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Abstract

This paper introduces a probabilistic graphical mod-
el for continuous action recognition with two novel com-
ponents: substructure transition model and discriminative
boundary model. The first component encodes the sparse
and global temporal transition prior between action prim-
itives in state-space model to handle the large spatial-
temporal variations within an action class. The second
component enforces the action duration constraint in a dis-
criminative way to locate the transition boundaries between
actions more accurately. The two components are inte-
grated into a unified graphical structure to enable effective
training and inference. Our comprehensive experimental
results on both public and in-house datasets show that, with
the capability to incorporate additional information that
had not been explicitly or efficiently modeled by previous
methods, our proposed algorithm achieved significantly im-
proved performance for continuous action recognition.

1. Introduction

Understanding continuous human activities from videos,
i.e. simultaneous segmentation and classification of ac-
tions, is a fundamental yet challenging problem in com-
puter vision. Many existing works approach the problem
using bottom-up methods [31], where segmentation is per-
formed as preprocessing to partition videos into coherent
constituent parts, and action recognition is then applied as
an isolated classification step. Although a rich literature ex-
ists for segmentation of time series, such as change point
detection [12], periodicity of cyclic events modeling [7]
and frame clustering [40], the methods tend to detect lo-
cal boundaries and lack the ability to incorporate global dy-
namics of temporal events, which leads to under or over seg-
mentation that severely affects the recognition performance,
especially for complex actions with diversified local motion
statistics [13].

The limitation of the bottom-up approaches has been ad-
dressed by performing concurrent top-down recognition us-
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Figure 1. (a) Tradition SLDS model for continuous action recogni-
tion, where each action is represented by an LDS; (b) the structure
of our proposed model, in which each action is represented by an
SLDS with substructure transition, and the inter action transition
is by controlled by discriminative boundary model.

ing variants of Dynamic Bayesian Network (DBN), where
the dynamics of temporal events are modeled as transitions
in a latent [24, 18] or partially observed state space [ 14, 27].
The technique has been successfully used in speech recog-
nition and natural language processing, while the perfor-
mance of existing DBN based approaches for action recog-
nition [27, 10, 32, 33, 17, 26] tends to be relatively low-
er [13], mostly due to the difficulty in interpreting the phys-
ical meaning of latent states. Thus, it becomes difficult
to impose additional prior knowledge with clear physical
meaning into an existing graphical structure to further im-
prove its performance.

To tackle the problem, in this paper, we show how two
additional sources of information with clear physical inter-
pretations can be considered in a general graphical structure
for State-Space Model (SSM) in Figure 1. Compared to a
standard Switching Linear Dynamic System (SLDS) [27]
model in Figure 1.(a), where X, Y and S are respectively
the hidden state, observation and label, the proposed model
in Figure 1.(b) is augmented with two additional nodes, Z
and D, to describe the substructure transition and duration
statistics of actions.

Substructure transition: Rather than a uniform mo-



tion type, a real-world human action is usually character-
ized by a set of inhomogeneous units with some instinct
structure, which we call substructure. Action substructure
arises from two factors: (1) the hierarchical nature of hu-
man activity, where one action can be temporally decom-
posed into a series of primitives with spatial-temporal con-
straints; (2) the large variance of action dynamics due to dif-
ferences in kinematical property of subjects, feedback from
environment, or interaction with objects. For the first factor,
Hoai et al. [13] used multi-class Support Vector Machine
(SVM) with Dynamic Programming to recognize coherent
motion constituent parts in an action; Liu er al. [22] ap-
plied latent-SVM for temporal evolving of “attributes” in
actions; Sung ef al. [33] introduced a two-layer Maximum
Entropy Markov Models to recognize the correspondence
between sub-activities and human skeletal features. For the
second factor, considerations have been paid to the sub-
structure variance caused by subject-object interaction us-
ing Connected Hierarchic Conditional Random Field (CR-
F) [17], and the substructure variance caused by pose using
Latent Pose CRF [26].

In more general cases, Morency et al. presented the La-
tent Dynamic CRF (LDCREF) algorithm by adding a “latent-
dynamic” layer into CRF for hidden substructure transi-
tion [25]. The limitation of CRF as a discriminative method
is that, one single pseudo-likelihood score is estimated for
an entire sequence which is incapable to interpret the prob-
ability of each individual frame. To solve the problem, we
instead design a generative model as in Figure.1.(b), with
extra hidden node Z gating the transition amongst a set of
dynamic systems, and the posterior for every action can be
inferred strictly under Bayesian framework for each frame.
The dimension of state space increases geometrically with
an extra hidden node, so we introduce effective transition
prior constraints in Section 2 to avoid over-fitting on a lim-
ited amount of training data.

