MIMO Capacity Scaling and Saturation in Correlated Environments

Vasanthan Raghavan and Akbar M. Sayeed
University of Wisconsin-Madison, Madison, WI 53706, USA.

Abstract—The capacity of MIMO systems under ideal (i.i.d.) channel conditions has been shown to increase linearly with the number of antennas. Capacity scaling is observed in a correlated channel environment as well but the constant of scaling is shown in [7] to be less than that of the i.i.d. scaling factor. Using a channel representation motivated by physical scattering considerations, the virtual channel representation, we show this effect does occur provided the number of effective scattering paths keeps asymptotically increasing with the increase in the number of antennas. Otherwise we show that saturation of capacity occurs. Using random banded matrix theory results, we also show that the effect of correlation is to reduce the effective received SNR according to the degree of correlation. This also yields a closed form expression for the asymptotic capacity of correlated MIMO channels.

I. INTRODUCTION

The capacity of MIMO systems has been shown to increase linearly with the number of antennas in an ideal i.i.d. channel [1], [2]. However an i.i.d. channel assumption is far from being true in realistic situations. Realistic channel realizations are usually modeled by a channel matrix whose entries are correlated Gaussian random variables. Chuah et al. [7] have shown that capacity scaling is still observed in correlated channels, but the scaling parameter is less than that observed in i.i.d. channels. However the correlation coefficient in [7] is on the order of 0.2 at an antenna separation of 0.5λ (due to the product correlation they assume) which is still not very significant.

Raleigh and Cioffi [3] have shown that in a high SNR situation the slope of the capacity vs. SNR curve is limited by the number of multipaths as well as the antennas. In this light, expecting a scaling in capacity inherently assumes a corresponding increase in the richness of the scattering environment. Moustakas et al. [4] point out that the capacity scaling factor increases with a decrease in correlation. But to date we have not seen a work on the connection between capacity per antenna and the number of multipaths for a correlated channel.

Adopting a channel representation that is based on a “beamspace interpretation”- the virtual channel representation [6] - we model a correlated environment as a virtual channel matrix with non-vanishing sub-matrices, each of which is modeled as a banded matrix with i.i.d. entries. The virtual channel matrix is obtained via a 2D-Fourier transformation of the actual correlated channel matrix. Such structure for the virtual channel matrix is motivated by physical scattering considerations [6]. Using this model, we show that capacity scaling is observed provided the bandwidth of the channel scales with the number of antennas. We observe two different regimes where capacity behavior differs drastically - one in which capacity scales (if bandwidth increases with the number of antennas) and the other where it saturates (if bandwidth remains the same even as the number of antennas is increased). Via the virtual channel representation, this behavior can in turn be related to the scattering geometry, configuration and distribution as a function of the number of antennas.

The physical interpretation of the above result is as follows. Capacity scales with the number of antennas if and only if increasing the number of antennas simultaneously brings in new scattering paths between the transmitter and receiver. If an increase in the number of antennas is not accompanied by a corresponding increase in the number of scattering paths, the capacity reaches an asymptotic limit as one can expect. Increase in effective number of scattering paths with increasing number of antennas is possible in diffuse scattering environments – the increased spatial resolution due to larger array aperture allows us to zoom finer and finer into the continuum of scatterer space [6]. On the other hand, for a finite number of scattering paths, this would not hold and we would expect saturation in capacity.

Using results from random banded matrix theory, we show that the capacity scaling parameter depends on the ratio of the bandwidth of the channel matrix to the number of antennas: k/N. Furthermore, we also show that the effect of a banded channel is to decrease the received SNR in proportion to the ratio k/N relative to an i.i.d. channel. This could be interpreted as a correlated scattering environment behaving just like an i.i.d. channel asymptotically, but with the received SNR scaled by the correlation parameter k/N.

The next section discusses the MIMO channel model used in this paper. Section III discusses some relevant results from Random Matrix Theory and Random Banded Matrix Theory. In Section IV, we analyze the capacity of a correlated channel using the virtual channel representation under two different observable regimes – capacity saturation and capacity scaling. Monte-Carlo simulations of a MIMO system are done in Section V to illustrate our results and conclusions are drawn in Section VI.

II. CHANNEL MODEL

Consider a multi-antenna system with N transmit and M receive antennas. The M-dimensional received signal y and the N-dimensional transmitted signal x are related by

\[y = Hx + n \]

(1)

where n is the noise and H is the channel matrix coupling the transmit and the receive antennas. The statistics of H depend

This work was supported in part by ONR grant no. N00014-01-1-0825.

1We actually consider the average mutual information under an equal power distribution strategy at the transmitter and use the term capacity and average mutual information interchangeably.

