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ABSTRACT

In this paper, we study how to use semantic relationships for
image classification in order to improve the classification ac-
curacy. We achieve the goal by imitating the human visual
system which classifies categories from coarse to fine grains
based on different visual features. We propose an ontolog-
ical bagging algorithm where most discriminative weak at-
tributes are automatically learned for different semanticlevels
by multiple instance learning and the bagging idea is applied
to reduce the error propagations of hierarchical classifiers. We
also leverage ontological knowledge to augment crowdsourc-
ing annotations (e.g., a hatchback is also a vehicle) in order to
train hierarchical classifiers. Our method is tested on a vehi-
cle dataset from the popular crowdsourcing dataset ImageNet.
Experimental results show that our method not only achieves
state-of-the-art results but also identifies semanticallymean-
ingful visual features.

Index Terms— Ontology, image classification, hierarchi-
cal weak attributes, crowdsourcing

1. INTRODUCTION

Image classification is one of the most important problem-
s in computer vision and pattern recognition. Most existing
image classification algorithms [1, 2, 3, 4, 5, 6, 7] treat class-
es as completely independent both visually and semantical-
ly. Features describing the entire images are used to train an
one-against-rest multi-class classifier, which can be thenap-
plied to test new images against every category exhaustively.
However, the omission of inter-class relationships causesthe
restrictive classification performance especially for categories
with fine-grained distinction as well as the high testing com-
plexity when the number of classes grows.

Humans can easily recognize hundreds of thousands of
classes since humans use semantic relationships when learn-
ing the visual appearance of categories. For example, it’s not
sensible to remember all the details of “hatchback” when dif-
ferentiating it from “horse”, but more natural to find features
corresponding to “car” like “wheel” or “headlight”. An on-
tology is a hierarchical structure consisting of categories and
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Fig. 1: Comparison of conventional image classification al-
gorithms with our ontology-based algorithm. In (a), Conven-
tional methods use the one-against-rest framework and use
features about the entire image. In (b), Dotted red lines show
that our method classifies categories from coarse to fine grain-
s. Bounding boxes with different colors indicate the learned
weak attributes for different semantic levels.

high-level relationships. It provides a potential way to incor-
porate semantics into the visual recognition system. A simple
ontology is shown in Figure 1b.

Nowadays the prosperity of World Wide Web makes
many large-scale multimedia systems practical with integrat-
ed wisdom of the crowds, e.g. the human-annotated large-
scale image dataset ImageNet [8]. Often a small number of
annotations are labeled for an image. For example, a “hatch-
back” image is only annotated as “hatchback”. However, a
“hatchback” can also be labeled as a “vehicle”, a “transporta-
tion means” or even an “object”. Therefore, the crowdsourc-
ing annotations cannot convey the complete semantics. In



fact, there is no need to require all possible annotations from
crowdsourced data due to the high inefficiency. We can ob-
tain the extra information inexpensively by incorporatingon-
tological prior knowledge. In Figure 1b, we can automatically
augment an additional annotation “car” for the hatchback im-
age, while conventional non-ontology-based algorithms have
no such advantages.

In this paper, we propose an ontological bagging algorith-
m to leverage semantic relationships for image classification.
In our method, multiple instance learning [5] is used to auto-
matically learn weak attributes for different semantic levels of
an ontology. A hierarchical classifier using the learned weak
attributes is constructed to classify categories from coarse to
fine grains. The bagging approach is applied to further im-
prove the classification performance. Figure 1b illustratethe
framework of our method. We evaluate our algorithm on a
vehicle recognition dataset from ImageNet [8]. Experimen-
tal results show that our method not only achieves the state-
of-the-art results but also parallels the human visual system
which can locate semantically meaningful image windows for
different semantic levels.

The rest of the paper is organized as follows. In Section
2 we will talk about some related work. Section 3 describes
our proposed algorithm and experimental results are shown in
Section 4. Finally, we conclude the paper in Section 5.

2. RELATED WORK

Image classification has been studied for many years. Most
existing algorithms [1, 2, 3] don’t consider inter-class rela-
tionships. While sufficient for categories starkly different in
visual appearance, they are likely to perform poorly on cate-
gories with subtle differences. In this paper, our method lever-
ages ontology to improve image classification accuracy.

Some previous studies [9, 10] have used ontologies for
image classification. Conventional ontology-based algo-
rithms [10] use the same features and train a node classifier
at every ontological node to determine the node’s immediate
children. However, super-categories usually possess larger
intra-class variations, thus the same low-level features are of-
ten not discriminative enough to capture the common features
of sub-categories. In contrast, our method learns hierarchical
weak attributes for different semantic levels. The idea is more
sensible and tends to follow the human recognition behavior.
Furthermore, the bagging framework is used to reduce the er-
ror propagations of hierarchical classifiers. Therefore the ac-
curacy of our method is improved.