Duration model: The duration statistics of actions is im-
portant in determining the boundary where one action tran-
sits to another in continuous recognition tasks. Duration
model has been widely adopted in Hidden Markov Model
(HMM) based methods, such as the explicit duration HM-
M [9] or more generally the Hidden Semi Markov Mod-
el (HSMM) [39]. Incorporating duration model into SS-
M is more challenging than HMM because SSM has con-
tinuous state space, and exact inference in SSM is usual-
ly intractable [20]. Some works reported in this line in-
clude Cemgil et al. [5] for music transcription and Chib
and Dueker [6] for economics. Oh et al. [28] imposed the
duration constraint at the top level of SLDS and achieved
improved performance for honeybee behavior analysis [27].
In general, naive integration of duration model into SSM is
not effective, because duration patterns vary significantly
across visual data and limited training samples may bias the

model with incorrect duration patterns.

To address this problem, in Figure 1.(b) we correlate du-
ration node D with the continuous hidden state node X and
the substructure transition node Z via logistic regression as
explained in Section 3. In this way, the proposed duration
model becomes more discriminative than conventional gen-
erative models, and the data-driven boundary locating pro-
cess can accommodate more variation in duration length.

In summary, the major contribution of the paper is to in-
corporate two additional models into a general SSM, name-
ly the Substructure Transition Model (STM) and the Dis-
criminative Boundary Model (DBM). We also design a Rao-
Blackwellised particle filter for efficient inference of pro-
posed model in Section 4. Experiments in Section 5 demon-
strate the superior performance of our proposed system over
several existing state-of-the-arts in continuous action recog-
nition. Conclusion is drawn in Section 6.

2. Substructure Transition Model

Linear Dynamic Systems (LDS) is the most commonly
used SSM to describe visual features of human motions.
LDS is modeled by linear Gaussian distributions:

P(Yt = Yt|Xt = Xt) = N(Yt§BXt»R) (D

P(Xep1 = xe1| Xy = x¢) = N(x441; A%, Q) (2)

where Y; is the observation at time ¢, X; is a latent state,
N (x; 41, ) is multivariate normal distribution of x with
mean 4 and covariance 3. To consider multiple action-
s, SLDS [27] is formulated as a mixture of LDS’s with
the switching among them controlled by action class .S;.
However, each LDS can only model an action with ho-
mogenous motion, ignoring the complex substructure with-
in the action. We introduce a discrete hidden variable
Zy € {1,..., Nz} to explicitly represent such information,
and the substructured SSM can be stated as:

p(Ys = yi| Xi = x4, Si, Z]) = N(y; BY%x;, R7)  (3)

P(Xer1 = X1 | Xy = x4, Sf+17 th+1) = N(Xt+1; Ainm Qij)

“)
where A%, B, Q¥, and R¥ are the LDS parameters for
the j*" action primitive in the substructure of i*" action
class. {Z;} is modeled as a Markov chain and the transi-
tion probability is specified by multinomial distribution:

p(Z],112}, SE, ) = O (5)

In the following, the term STM may refer to either the tran-
sition matrix in Eq. (5) or the overall substructured SSM
depending on its context. Some examples of STM are given
in Fig. 2, which are to be explained in detail in the remain-
der of this section.
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Figure 2. STM trained for action “move-arm” in stacking dataset
using (a) sparse and (b) block-wise sparse constraints, with Nz =
5and Ng = 3. STM in (b) better captures global ordering.

2.1. Sparsity Constrained STM

We use simplified notation ® = {6, } for the STM with-
in a single action. An unconstrained ® implies that the
substructure of action primitives can be organized in an ar-
bitrary way. For most real-world human actions, however,
there is a strong temporal ordering associated with the prim-
itive units. Such order relationship can be vital to accurate
action recognition as well as robust model estimation.

