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ABSTRACT

Hatchback vs rest

Sedan vs rest

In this paper, we study how to use semantic relationships fc
image classification in order to improve the classification a !«h. 5
curacy. We achieve the goal by imitating the human visua S
system which classifies categories from coarse to fine grair
based on different visual features. We propose an ontolog
ical bagging algorithm where most discriminative weak at-
tributes are automatically learned for different semalstiels
by multiple instance learning and the bagging idea is adplie
to reduce the error propagations of hierarchical classif\ée
also leverage ontological knowledge to augment crowdsour¢ ‘
ing annotations (e.g., a hatchback is also a vehicle) inraade
train hierarchical classifiers. Our method is tested on & veh
cle dataset from the popular crowdsourcing dataset ImaigeNe”
il
Experimental results show that our method not only achieve-'ws n
state-of-the-art results but also identifies semanticakan- +
ingful visual features. & Horse

Hatchback

(a) Conventional OAR framework

Vehicle

Index Terms— Ontology, image classification, hierarchi-

cal weak attributes, crowdsourcing (b) The hierarchical framework of our method

Fig. 1: Comparison of conventional image classification al-
gorithms with our ontology-based algorithm. In (a), Conven
tional methods use the one-against-rest framework and use
features about the entire image. In (b), Dotted red linesvsho

Image classification is one of the most important problem; that our method classifies categories from coarse to fina-grai
s in computer vision and pattern recognition. Most existin
P b g g s. Bounding boxes with different colors indicate the ledrne

image classification algorithms [1, 2, 3, 4, 5, 6, 7] treassta eak attributes for different semantic level
es as completely independent both visually and semantical® € erentse C Ievels.

ly. Features describing the entire images are used to train a
one-against-rest multi-class classifier, which can be #pen
plied to test new images against every category exhaugtivelhigh-level relationships. It provides a potential way toar
However, the omission of inter-class relationships catises Porate semantics into the visual recognition system. A Emp
restrictive classification performance especially foegaties ~ ontology is shown in Figure 1b.
with fine-grained distinction as well as the high testing eom  Nowadays the prosperity of World Wide Web makes
plexity when the number of classes grows. many large-scale multimedia systems practical with irgtegr
Humans can easily recognize hundreds of thousands efd wisdom of the crowds, e.g. the human-annotated large-
classes since humans use semantic relationships when leascale image dataset ImageNet [8]. Often a small number of
ing the visual appearance of categories. For example,dt's n annotations are labeled for an image. For example, a “hatch-
sensible to remember all the details of “hatchback” when dif back” image is only annotated as “hatchback”. However, a
ferentiating it from “horse”, but more natural to find feagar “hatchback” can also be labeled as a “vehicle”, a “transport
corresponding to “car” like “wheel” or “headlight”. An on- tion means” or even an “object”. Therefore, the crowdsourc-
tology is a hierarchical structure consisting of categoeaed ing annotations cannot convey the complete semantics. In

1. INTRODUCTION



fact, there is no need to require all possible annotatiors fr  requires both the domain knowledge and extensive labeling

crowdsourced data due to the high inefficiency. We can obwork. Inspired from [5], our method leverages multiple in-

tain the extra information inexpensively by incorporatorg ~ stance learning to automatically learn weak attributescivh

tological prior knowledge. In Figure 1b, we can automatical are semantically meaningful yet no manual work needed. Our

augment an additional annotation “car” for the hatchback immethod differs from [5] in that [5] still uses the one-ag#&ins

age, while conventional non-ontology-based algorithme&ha rest framework to learn weak attributes for each class inde-

no such advantages. pendently, whereas our method learns hierarchical weak at-
In this paper, we propose an ontological bagging algorithtributes for different semantic levels, and therefore tioldal

m to leverage semantic relationships for image classifinati visual cues can be obtained.

In our method, multiple instance learning [5] is used to auto

matically learn weak attributes for different semanticlewof

an ontology. A hierarchical classifier using the learnedkvea

attributes is constructed to classify categories from s®#o To leverage semantic relationships for image classifinatio

fine gr?‘ins.l Th.ef,i bagging a}pproach is é_lpp”ed tQIIfU”her IM&ur method uses the bagging framework to train several hi-
prove the classification performance. Figure 1b illustté o5 chical classifiers, each of which has the same structure

framework of our method. We evaluate our algorithm on &5 the given semantic ontology. At each ontological node,

vehicle recognition dataset from ImageNet [8]. Experimen<.aioqories are grouped into super-categories based onthe o

tal results show that our method not only achieves the statgg,gical structure and weak attributes are learned foryeve
of-t.he-art results but alsg parallels ',[he hqman ws_ualesyst super-category respectively. These weak attributes @ th
which can locate semantically meaningful image windows fof, e a5 image features to train a node classifier in order to

different semantic levels. _ _ discriminative between the node’s sub-categories.
The rest of the paper is organized as follows. In Section In the following sections, we first describe the semantic

2 we will talk about some related work. Section 3 describeijrouping (Section 3.1). Then we elaborate on the weak at-
our proposeq algorithm and experimental results are shown tribute learning (Section 3.2) and bagging classifiersttans
Section 4. Finally, we conclude the paper in Section 5. tion (Section 3.3) in details.