Various feature representations have been proposed for
image classification [1, 11, 6, 7, 2, 5]. Many [1, 7] are based
on providing the information about the entire image. Some
feature selection methods [2, 11] select important subsets
of low-level features, but are limited by the semantic gap-
s between low-level features and high-level concepts. Oth-
er works [6] instead use manually-defined attributes, which

requires both the domain knowledge and extensive labeling
work. Inspired from [5], our method leverages multiple in-
stance learning to automatically learn weak attributes, which
are semantically meaningful yet no manual work needed. Our
method differs from [5] in that [5] still uses the one-against-
rest framework to learn weak attributes for each class inde-
pendently, whereas our method learns hierarchical weak at-
tributes for different semantic levels, and therefore additional
visual cues can be obtained.

3. ONTOLOGICAL BAGGING ALGORITHM

To leverage semantic relationships for image classification,
our method uses the bagging framework to train several hi-
erarchical classifiers, each of which has the same structure
as the given semantic ontology. At each ontological node,
categories are grouped into super-categories based on the on-
tological structure and weak attributes are learned for every
super-category respectively. These weak attributes are then
used as image features to train a node classifier in order to
discriminative between the node’s sub-categories.

In the following sections, we first describe the semantic
grouping (Section 3.1). Then we elaborate on the weak at-
tribute learning (Section 3.2) and bagging classifiers construc-
tion (Section 3.3) in details.

3.1. Semantic grouping

To construct a hierarchical classifier, we need training images
of all categories in an ontology. For example, in Figure 1b,
we need data of the categories “car”, “horse”, “sedan” and
“hatchback”. One naive way is treating all categories inde-
pendently and collecting crowdsourcing data containing al-
l the categories. Obviously it is inefficient. A more sensible
way is only collecting images of leaf categories (e.g., “horse”,
“sedan” and “hatchback”). Then based on semantic relation-
ships, we can easily obtain training images for categories at
intermediate semantic levels by grouping together images of
their offsprings.

Specifically, at a given ontological nodem, its immedi-
ate childrenm1, ...,mM are regarded as the super-categories,
whereM is the total number of the immediate children. All
images of a particular leaf categoryci are assigned to the label
mj if the ci is an offspring ofmj . For example, in Figure 1b,
the super-categories at the root node are “car” and “horse”.
Then training images of “car” will include training images of
”sedan” and ”hatchback”.

3.2. Weak attribute learning

Given images assigned with super-category labels which are
obtained from Section 3.1, our algorithm automatically learn-
s several unique weak attributes for each super-category by
multiple instance learning. At each time we treat images of
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Fig. 2: The ontology for the vehicle dataset.

one particular super-category as positive bags, and the rest
images as negative bags, then image windows sampled from
an image (bag) will correspond to the instances of that bag.

To learnK unique weak attributes of a super-categorym,
we randomly select several image windows from each train-
ing image(Xi, Yi). Every image windowxij has a latent
variablezij ∈ {0, 1, ...,K}. If zij = k ∈ {1, ...,K}, xij is
the positive instance of thek-th weak attribute ofm. Other-
wise if zij = 0, xij is the negative instance. Weak attributes
can be learned by solving the following objective function:

min
W,zij

K∑

k=0

||wk||
2 + λ

∑

ij

max(0, 1 + wT
rij

xij − wT
zij

xij)

s.t. if Yi = m,
∑

j

zij > 0,else if Yi 6= m, zij = 0.

(1)
whererij = argmaxk∈{0,...,K},k 6=zij

wT
k xij . Eachwk rep-

resents thek-th positive weak attribute whilew0 denotes the
negative weak attribute. Please refer to [5] for details of how
to solve the objective function.

After weak attributes are learned for all the super-
categories at the given node, the image feature representation
can be constructed from the responses of the weak attributes.
Specifically, the response of an image windowxij given by
the k-th weak attribute of the super-categorym is wT

mkxij .
Thus, for an input imageXi, we can obtain a response map
for every weak attribute. For each response map, the maxi-
mal responses are pooled over spatial pyramids. The feature
concatenation of all response maps leads to the final feature
descriptor for the input image.

3.3. Constructing bagging classifiers

At each internal node of the ontology, since images are as-
signed with their super-category labels, together with the
learned feature descriptors, this allows us to learn a traditional
multi-class SVM classifier. We use linear SVM classifiers for
simplicity. A hierarchical classifier is constructed by collect-
ing all the node classifiers of the ontology.

To mitigate the error propagations of a hierarchical clas-
sifier, we leverage the bagging framework to train multiple
hierarchical classifiers in the same way. In addition, in order
to decrease the generalization error, we insert randomnessto
each hierarchical classifier to make them as uncorrelated as
possible. Specifically, our method randomly selects the num-
ber of weak attributes for every super-category at each node;
Our method randomly selects a subset of training images to
construct each hierarchical classifier. When testing, an im-
age is classified by descending each hierarchical classifierand
combining the predictions from all of them.