There have been some attempts to encode a fixed order
relationship among primitive units by restricting the loca-
tions of non-zero elements in transition matrix ®; examples
include the left-to-right HMM [2], switching HMM (SHM-
M) [14], and factorial HMM [ 1]. In many cases, it is dif-
ficult to specify the temporal ordering a priori, and a more
practical approach is to impose a sparse transition constrain-
t while leaving the discovery of exact order relationship to
training phase. Along this direction, negative Dirichlet dis-
tribution has been proposed in [4] as a prior for each row 6,
in ©: p(6;) o []; 6,;, where « is a pseudo count penalty.
The MAP estimation of parameter is

b — max(&;; — o, 0)
Y Y max(& — ,0)

where &;; is the sufficient statistics of (Z}, ZJ 1) When
the number of transitions from 2z’ to z7 in training data is
less than o, the probability 6;; is set to zero. The sparsity
enforced in this way often leads to local transition patterns
sensitive to noise and incomplete data, as shown in Fig. 2
(a). Also, the penalty term « introduces bias to the pro-
portion of non-zero transition probabilities, i.e. Zli %
This bias can be severe especially when &;; is small.

(6)

2.2. Block-wise Sparse STM

For tradeoff between model sparsity and flexibility, we
propose a block-wise sparse STM to regularize the global
topology of action substructure. The idea is to divide an ac-
tion into several stages and each stage comprises of a subset

of action primitives. The transition between stages is en-
couraged to be sequential and sparse, such that the global
action structure can be modeled. At the same time, the ac-
tion primitives within each stage can propagate freely from
one to another so that variation in action style and parameter
is also preserved.

Formally, define discrete variable Q; € {1,...,Ng} as
the current stage index of action, and assume a surjective
mapping ¢g(-) is given which assigns each action primitive
Z, to its corresponding stage Q;:

p(Qf, Z) >0, ifg(i)=q
p(QF,Z}) =0. otherwise

The choice of g(-) depends on the nature of action. Intu-
itively, we can assign more action primitives to a stage with
diversified motion patterns and less action primitives to a
stage with restricted pattern. The joint dynamic transition
distribution of (); and Z; is defined as:

P(Qit1, Zi111Q1, Zt) = p(Qu41|Q1)p(Z141|Q141, Z1)
(8)
The second term of Eq. (8) specifies the transition between

action primitives, which we want to keep as flexible as pos-
sible to model diversified local action patterns. The first
term captures the global structure between different action
stages, and therefore we impose an ordered negative Dirich-
let distribution as its hyper-prior:

(M

GRS [ ©)

qFr.q+1#r
where ® = {¢,} is the stage transition probability ma-
trix, ¢gr = p(Q}41|Q7), and « is a constant for pseu-

do count penalty. The ordered negative Dirichlet prior en-
codes both sequential order information and sparsity con-
straint. It promotes statistically a global transition path
Q' — @? — ... — QN2 which can be learned from
training data rather than heuristically defined as in left-to-
right HMM [2]. An example of the resulting STM is shown
in Fig. 2 (b). Note that no in-coming/out-going transi-
tion is encouraged for Q'/Q™N<, which stands for starting/
terminating stage. The identification of these two special
stages is helpful for segmenting continuous actions, as will
be discussed in Subsection 3.2.

2.3. Learning STM

The MAP model estimation requires to maximize the
product of likelihood (8) and prior (9) under the constraint
of (7). There are two interdependent nodes, ) and Z, in-
volved in the optimization, which make the problem com-
plicated. As shown in [36], Eq. (8) can be replaced with
the transition distribution of single variable Z in Eq. (5),
and a constraint exists for the relationship between ® and
®. Therefore, the node () (and the associated parameter ®)
serves only for conceptual purpose and can be eliminated in



final model construction. The MAP estimation can be con-
verted to the following constrained optimization problem:

max L(®) = wa log 6;; — Z alog ¢g,(10)
i

q#r
q+1#£r
st dgr = Xjegmbis, 1€G(q), Vr
Ejﬁij = ]., Vi aij Z 07 VZ,j

where &;; is the sufficient statistics of (Z7, th+1>, G(q) =
{ilg(i) = ¢}, and {¢g,} are just auxiliary variables. The
optimal solution is

) n 57,]
ij = dgres

J 9(2),9(J Zj’EQ(T) fij’
max(Picg(q),jeg(r) Sis — Yar: V)
e MAX(Y g (q) jeg () Sid — Agr', 0)

(1)

Par

where oy, is equal to a if ¢ # rorg+1 # r, and 0
otherwise. As we can see, the resultant © is a block-wise
sparse matrix, which can characterize both the global struc-
ture and local detail of action dynamics. Also, within each
block (stage), there is no bias in éij.