3. ONTOLOGICAL BAGGING ALGORITHM

2. RELATED WORK 3.1. Semantic grouping
Image classification has been studied for many years. Mod construct a hierarchical classifier, we need trainingyesa
existing algorithms [1, 2, 3] don't consider inter-clastare of all categories in an ontology. For example, in Figure 1b,
tionships. While sufficient for categories starkly differém  we need data of the categories “car”, “horse”, “sedan” and
visual appearance, they are likely to perform poorly on<cate*hatchback”. One naive way is treating all categories inde-
gories with subtle differences. In this paper, our methwdde  pendently and collecting crowdsourcing data containing al
ages ontology to improve image classification accuracy. | the categories. Obviously it is inefficient. A more sensibl
Some previous studies [9, 10] have used ontologies faway is only collecting images of leaf categories (e.g., 4&dr
image classification. Conventional ontology-based algo*sedan” and “hatchback”). Then based on semantic relation-
rithms [10] use the same features and train a node classifiships, we can easily obtain training images for categoties a
at every ontological node to determine the node’s immediatetermediate semantic levels by grouping together imades o
children. However, super-categories usually possesgnargtheir offsprings.
intra-class variations, thus the same low-level feature & Specifically, at a given ontological node, its immedi-
ten not discriminative enough to capture the common featureate childrenn, ..., m, are regarded as the super-categories,
of sub-categories. In contrast, our method learns hieigath whereM is the total number of the immediate children. All
weak attributes for different semantic levels. The ideadgsen images of a particular leaf categaryare assigned to the label
sensible and tends to follow the human recognition behaviorn; if the ¢; is an offspring ofin;. For example, in Figure 1b,
Furthermore, the bagging framework is used to reduce the ethe super-categories at the root node are “car” and “horse”.
ror propagations of hierarchical classifiers. Therefoeeeth-  Then training images of “car” will include training imaget o
curacy of our method is improved. "sedan” and "hatchback”.
Various feature representations have been proposed for
image c_Ia_ssificatipn [1, 11, 6,7, 2, 5]. Many [1., 7] are based\;}_zl Weak attribute learning
on providing the information about the entire image. Some
feature selection methods [2, 11] select important subsetSiven images assigned with super-category labels which are
of low-level features, but are limited by the semantic gap-obtained from Section 3.1, our algorithm automaticallytea
s between low-level features and high-level concepts. Oths several unique weak attributes for each super-category by
er works [6] instead use manually-defined attributes, whichmultiple instance learning. At each time we treat images of
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Fig. 2 The ontology for the vehicle dataset.

one particular super-category as positive bags, and the res To mitigate the error propagations of a hierarchical clas-
images as negative bags, then image windows sampled frosifier, we leverage the bagging framework to train multiple
an image (bag) will correspond to the instances of that bag. hierarchical classifiers in the same way. In addition, ireord
To learnK unique weak attributes of a super-categery to decrease the generalization error, we insert randonioess
we randomly select several image windows from each traineach hierarchical classifier to make them as uncorrelated as
ing image (X;,Y;). Every image windowz;; has a latent possible. Specifically, our method randomly selects the-num
variablez;; € {0,1,...,K}. If z;; = k € {1,...,K}, z;; is  ber of weak attributes for every super-category at each;node
the positive instance of thieth weak attribute ofn. Other-  Our method randomly selects a subset of training images to
wise if z;; = 0, x;; is the negative instance. Weak attributesconstruct each hierarchical classifier. When testing, an im-
can be learned by solving the following objective function: age is classified by descending each hierarchical classifoer
combining the predictions from all of them.

K
min Z |Jwg||? + )\Zmax(o, 1+ wfijscij - wZTijxij)
=0

W, zi; ; — 4. EXPERIMENTS
_ Py
st. if Y, =m, Z zi; > 0,elseif Y; #m,z; =0. In this section, we evaluate our algorithm on a crowdsogrcin
j image dataset: an object recognition dataset of 9 vehitle ca

. (1) egories. Experimental results show that our method achieve
whereri; = argmatyeqo, . i} kzz,; Wk Tij- E&Chwy rép- - the state-of-the-art results on this challenging datasetal-
resents thé-th positive weak attribute whiley, denotes the  so demonstrate the advantages of our method as well as illus-

negative weak attribute. Please refer to [5] for detailsafh  trate some hierarchical weak attributes for different satina
to solve the objective function. levels.

