF, the sample§i;}._, , drawn according to
PPN, I evaluation state dynamic Eq. (2) are first shifted in their position pa#ce
o 0 0o o o & update by mean shift vector [5] for a few iterations. Let’s denote th
l l ul i l l curr_ept position of_a sa.mplﬁ asp = [zc,y.]T, then its new
v position after one iteration will be:
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where{a;},_, ,, are pixel coordinates within the rectangle
area specified by state, w(a;) is the weight indicating the

ratio of histogram bin values correspondingitdn the current
Fig. 1. The framework of CAMSGPF. Each blob’s position anebarepresent

the state and weight of a sample. The highlighted color Bemiweights and re_fere_nce color hIStOgl’a@i(.) IS. a kernel proflle function,
evaluated directly from observation model. andh is window radius to normalize the coordinatg

In MSEPF, the mean shift iteration in Eq. (4) is applied on

every sample in sample set, and goes on until convergence or
between particle filter and CamShift is fully exploited. Ofnaximum number of iterations is reached. It is claimed in [1]
one hand, the particles are concentrated by CamShift taehigkhis will greatly reduce the time consumption on particleefil
probability nearby modes, in terms of both the position arltecause fewer particles are required to accomplish trgckin
scale of the target. On the other hand, CamShift can achidygfortunately, this improvement in efficiency will be partl
a better scale adaptatiothan being used alone with particlecanceled out by the introduction of mean shift, which wikea
filter's multi-hypothesis nature; and CamShift can be agpli €xtra time for the whole algorithm. What's worse, a traditib
in a much simplified way to furtheboost the algorithm mean shift procedure [5] is more complicated than a generic
efficiencydue to the 2nd AR dynamic model prediction. Irparticle filter recursion cycle, so each particle in MSEPR wi
the following paragraphs, we shall explain in detail howsthe Spend most of its time in the mean shift step.

points are attained in CAMSGPF. To further improve the algorithm efficiency, we must sim-
plify the mean shift procedure in CAMSGPF. This is ap-
A. System Models proached in the following three ways:
In our system, the target to be tracked in video sequence ist) Mean shift is applied only on some particles randomly
modeled by a state vector: selected.
2) Only a small and fixed number of iterations are carried
z = (T, Yo, w, h)" (1) out on each sample.

. ] 3) Unlike the original mean shift procedure, which checks
so that a rectangle box centered at coordiratg y) with the correctness of mean shift vector in each iteration,
width w and heighth just covers the target area. The dynamic we omit it at all in CAMSGPF.

of state transition corresponds to a standard 2nd ordereaut

gressive progess: %Because the total time consumed on mean shift is propoftiona

to the number of particles subjected to it and the number of
iterations each individual mean shift undergoes, our sfimpl
cation will boost the algorithm speed substantially.

That is, the current state; is predicted as the sum of three Moreover, it can be found that, in the context of particle
terms: the previous state at tinte- 1, the displacement of filtering, the simplifications above will have little influea
last transition, and a gaussian noisg, This simple model on the performance of mean shift. The reason lies in the
can well simulate most ordinary object motions, and playsdisplacement term of Eqg. (2). Once a particle is shifted, the

Ty = Tp—1 + (Te—1 — Te—2) + 1y (2



effect of mean shift will be built into the displacement term |1 |
and carried to the future transitions. Then even if a partisl
not shifted at every time step, or is not shifted thoroughly
to the maximum nearby mode in a restricted number of
iterations, the particle will still move in the direction tbe
maximum “inertially” as long as the distribution does not
change dramatically.

Furthermore, with the resampling step of particle filteerth
is no need to worry about the correctness of mean shift in @ (b)
each iteration. In CAMSGPF, badly shifted particles will be
removed by resampling, and particles shifted towards lodg§: 2. With the moment-size relationship of Eq. (6), Canfiiicceeds in

. . . tracking a man'’s face (a); while the scale adaptation falemtracking a red
modes will be resampled more than once. In this way, parthfgr in field (b).
filter performs the evaluation on mean shift iterations and
further simplifies the mean shift procedure.