3. Discriminative Boundary Model

It is straightforward to use a Markov chain to model the
transition of action S; where p(S7,,]S;) = a;;. The du-
ration information of the ‘" action is naively incorporat-
ed into its self-transition probability a;;, which leads to an

exponentially-distributed action duration model:

pldur; =7) =al; '(1 —ay), 7=1,2,3...

(X3

Unfortunately, only a limited number of real-life events
have an exponentially diminishing duration. Inaccurate du-
ration modeling can severely affect our ability to segment
consecutive actions and identify their boundaries.

Non-exponential duration distribution can be imple-
mented with duration-dependent transition matrix, such as
the one used in HSMM][39]. Fitting a transition matrix
for each epoch within the maximum length of duration is
often impossible given a limited number of training se-
quences, even when parameter hyperprior such as hierarchi-
cal Dirichlet distribution [35] is used to restrict model free-
dom. Parametric duration distributions such as gamma [2 1]
and Gaussian [38] provide a more compact way to represen-
t duration and show good performance in signal synthesis.
However, they are less useful in inference because the cor-
responding transition probability is not easy to evaluate.

3.1. Logistic Duration Model

Here a new logistic duration model is proposed to over-
come the above limitations. We introduce a variable D; to
represent the length of time current action has been lasting.
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Figure 3. (a) Resetting probability p(D¢+1 = 1| Dy, St) and (b)
duration distribution for logistic duration model. Plotted with dif-
ferent color/line style for different v/3.

{D;} is a counting process starting from 1, and the begin-
ning of a new action is triggered whenever it is reset to 1:

i 5( —i), ifd>1
p(Si-l—l'Stng—i-l) = { aE‘j]’ ) lfd =1 (12)

where a;; is the probability of transiting from previous ac-
tion ¢ to new action j. Notice that the same type of action
can be repeated if we have a;; > 0.

Instead of modeling action duration distribution direct-

ly, we model the transition distribution of D; as a logistic
function of its previous value:

eVild=Bg(c — 1) + 8(c —d — 1)

c 7 dy _
p(Dt—Q—l‘St’Dt) - 1+6Vi(d—5i)

13)
where v; and (3; are positive logistic regression weights. E-

g- (13) immediately leads to the duration distribution for
action class i:

- 1
p(dur; =71) = H — 5 X evi(7=Fi) (14)
ot 1 _|_ e l( 61)

Fig. 3 (a) shows how the resetting probability of D,
changes as a function of D, with different parameter set-
s, and the corresponding duration distributions are plotted
in (b). The increasing probability of transiting to a new ac-
tion leads to a peaked duration distribution, with center and
width controlled by 3; and v;, respectively.

3.2. Discriminative Boundary Model

Stacking the logistic duration layer (D-S) onto the STM
layer (Z-X-Y) simply leads to a generative SSM, which
is unable to utilize contextual information for accurate ac-
tion boundary segmentation. Discriminative graphic mod-
els, such as MEMM [24] and CRF [18], are generally more
powerful in such classification problem except that they ig-
nore data likelihood or suffer from label bias problem.

To integrate discriminative power into our action bound-
ary model and at the same time keep the generative nature of
the action model itself, we construct DBM by further aug-
menting the duration dependency with the contextual infor-



mation from latent states X and Z:

T
ew(d—ﬂi)+wux

1 i pd yvx 7Jy _
p(Dt+1|St7Dt7Xt aZt) - 1 + el’i(d*Bi)+wizj

5)

where v;, 3; have the same interpretation as in Eq. (13), and
w;; are the additional logistic regression coefficients. When
ng = 0, no information can be learned from X; and Z;,
and the DBM reduces to a generative model as Eq. (13). A
similar logistic function has been employed in augmented
SLDS [3], where the main motivation is to distinguish be-
tween transitions to different states based on latent variable.
Our DBM is specifically designed for locating the boundary
between contiguous actions. It relies on both real valued
and categorical inputs.