2Bandwidth of a matrix is defined as the number of significant non-zero diagonals, e.g. a diagonal matrix has bandwidth 1 and a full N×N matrix has bandwidth N.

3In this paper, we assume that the number of transmitters is equal to the number of receivers, but extension to a non-equal configuration of transmitters and receivers is straightforward.
on the antenna geometry, physical scattering environment, fre-
quency of operation etc. Ideal channel modeling assumes that the entries of H are i.i.d. Gaussian random variables [1], [2]. This makes the mathematical treatment tractable but realistic situations rarely have a rich scattering environment. Paramet-
ric physical models, on the other hand explicitly model signal copies from different directions [5].

We focus on one-dimensional uniform linear arrays (ULAs) of antennas at the transmitter and receiver and consider far-field scattering characteristics. The physical model [5] depends on the spatial angles as seen by the transmitters and the receivers in a non-linear fashion and thus makes mathematical analysis of information-theoretic issues like capacity difficult.

The recently introduced virtual channel representation [6] is a novel approach that connects the ideal statistical modeling and parametric physical modeling schemes. It imposes structure on the channel matrix H by capturing essential characteristics of the physical scattering environment in a linear fashion.

The virtual representation exploits the finite dimensionality of the signal space\footnote{Due to finite number of antenna elements and finite array aperture.} to develop a linear channel representation that uses spatial beams in fixed, virtual directions. The virtual channel representation, illustrated in Fig. 1, can be expressed as

$$H = A_RH_V A_T^H \quad (2)$$

where fixed virtual angles result in A_R and A_T (matrices formed of array steering and response vectors)\footnote{In actuality the entries are uncorrelated but not necessarily identically distributed.} [6]. The $M \times N$ matrix H_V is the virtual channel matrix. Uniform sampling of the principal period $\theta \in [-0.5, 0.5]$ is a natural choice for virtual spatial angles making A_R and A_T unitary. The resultant H_V is then unitarily equivalent to H and captures all channel information. In fact, H_V is the two-dimensional DFT of H.

Realistic scattering environments can be modeled as a super-
position of clusters with limited angular spreads. The virtual matrix H_V offers an intuitive interpretation as different clusters correspond to different non-vanishing sub-matrices of H_V. Furthermore the non-zero entries of the virtual matrix are approx-
imately uncorrelated [6]. The uncorrelatedness gets better as we increase the number of antennas.

The number of non-vanishing uncorrelated elements of the virtual matrix control the channel correlation [6]. On one extreme is a “diagonal” virtual channel with non-vanishing elements only on the diagonal. Physically, this corresponds to a line of scatterers between the transmitter and receiver. The diagonal channel exhibits significant correlation. On the other extreme is a fully populated virtual matrix corresponding to a rich scattering environment – this yields an i.i.d. channel. Vary-
ing levels of correlation between the two extremes can be cap-
tured by a banded virtual matrix with varying numbers of non-
vanishing diagonals.

Since the entries of the virtual matrix H_V are uncorrelated we model it as a banded matrix with i.i.d. Gaussian entries whose real and imaginary components are $N(0,1/2)$\footnote{Since the entries of the virtual matrix H_V are uncorrelated, we model it as a banded matrix with i.i.d. Gaussian entries whose real and imaginary components are $N(0,1/2)$}. We could also control channel correlation by varying the number and size of sub-clusters and the number of diagonals in each sub-cluster. This is discussed further later.

III. Results from Random Matrix Theory

In this section, we present some relevant results from Random Matrix Theory (RMT) and Random Banded Matrix Theory (RBMT). Random matrices play an important role in modeling Hamiltonians in quantum mechanics over a wide-range of classically chaotic and integrable (regular) systems [12]. The analogy between quantum systems and MIMO channels is too striking to ignore. Idealized chaotic systems are like fully i.i.d. channels and regular systems are like a channel with sparse scattering whereas realistic systems interpolate between the two extremes just as in MIMO channels.

The most important class of random matrices is the Gaussian Unitary Ensemble (GUE) \footnote{The asymptotic analysis of the GUE (and hence an i.i.d. channel) is simplified because each unordered eigenvalue shows an identical statistical behavior. RMT predicts that the unordered eigenvalues of the GUE are highly correlated and thus we could assume the same behavior for the unordered eigenvalues of the GUE in an asymptotic analysis. A similar behavior is seen with a RBM provided the bandwidth of the RBM scales with N [11]. A simple illustration of the above fact is that a diagonal matrix (which does not scale) is clearly seen to have uncorrelated eigenvalues (the entries themselves).} [9]. The GUE of order N is defined as the set of random Hermitian matrices with i.i.d. complex entries from a Gaussian distribution. The real diagonal entries are from a $N(0,1)$ distribution whereas the real and imaginary parts of entries along the non-diagonals are from $N(0,1/2)$ [9]. In our analysis of MIMO channels, the GUE corresponds to the fully i.i.d. channel.