4. EXPERIMENTS

In this section, we evaluate our algorithm on a crowdsourcing
image dataset: an object recognition dataset of 9 vehicle cat-
egories. Experimental results show that our method achieves
the state-of-the-art results on this challenging dataset.We al-
so demonstrate the advantages of our method as well as illus-
trate some hierarchical weak attributes for different semantic
levels.

4.1. Dataset

We select 9 vehicle classes from ImageNet [8], including
“horse”, “bike”, “motorbike”, “sedan”, “hatchback”, “SUV”,
“van”, “truck” and “bus”. Each class has 1200 to 1700 im-
ages. We use WordNet to generate a semantic ontology for
the 9 vehicle classes. We retrieve all nodes in WordNet that
contains any of the class names on their word lists and build
a compact hierarchical ontology by pruning the irrelevant n-
odes. The resulting vehicle ontology is shown in Figure 2.

4.2. Baselines

We compare our method to several baselines:

• Locality-constrained Linear Coding (LLC) [1]: uses
encoded global low-level features and 3 pyramid levels
to incorporate spatial information, categories are then
classified by a linear SVM classifier.



Method mean Average Precision (%)
LLC [1] 46.32± 1.51
SH [10] 45.61± 1.50
RF [3] 48.60± 1.26

MMDL [5] 52.27± 1.58
MMDL + Bagging 52.59± 1.19

Ours 55.56± 1.16

Table 1: Comparison of the mean average precisions (%) on
the vehicle dataset. Our method outperforms all the baselines.
The best result is highlighted with bold fonts.

• Semantic hierarchies (SH) [10]: uses the same low-
level features and trains a linear SVM classifier at every
ontological node.

• Random forest (RF) [3]: randomly partitions categories
into a binary set at each tree node of decision trees and
learns a linear SVM classifier for the splitting.

• Max-margin multiple-instance dictionary learning (M-
MDL) [5]: uses the One-Against-Rest (OAR) frame-
work to learn weak attributes for each class indepen-
dently and train a multi-class linear SVM classifier for
classification.

• MMDL + Bagging: leverages the bagging framework
to train multiple MMDL classifiers.

4.3. Results

For each experiment run, we randomly select 30% of the
training images per class and test on the remaining images.
We run the experiment for 10 times and record averages and
standard deviations of mean average precisions for all the al-
gorithms. The results are shown in Table 1. Our method out-
performs all the baselines.

The effect of hierarchical weak attributes: One advan-
tage of our method over the other baselines is that our method
can learn weak attributes for different semantic levels. In
Figure 3, we visualize some of the learned weak attributes
for “bike” and “motorbike”. The red bounding boxes corre-
spond to the shared weak attribute at intermediate semantic
levels while the blue and green bounding boxes relate to the
unique weak attributes at leaf levels. We observe that they
have strong responses on image windows which are truly se-
mantically meaningful. Hierarchical weak attributes enable
our method to classify categories from coarse to fine semantic
grains by using more discriminative features, which parallels
the human visual system [12]. They also describe image con-
tents more completely, therefore achieve better classification
accuracy.

The effect of bagging:From Table 1 we observe that the
conventional ontological classifier SH has a lower accuracy
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Fig. 4: Mean average precisions of different methods compar-
ison on the crowdsourcing dataset over the number of classi-
fiers.

than the OAR SVM classifier LLC, even though they use the
same low-level features. This validates the conclusions from
many previous works [9, 10] that the error propagations of
hierarchical classifiers lead to worse classification accuracy.

Our method leverages the bagging framework to allevi-
ate the error propagations of hierarchical classifiers. We also
un-correlate the bagged classifiers in order to reduce the gen-
eralization error. The classification accuracy over the number
of classifiers is shown in Figure 4. We notice that although
the accuracy of using a single hierarchical classifier is low,
our method can outperform all the baselines by combining
the results of only 5 classifiers. This further demonstratesthe
effectiveness of our method. For better comparison, we al-
so train multiple rounds of MMDL for bagging (denoted as
MMDL-Bagging). However since it totally ignores semantic
relationships and cannot learn hierarchical weak attributes, its
result is unaffected.

5. CONCLUSION

In this work, we proposed to use ontology to incorporate se-
mantic relationships for image classification of crowdsourced
data. Our method learns discriminative features on each lev-
el of ontology using multiple instance learning, and clas-
sifies categories from coarse to fine semantic grains based
on these features, which mimics the human visual system.
Our method also leverages ontological knowledge to augmen-
t crowdsourcing annotations in order to construct hierarchi-
cal classifiers. Experimental results on an object recognition
dataset demonstrate the effectiveness of our method. The fu-
ture work is to evaluate our algorithm on other image datasets.



(a) bike

(b) motorbike

Fig. 3: The learned weak attributes for different semantic levels. Each row illustrates some examples of the category “bike”
(a) or “motorbike” (b). Every bounding box indicates one positive instance of a particular weak attribute.Redbounding boxes
correspond to a weak attribute of “2-wheel”.Blue bounding boxes correspond to a unique weak attribute of “bike”. Green
bounding boxes correspond to a unique weak attribute of “motorbike”. (Best viewed in color.)
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