As constrained by the STM in Subsection 2.2, each ac-
tion is only likely to terminate in stage Ng. Therefore,
Dy can be reset to 1 only when the current action is in
this terminating stage, and we can modify Eq. (15) as:

Eq. (15), g(j) = N
i md vx i q 9o Q
(Dya St DY X5, Z]) = { 0, otherwise

In this way, the number of parameters is greatly reduced
and the label unbalance problem is also ameliorated. Now,
the construction of our model for continuous action recog-
nition has been completed, with the overall structure shown
in Figure 1 (b).

3.3. Learning DBM

To learn the parameters v, 5 and w, we use coordinate
descent method to iterate between {v, 3} and w. For v and
B, given a set of training state sequences {S,, }, we can eas-
ily obtain the labels for all {D,, } according to Eq. (12) and
(13). Then fitting the logistic duration model of Eq. (13)
equals to performing logistic regression with input feature
x = Dy and output y = 6(S¢41 — St). The action transition
probability {a;; } can be obtained trivially.

To estimate w;;, let {T(™},_1.. n be our training set,
where each data sample 7'™) is a realization of all the n-
odes involved in Eq. (15) at a particular time instance (™)
and S;») = i. Since X, and Z,») are hidden variables,
their posterior p(Z: (n)\ ) = (") and p(X7,, Zf@w) =
N(x; TR E(”)) are first mferred from single action STM,
where the posterior of X, is approximated by a Gaus-
sian. The estimation of w;; is obtained by maximizing the
expected log likelihood:

maxd By e g ) [log 1) (x, wiy) a7

7%51)(219(") / logl )(X»wij)N(X;u("),E(”))dx

where
(n) el +w ™
I (x,w) = T e raTx (18)

and bW = p(Dt("L)+1 = 1), M = Vi(Dyny — Bi).
The integral in Eq. (17) cannot be solved analytically.
Instead, we use unscented transform [15] to approximate
the Gaussian A (x; (™, (")) using a set of sigma points
{xfcn)}kzo__,QM. Therefore, Eq. (17) converts to a weight-

ed logistic regression problem with features {xfcn) }, labels
{b(™} and weights {p(n)/(QM + 1)}

4. Rao-Blackwellised Particle Filter Inference

In testing, given an observation sequence y;.7, we want
to find the MAP action labels S 1.7 and the boundaries de-
fined by [A)LT; we are also interested in the style of ac-
tions which can be revealed from ZLT. Evaluating the
full posterior p(S1.1, D1.7, Z1.7|y1.7) is a non-trivial job
given the complex hierarchy of our model. We propose
to use particle filtering [!] for online inference due to it-
s capability in non-linear scenario and temporal scalability.
Note the latent variable X; can be marginalized by Rao-
Blackwellisation [8], and the computation of particle filter-
ing is significantly reduced since Monte Carlo sampling is
only conducted in the joint space of (S, Dy, Z;) which has
a low dimension and highly compact support.

Formally, we decompose the posterior distribution of all
the hidden nodes at time ¢ as

p(Sta Dt7 Zta th’l:t)
= p(St, Dy, Zi|y1:4)p(X¢|Se, Dy, Zt,y1:0)  (19)

In Rao-Blackwellised particle filter [16], a set of Np
samples {(s¢ (m) d(n) (”))}
s {wt )}N . are used to approx1mate the intractable first
term in Eq. (19), while the second term is represented
by { th) (x)}V7,, which are analytical distributions condi-

n=1>
tioned on corresponding samples:

and the associated weight-

X" ) £ p(Xe = x5y d" 2 oy (20
In our model, X§"> (x) = N(x;kgn),Pgn)) is a Gaussian

distribution. Thus, the posterior can be represented as
p(St, Dty Zy, Xily1:e)

Y N0p, (Ao 2, (2™ )x ™ (x)

Np
~ Z wtn)ést (s
n=1
where the approximation error approaches to zero as Np

increases to infinite.
Given the samples (s, di™), 2 X (%))} and

weights {w at time ¢ — 1, the posterior of (St, Dy, Zy)
at time ¢ can be evaluated as
p(St, Di, Zilyi4) o Z w"y p(Se| D, 5™ 22)

x p(Zi|S, Dy, ™) L8 (S, Dy, Zy)



where

‘an)(staDth) = /P(Yt|Xt—1,St,Zt)XEE)l(Xt—l)

(n) _(n)

Xp(Dt|51(5:l)1 t 1) %t—1> Xt— l)dxtfl (23)

Eq. (23) is essentially the integral of a Gaussian function
with a logistic function. Although not analytically solvable,
it can be well approximated by a re-parameterized logistic
function according to [23]. Nevertheless, it is hard to draw
sample from Eq (23). Therefore, we draw new samples

(s (n) d(n ) from a proposal density defined as:

Q(Stth,Zﬂ ) —p(St|Dta3t 1) (Zt\SnDt,Zt )1)

x (Dl i 2"y %)

(24)

The new sample weights are then updated as

£(”)( (n)7d(”), t( ))
(d(n)| ”) (n) A("))

t 15%t-1»

(25)

Once we get s§”> and ztn), xE") (x) is simply updated by

Kalman filter. Re-sampling and normalization procedures
are applied after all the samples are updated as in [8].