A Random Banded Matrix ensemble (RBM) is defined as the set of random Hermitian matrices with entries that are non-
zero only up to a certain bandwidth $k \leq N$. The entries along the main diagonal are from a real $N(0,1)$ distribution whereas the non-zero non-diagonal entries have real and imaginary parts chosen from a $N(0,1/2)$ distribution. In MIMO parlance, banded matrices correspond to banded virtual channel matrices. RBMs are however much more complicated than a full bandwidth matrix because of the lack of rotational symmetry which simplifies much of RMT.

The asymptotic analysis of the GUE (and hence an i.i.d. channel) is simplified because each unordered eigenvalue shows an identical statistical behavior. RMT predicts that the unordered eigenvalues of the GUE are highly correlated and thus we could assume the same behavior for the unordered eigenvalues of the GUE in an asymptotic analysis. A similar behavior is seen with a RBM provided the bandwidth of the RBM scales with N [11]. A simple illustration of the above fact is that a diagonal matrix (which does not scale) is clearly seen to have uncorrelated eigenvalues (the entries themselves)
whereas a fully i.i.d. matrix (bandwidth scales with size) has correlated eigenvalues which have a Wishart distribution.

The Wigner’s semi-circle Law states that the scaled eigenvalues of the GUE follow a semi-circle density function with radius 2 \[9\]. Let \(A \) be a GUE of order \(N \) and let

\[
\rho_N(x) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - \frac{\lambda_i(A)}{\sqrt{N}}),
\]

be defined as the Density of States (DOS) of the GUE where \(\lambda_i(A) \) is the \(i \)th unordered eigenvalue of \(A \). Then

\[
\lim_{N \to \infty} \rho_N(x) = \frac{\sqrt{4-x^2}}{2\pi} \quad -2 \leq x \leq 2.
\]

RBMT results point out that the asymptotic behavior of the DOS of a RBM is essentially the same as that of the GUE if its bandwidth keeps increasing with its size according to some power law \[8\]. The only difference is in the way the eigenvalues of an RBM are normalized. If \(k = N^\beta \) for some \(0 < \beta \leq 1 \) and

\[
\rho_k(x) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - \frac{\lambda_i(A)}{c\sqrt{k}}),
\]

is the Density of States (DOS) of the RBM ensemble \(A \) and \(\lambda_i(A) \) is the \(i \)th eigenvalue of \(A \), then

\[
\lim_{N \to \infty} \rho_k(x) = \frac{\sqrt{4-x^2}}{2\pi} \quad -2 \leq x \leq 2
\]

where \(c \) is a scaling constant depending on the way the RBM is modeled\[6\] and is on the order of \(\sqrt{2\pi} \). We note the scaling with \(c\sqrt{k} = cn^{\beta/2} \) in (5) as opposed to scaling by \(\sqrt{N} \) in (3). This case of the RBM corresponds to a MIMO channel where virtual scattering paths increase as we increase the number of antennas, but not enough to result in an i.i.d. channel.

A RBM with a constant bandwidth corresponds to a MIMO channel in which as we increase the number of antennas, the virtual scattering paths do not increase proportionately. In this case if the size of the matrix is taken to infinity, then its eigenvalue equation can be cast in a transfer-matrix form. Using results from the theory of disordered systems, we find that the eigenvalues of such a matrix are localized, i.e. the eigenvalues of a finite RBM are with high probability much smaller than the square-root of the size of the matrix\[7\]. Specifically, if \(A \) is a finite RBM and

\[
\rho_k(x) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - \frac{\lambda_i(A)}{\sqrt{N}}),
\]

then

\[
\lim_{N \to \infty} \rho_k(x) = g(x)
\]

where the density function \(g(x) \) is a delta-like function with infinitesimal support.

IV. Capacity Analysis of Correlated MIMO Channels

The average mutual information of a narrowband \(N \) transmitter, \(N \) receiver MIMO system under equal power transmission

\[6\] Various other modeling schemes for a RBMT do exist \[8\].

\[7\] Size of a \(N \times N \) matrix is defined as \(N \).

can be written as \[1\]:

\[
C = \mathbb{E} \left[\log_2 \det \left(I + \frac{\rho H_Y H_Y^H}{N} \right) \right] \text{bps/Hz} \tag{9}
\]

where \(\mathbb{E} [\cdot] \) is the expectation over the statistics of \(H_Y \). As we have noted in Section III, for a finite banded RBM the DOS converges to a delta function and for a scaling bandwidth RBM, to an appropriately normalized semi-circle density function. The asymptotic capacity analysis under equal power distribution requires the way the eigenvalues of \(H_Y H_Y^H \) behave under different banded constraints on \(H_Y \).