Now we can safely apply the simplified mean shift on paamsShift can track human face successfully, but may fail to
of the samples at each time step. To keep every particle beajust the window size properly in more general application
mean-shifted evenly, once for a while, we sort the samplésig. 2).
according to their weights and determine whether to applyIn CAMSGPF, we apply CamShift with different moment-
mean shift or not by their modular-ed index: size-estimation functions on different particles. Somé¢hese

pans i o functions tend to scale the particles’ size up or down, while
{ MeanShift .(;CZ’I) if Z%N5.< ™ (5) others do not change the s?ze at all (in thig case, CamShift
No Mean Shift otherwise : . ; .
degrades to mean shift). After doing some manipulations on
wherei is the index of the sorted particled]; is a fraction Egq. (6), we can obtain two scale factors used in our method,
of particle numberN, andn; is an integer usually taken to s, for scaling up ands, for scaling down:
be half of N;. We have used//eanShift*(,) to denote the

simplified mean shift, which takes argumeritas the initial Sy = k1 _ Mo (8a)
search position, anflas the number of iterations. As particles’ 256 x w x I

weights are changed dynamically, this operation will gnsra Moo

all the samples a fair chance to get mean-shifted. Sa = k2 956 x w X h (8b)

C. Adaptive Scale Adjustment wherew and i are the width and height component of the

After the samples in[g*cf;} are mean-shifted in posi- current sample state; k; and k; are constants satisfying
i=1...N

tion subspace, they are further refined in scale subspacg udit > _]“2' The scale subspace of the stateés thus updated
Camshift algorithm in CAMSGPF. As noted in [6], camshiff® be:
extends the mean shift algorithm so that the size of the
searching window can be adjusted to fit the changing scale of h+—sxh (9b)

the target. The calculation is based on pixel’s likelihocaigit . . .

w(a;), which is the byproduct in evaluating mean shift vectopheres is the scaling fa_ctor. Itis randpmly selected fram .
according to Eq. (4). Since a denser pixel weight distrnuti sq and 1 for each particle, so that different scales are tried

(larger zeroth moment of the likelihood distribution im;ugeon different particles. Then after these particles areuatat

implies a larger target size, the window size is estimat&tFing observation model, the better scaled ones can bedpicke

empirically in [6] as a function of the zeroth moment: out, while some inappropriately scal_ed ones will be elirreda _
by resampling. Asv andk can both increase and decrease in
Moo

©6) the scale subsp_ace, _they vv_iII eventua!ly settle on the e?iaet
256 of the target. With this multi-hypothesis and test paradigm
wherel is the width or height of the window; is a constant. €an adjust the size to the best without knowing the precise
And the zeroth momendy, of the corresponding rectangleMoment-size-estimation function.

W— S X W (9a)

l=k

window area of the current staeis calculated by To ensure that all the particles will have equal opportunity
to try on different choices of scales, we employ the techaiqu
Moo = E w(a;) (7) similar to Eqg. (5). The scaling facteris selected for a sorted
i=1 1

_ _ particlez* as:
where {a;},_, ,, andw(a;) are defined as they are in Eq.

(4). The moment should be first normalized by the maximum
value of probability distribution (256 in the 8-bit case).

Since the relationship between zeroth moment and target
size in Eq. (6) is found empirically, it is practical only inoree  where parameters, andns can be any integers less than
specific cases. For example, with parameter setting in [@}, Eq. (5), as particles to be scaled must be mean-shifted at

su I i%Ny, =no
S = Sd if i%NS =ns3 (10)
1  otherwise



first hand. And in our implementation they are takeniasd practice we use a Gaussian model similar to [8] to approx@mat

2 for simplicity. The physical meaning d¥; is also clear from p():