5. Experimental Results

Our model is tested on four datasets for continuous ac-
tion recognition. In all the experiments, we have used pa-
rameters Ng = 3, Nz = 5, Np = 200. First STM is
trained independently for each action using the segmented
sequences in training set; then DBM is learned from the
inferred terminal stage of each sequence. The overall learn-
ing procedure follows EM paradigm where the beginning
and terminating stages are initially set as the first and last
15% of each sequence, and the initial action primitives are
obtained from K-means clustering. The EM iteration stops
when the change in likelihood falls below a threshold. In
testing, after the online inference using particle filter, we
further adjust each action boundary using an off-line infer-
ence within a local neighborhood of length 40 centered at
the initial boundary; in this way, the locally “full” posterior
in Section 4 is considered. We evaluate the recognition per-
formance by per-frame accuracy. Contribution from each
model component (STM and DBM) is analyzed separately.

5.1. Public Datasets

The first public dataset used is the IXMAS dataset [37].
The dataset contains 11 actions, each performed 3 times by
10 actors. The videos are acquired using 5 synchronized
cameras from different angles, and the actors freely changed
their orientation in acquisition. We calculate dense opti-
cal flow in the silhouette area of each subject, from which
Locality-constrained Linear Coding features (LLC)' [34]

limplementation from author’s website

Table 1. Continuous action recognition for IXMAS dataset
SLDS CRF LDCRF STM DBM | STM+DBM
53.6% | 60.6% 57.8% 70.2% | 74.5% 76.5%

Table 2. Continuous action recognition for CMU MoCap dataset
SLDS CRF LDCRF [29] [30]
80.0% | 77.2% 82.5% 72.3% | 90.9%
STM DBM STM+DBM
81.0% | 93.3% 92.1%

are extracted as the observation in each frame. We have
used 32 codewords and 4 x 4, 2 x 2 and 1 x 1 spatial pyra-
mid [19]. Table 1 reports the continuous action recogni-
tion results, in comparison with SLDS? [27], CRF! [18] and
LDCRF! [25]. Our proposed model (and each of its com-
ponents) achieves a recognition accuracy higher than all the
other methods by more than 10%.

The second public dataset used is the CMU MoCap
dataset *. For comparison purpose, we report the results
from the complete subset of subject 86. The subset has 14
sequences with 122 actions in 8 category. Quaternion fea-
ture is derived from the raw MoCap data as our observation
for inference. Table 2 lists the continuous action recogni-
tion results, in comparison with the same set of benchmark
techniques as in the first experiment, as well as [29, 30].
Similarly, results from this experiment demonstrated the su-
perior performance of our method. It is interesting to note
that, in Table 2, the frame-level accuracy by using DBM
alone is a little higher than its combination with STM. This
is because there’s only one subject in this experiment and
no significant variation in substructure is presented in each
action type, so temporal duration plays a more importan-
t role in recognition. Nevertheless, the result attained by
STM+DBM is superior than all benchmark methods.

5.2. In-house Datasets

In addition to the above two public datasets, two in-
house datasets were also captured. The actions in these t-
wo sets feature stronger hierarchical substructure. The first
dataset contains videos of stacking/unstacking three col-
ored boxes, which involves actions of “move-arm”, “pick-
up” and “put-down”. 13 sequences with 567 actions were
recorded in both RGB and depth videos with one Microsoft
Kinect sensor * (Fig. 4). Then object tracking and 3-D re-
construction were performed to obtain the 3D trajectories of
two hands and three boxes. In this way an observation se-
quence in R'® is generated. In the experiments, leave-one-
out cross-validation was performed on the 13 sequences.
The continuous recognition results are listed in Table 3. Itis
noticed that, among the four benchmark techniques, the per-
formance of SLDS and CRF are comparable, while LDCRF
achieved the best performance. This is reasonable because

2implementation based on BNT from http:/code.google.com/p/bnt/
3http://mocap.cs.cmu.edu/
“http://www.xbox.com/kinect
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Figure 5. Example frames from the “assembling” dataset. fop-row: RGB images, bottom-row: aligned depth images.