After weak attributes are learned for all the super-
categories at the given node, the image feature repreim_ntat 4.1. Dataset
can be constructed from the responses of the weak attributes
Specifically, the response of an image windoyy given by ~ We select 9 vehicle classes from ImageNet [8], including
the k-th weak attribute of the super-categoryis wl,z;;.  “horse”, “bike”, “motorbike”, “sedan”, “hatchback”, “SUY
Thus, for an input image&;, we can obtain a response map “van”, “truck” and “bus”. Each class has 1200 to 1700 im-
for every weak attribute. For each response map, the maxges. We use WordNet to generate a semantic ontology for
mal responses are pooled over spatial pyramids. The featutiee 9 vehicle classes. We retrieve all nodes in WordNet that

concatenation of all response maps leads to the final featug@ntains any of the class names on their word lists and build
descriptor for the input image. a compact hierarchical ontology by pruning the irrelevant n
odes. The resulting vehicle ontology is shown in Figure 2.
3.3. Constructing bagging classifiers )
4.2. Baselines
At each internal node of the ontology, since images are as-

signed with their super-category labels, together with th e compare our method to several baselines:

learned feature descriptors, this allows us to learn attosudil e Locality-constrained Linear Coding (LLC) [1]: uses
multi-class SVM classifier. We use linear SVM classifiers for encoded global low-level features and 3 pyramid levels
simplicity. A hierarchical classifier is constructed byleot- to incorporate spatial information, categories are then

ing all the node classifiers of the ontology. classified by a linear SVM classifier.



Method mean Average Precision (%)

LLC[1] 46.32 £1.51
SH [10] 45.61 + 1.50 g oo
RF [3] 48.60 + 1.26
MMDL [5] 52.27 + 1.58 s,
MMDL + Bagging 52.59 & 1.19 g .
Ours 55.56+ 1.16 ~ours 4
% » +hR/IFMDL+Baggin94
Table 1: Comparison of the mean average precisions (%) on o LLC
the vehicle dataset. Our method outperforms all the baslin o oL

The best result is highlighted with bold fonts. *o

1‘0 " 15 20
Number of classifiers

Fig. 4: Mean average precisions of different methods compar-

* Semantic hierarchies (SH) [10]: uses the same lowison on the crowdsourcing dataset over the number of classi-
level features and trains a linear SVM classifier at everyjgrs.

ontological node.

¢ Random forest (RF) [3]: randomly partitions categories

into a binary set at each tree node of decision trees an .
learns a linear SVM classifier for the splitting. t?wan the OAR SVM classifier LLC, even though they use the

same low-level features. This validates the conclusioos fr

e Max-margin multiple-instance dictionary learning (M- many previous works [9, 10] that the error propagations of
MDL) [5]: uses the One-Against-Rest (OAR) frame- hierarchical classifiers lead to worse classification samyur
work to learn weak attributes for each class indepen-
dently and train a multi-class linear SVM classifier for
classification.

Our method leverages the bagging framework to allevi-

ate the error propagations of hierarchical classifiers. \&& a

un-correlate the bagged classifiers in order to reduce the ge

MMDL + Bagging: leverages the bagging framework €ralization error. The classification accuracy over the lpem

of classifiers is shown in Figure 4. We notice that although

the accuracy of using a single hierarchical classifier is low

our method can outperform all the baselines by combining

4.3. Results the results of only 5 classifiers. This further demonstrttes
effectiveness of our method. For better comparison, we al-

For each experiment run, we randomly select 30% of thgo train multiple rounds of MMDL for bagging (denoted as

training images per class and test on the remaining imagesIMDL-Bagging). However since it totally ignores semantic

We run the experiment for 10 times and record averages anelationships and cannot learn hierarchical weak attesLts

standard deviations of mean average precisions for alllthe aresult is unaffected.

gorithms. The results are shown in Table 1. Our method out-

performs all the baselines.

The effect of hierarchical weak attributes: One advan-

tage of our method over the other baselines is that our method

can learn weak attributes for different semantic levels. In

Figure 3, we visualize some of the learned weak attributes 5. CONCLUSION

for “bike” and “motorbike”. The red bounding boxes corre-

spond to the shared weak attribute at intermediate semantic

levels while the blue and green bounding boxes relate to thi this work, we proposed to use ontology to incorporate se-

unique weak attributes at leaf levels. We observe that thefpantic relationships for image classification of crowdsedr

have strong responses on image windows which are truly s€lata. Our method learns discriminative features on each lev

mantically meaningful. Hierarchical weak attributes drab €l of ontology using multiple instance learning, and clas-

our method to classify categories from coarse to fine semantpifies categories from coarse to fine semantic grains based

grains by using more discriminative features, which patsll 0on these features, which mimics the human visual system.

the human visual system [12]. They also describe image coPur method also leverages ontological knowledge to augmen-

tents more completely, therefore achieve better clasiita t crowdsourcing annotations in order to construct hieriarch
accuracy. cal classifiers. Experimental results on an object recamgnit

The effect of bagging: From Table 1 we observe that the dataset demonstrate the effectiveness of our method. Fhe fu
conventional ontological classifier SH has a lower accuracjure work is to evaluate our algorithm on other image dasaset

to train multiple MMDL classifiers.



(b) motorbike

Fig. 3: The learned weak attributes for different semantic lev&lach row illustrates some examples of the category “bike”
(a) or “motorbike” (b). Every bounding box indicates oneifigs instance of a particular weak attributeedbounding boxes
correspond to a weak attribute of “2-wheeBlue bounding boxes correspond to a unique weak attribute ofe™iksreen
bounding boxes correspond to a unique weak attribute ofdnbike”. (Best viewed in color.)
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