Eq. (10): it is defined such that each one out\af particles p(Zh| 2L, 2¢) = N (5L, %) (15)

will be scaled up and down. ) ) ) _ -
To combine Eq. (5) and Eq. (10) in a more compact fornvhere X is a diagonal covariance matrix. As CamsShift will

let CamShift*(,,) (to be elaborated in Table Il later) be the'0t shift @ sample too far away from its initial state, the'

concatenation of the simplified mean shiffeanShift*(,) a_ppr_oxmatmn in Eq. (15) can counterbalance CamShift's

and a subsequent CamShift scaling, and the selective medi@Sing on posterior to some extent.

shifting and scaling mechanism can be rewritten in the forr'g:_ Summary of CAMSGPF

No CamsShift ifi%Ns > Ng/2 For clarity, we briefly encapsulate the overall CAMSGPF
CamShift*(z',1,4+1) if i%N; =1 (11) algorithms in Table I, which mathematically describes the
CamShift*(a',1,—1) if i%Ns =2 flowchart in Fig. 1.
CamShift*(z*,1,0)  otherwise
TABLE |
where the 3rd argument iflamShi ft*(,, ) signals the choice ALGORITHM OF CAM SHIFT GUIDED PARTICLE FILTER
of scaling factor.
So far, we can find that in CAMSGPF, the function of
CamsShift is to give the particles some crude implications o
the direction to propagate (for both position and scale)levh

n{xg,w;'}i:l__N = CAMSGPF({zi_,,wi_;}
e for(2=1:N)
— Propagate particle:g;1 by Eq. (2) to getit

i:lmN)

the judgment and feedback is left to particle filter. It is dnese — Selectively CamShifEit to z! according to Eq. (11)
of this interactive relationship that we name this algarith ~ Evaluate the observation likelihoge(z¢|z}) by Eq. (3)
CamsShift “guided” particle filter. » Update weightw; by Eq. (12)

e €naror

o Sort{zj,w;}, ,  according to weightv
. Re_sample {f;,wf}izl__N, producing un-weighted sample set
Having CamsShift-ed samples from{z;} , . to {1, 1/N}isy
{zi},_, 5 we are ready to update their Weigf{tﬁi}i:lmN
at the new states. The new weight of each sample is found ag\nd the modifiedCamShi ft*(,,) algorithm in Eq. (11) is
follows: o shown in Table II.
i i p(z|T)p(Ty|why_q)
Wy X We_q — 0
q(Z|h4—1, 2t)

D. Weight Evaluation

(12) TABLE Il

ALGORITHM OF THE MODIFIED CAM SHIFT
whereq(zi|z.,_1, 2) is the proposal distributiom(z;|z}) is
given by Eq. (3), and prior distributiop(z{|zf,,_1) can be  z _ camShift* (70,1, ¢)
derived from state dynamic Eq. (2) to be:

o Set the current search window to the rectangle represepted by
o ) ) « Evaluate all the pixel weightv(a;) inside the window
p(j';|xzo't71) = N(?xz,l — 551727 0’) (13) « Shift the position componertz., y.)” of Z;—1 by Eq. (4) :
' e if (¢ = +1) Find scaling factors by Eq. (8a)
where\(, ) denotes Gaussian distributianjs the covariance. elseif ¢ = —1) Find scaling factors by Eq. (8b)

g . . - else sets =1
The difficulty to evaluate Eqg. (12) lies in finding the , update the scale componentandh of i, ; using Eq. (9a), (9b)
proposaly(). Before CamShift is embedded into particle filter, o if (j = I) stop, sett = z;

q() just takes the same form as the prior Eq. (13). However, in __®/S€ /**, and retur to the first step
CAMSGPF, the effect of CamShift should also be taken into
account; otherwise, the posterior estimated{ by, wg}izl N
would be biased. We can view CamShift as a subsequent lll. EXPERIMENTAL RESULTS
sample drawing step conditioned on the samgles}, | . In this section, the performance of CAMSGPF is compared
which is drawn beforehand according to the prior distritti with other trackers in a number of aspects. In the experisjent
Then the new proposal distribution becomes: the parameters of CAMSGPF are set as follows:= 1.2;
o o o . ko = 1, Ny = 10; I = 2. All the tests are carried out on
q(@y|z0.—15 2t) = /ﬁ(filii, 2)p(Zy|wh,_1)dE;  (14) 320 x 240-pixel sequences with a Pentium 1V 2.8G PC.