Table 3. Continuous action recognition for Set I: Stacking
SLDS CRF LDCRF ST™M DBM STM+DBM
64.4% | 79.6% 90.3% 88.5% | 81.3% 94.4%

Table 4. Continuous action recognition for Set II: Assembling
SLDS CRF LDCRF STM DBM | STM+DBM
68.2% | 77.7% 88.5% 88.7% | 69.0% 92.9%

during the stacking process, each box can be moved/stacked
at any place on the desk, which leads to large spatial vari-
ations that cannot be well modeled by a Bayesian Network
of only two layers. LDCREF applied a third layer to capture
such “latent dynamics”, and hence achieved best accuracy.
For our proposed models, the STM alone brings SLDS to a
comparable accuracy to LDCRF because it also models the
action substructure. By further incorporating duration infor-
mation, our model outperforms all benchmark approaches.
The second in-house dataset is more complicated than
the first one. It involves five actions, “move-arm”, “pick-
up”, “put-down”, “plug-in” and “plug-out”, in a printer part
assembling task (Fig. 5). The 3D trajectories of two hands
and two printer parts were extracted using the same Kinect
sensor system. 8 sequences were recorded and tested with
leave-one-out cross-validation. As can be seen from Ta-
ble 4, our proposed model with both STM and DBM out-
performs other benchmark approaches by a large margin.

ELIT3

5.3. Discussion

To provide more insightful comparison between the pro-
posed algorithm and other benchmark algorithms, we show
two examples of continuous action recognition results from
the in-house datasets in Fig. 6. The result given by SLD-
S contains short and frequent switchings between incorrect
action types. This is caused by the false matching of mo-
tion patterns to an incorrect action model. dSLDS [28] and
LDCREF eliminate the short transitions by considering ad-
ditional context information; however, their performances
degrade severely around noisy or ambiguous action peri-
ods (e.g. the beginning of the sequence in Fig. 6.(b)) due

LDCRF | I AT AT T T T T
stos [ NN M NRNE NN N NNNNN NN DN
asLos [ NI [ | [ NN ENENY IO NN
Ground-truth T ATH] Nunmnnmnnnmmnnnmnnnnnm

STM+DBM |
stvvalve  lIN W 'W B U0 B0 B DD N DN 0N 0
move arm M pick up put down

yellow box [l red box [l pink box
(a) Set I: Stacking

LDCRF
SLDS
dSLDS
Ground-truth [ T[]
Suvie:VANE NN NEEC NN NS NAS NEN BEE O NEDC WES O EES W
STMvaive [1 | [N | [ISND | DN | DN | [
M plugin [ plug out move arm [l put down pick up
I green glove [ blue glove yellow cable [l red cable

(b) Set II: Assembling
Figure 6. Continuous recognition for in-house datasets

to false duration prior or overdependence on discriminative
classifier. Our proposed STM+DBM approach does not suf-
fer from any of these problems, because STM helps to i-
dentify all action classes disregarding their variations, and
DBM further helps to improve the precision of boundaries
with both generative and discriminative duration knowl-
edge. Another interesting finding shown in the last rows
of (a) and (b) is that the substructure node Z can be inter-
preted by concrete physical meanings. For all the actions
in these experiments, we find different object involved in
an action corresponds to a different value of Z that has the
highest probability in the inferred values Zl:T. Therefore,
in addition to estimating action class, we can also find the
object associated with the action by majority voting based
on ZALT. In our experiments, all the inferred object identi-
ties agree with ground truth.

6. Conclusion and Future Work

In this paper, we introduce an improved SSM with two
added layers modeling the substructure transition dynamics
and duration distribution for human action. The first layer
encodes the sparse and global temporal transition structure
of action primitives; and the second layer exploits discrimi-



native information to discover action boundaries adaptively.
Experimental results validate the effectiveness of both two
layers in continuous action recognition. As future work we
plan to apply our model to actions in less constrained sce-
narios and use more advanced low-level descriptors to deal
with unreliable observations.
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