We compare the general tracking ability of different algo-
where p(zt|7i, 2;) is the probability that stater! will be rithms by examining the minimal number of particles reqdire
CamsShift-ed toz! given the observation;. As CamShift by each of them to barely achieve successful tracking. From
is deterministic, the value of() is either 1 or 0, and can the experiments on “hockey” sequence (shown in Fig. 3,
be determined explicitly by checking whether the result dfacking results by CAMSGPF only), we observe that this
CamsShift-ingzi by Eq. (11) will collide with zi. However, number is 35 at least for generic particle filter, while 10 for
doing CamsShift on all possibl&: is time-exhausting, in both of MSEPF and CAMSGPF. It is clear that mean shift or
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Fig. 5. Comparison of time consumption versus particle nemiletween
CAMSGPF and MSEPF. (a) “redteam”; (b) “hockey”; (c) “egtst (d)

e
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than MSEPF. The curves in Fig. 5 do not pass through the
origin, due to some fixed tasks in each frame (video file
reading, color space conversion and displaying). So weatedu
the fixed time for both of the two algorithms and compare the
average time consumption per particle for each sequerce, i.
the slopes of the lines in Fig. 5, in the left columns of Talblle |
We can see it takes about 20%~50% less time for CAMSGPF
Fig. 4. “soccer” sequence tracked by MSEPF, Camshift and SGRIF (in to process a patrticle than MSEFP._In the right columns ofélabl
the columns from left to right). (frame 114, 123, 176, 193) lll, the average Bhattacharyya distance between the tdacke
area and the target template is shown as an indicator of the
tracking accuracy. All the 3 tests confirm that the influence

CamShift can help the particle filter a lot, reducing the nembdue to simplification in CAMSGPF on the tracking accuracy
of particles by 71%. is trivial with respect to the time saved.

The ability of scale adaptation is tested in the “soccer” IV. CONCLUSIONS

sequence, as ShOW.” n F'g'.4' The track_lng result .Of CAMS'A novel tracking algorithm, CAMSGPF, has been proposed
GPF is displayed in the third column,_ In comparison W_'“By exploring the interaction between particle filtering and
those tracked by MSEPF and CamShift (with moment-sizge, shift with the aids of CamsShift, the particles are gdide
estimation functions tuned to this sequence), in the firsk ath more possible modes of observation, so that the sampling
second column. Our method turns out to adapt to scale cha iency is improved greatly. At the same time, CamsShift is

of the tgrget best, since the boundary box best matches H&?\ducted under the supervision of particle filtering. Iis th
target S'Z_e' o ] ~__way, the scale adaptation of CamShift becomes functional in
To validate the significance of applying the simplifiedngre universal situations; and CamsShift can be applied on

Camshift on part of the particles, we compare the time COBarticles in a more economic way without much sacrifice
sumption of CAMSGPF with MSEPF on several sequences. nerformance. The experimental results demonstrate that

Both of the algorithms can track the targets correctly mogiapsgpE outperforms CamShift and MSEPF in both track-
of the time, as Fig. 5(d) demonstrates. The average tirmeg robustness and efficiency.

consumed per frame by the two is plotted in Fig. 5 (a)-(c)

correspondingly, with regard to different number of paesc ACKNOWLEDGMENT
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TABLE Il
COMPARISON OF EFFICIENCY AND ACCURACY BETWEENMSEPFAND CAMSGPF

Sequence Time/Particle(ms) Time Saved Average distance Distance difference
MSEPF | CAMSGPF MSEPF | CAMSGPF

Redteam | 0.1807 0.1380 23.63% 0.1150 0.1140 -0.87%

Hockey | 0.0618 0.0432 30.03% 0.0903 0.0950 5.13%

Egtest01 | 0.0691 0.0377 45.49% 0.1213 0.1311 8.14%

* a smaller distance indicates a better match between twetsbje
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