For the special case when the matrix has bandwidth \(N \), a very general result from RMT \[10\] says that for a matrix of the form \(H_Y H_Y^H \) where \(H_Y \) is a random complex matrix of i.i.d. Gaussian entries and size \(N \),

\[
\lim_{N \to \infty} f_{\lambda, n, n} \left(x \right) = f_{\lambda_Y} \left(x \right) = \frac{1}{2\pi} \sqrt{\frac{4 - x}{x}} \quad 0 \leq x \leq 4
\]

The striking coincidence between the Wigner’s semi-circle law and the Silverstein’s density function (viz. the Silverstein’s density function is obtained from the Wigner’s semi-circle law by a quadratic transformation of random variable) forces one to conjecture that a similar behavior should be observed in the case of a RBM. It is indeed the case and the proof of this claim is in the Appendix.

In the case when the bandwidth scales (increase in scatterer population is proportionate to increase in antenna size), the density function of the random variable \(\lambda_{n, n} \) can be given based on \(\lambda_{n, n} \) (where \(c \) is an appropriately chosen constant), viz.

\[
\frac{\lambda_{H_Y H_Y^H}}{N} = \frac{ck}{N} \left(\frac{\lambda_{H_Y H_Y^H}}{ck} \right).
\]

Let \(\alpha = \frac{ck}{N} \) be a constant independent of \(N \) (This will happen if \(k/N \) is a constant in \(0, 1 \).). Then the density function is seen to be

\[
\lim_{N \to \infty} f_{\lambda, n, n} \left(x \right) = f_{\lambda_Y} \left(x \right) = \frac{1}{2\pi} \sqrt{\frac{4\alpha - x}{x}} \quad 0 \leq x \leq 4\alpha
\]

The above equation is a more generalized form of the asymptotic eigenvalue distribution for an RBM with bandwidth scaling analogous to (10). The similar form of the two equations suggests that for a RBM with bandwidth scaling, normalized eigenvalue behavior is similar to that of an i.i.d. matrix.

The capacity of a channel modeled by a banded virtual matrix can then be written for large \(N \) (see footnote 8) as

\[
\lim_{N \to \infty} \frac{C}{N} \approx \int_0^{4\alpha} \log_2 \left(1 + \rho_0 x \right) f_{\lambda_Y} \left(x \right) dx
\]

\[
\int_0^{4} \log_2 \left(1 + \rho_0 x \right) \sqrt{\frac{4 - x}{x}} dx = \lim_{N \to \infty} \frac{C_{\text{tr}} \left(\rho_0 \alpha \right)}{N}
\]

According to the Random Matrix Theory conjecture, as \(N \to \infty \) the distribution of a particular unordered eigenvalue over the realizations of \(H_Y \) converges to the empirical distribution of the eigenvalues for a single realization of \(H_Y \). The same result has been conjectured for a RBM with bandwidth scaling.
where ρ is the received SNR and $C_{ii}(ρ)$ is the capacity of an
i.i.d. channel at that SNR and

$$\lim_{N \to \infty} \frac{C_{ii}(ρ)}{N} = \log_2 \left[\frac{1 + 2ρ + \sqrt{1 + 4ρ}}{2} \right] + \left(\log_2 e \right) \frac{2ρ + 1}{2ρ + 1} \left[\sqrt{4ρ + 1} - 1 \right].$$

The expression for $C_{ii}(ρ)$ is computed using Silverstein’s empirical
distribution function as given in (10) ([10], [13]).

Thus, we see that the asymptotic capacity supported by a k-
banded channel is the same as that of an i.i.d. channel except for
a scaling of SNR. One way of looking at this result is that the
k-banded correlated channel presents a received SNR that is the
SNR of an i.i.d. channel scaled by the parameter of correlation
(k/N). Thus, using the virtual representation we are able to
characterize the growth of capacity with number of antennas in
correlated channels.

The case of a finite banded matrix follows exactly as we pro-
cceeded above except that the eigenvalues of a finite RBM are
uncorrelated. Since the empirical distribution of the eigenvalues
of a finite RBM tend to a delta-like function as $N \to \infty$, the
ratio $C/N \to 0$. This is expected as the number of scattering
paths remains the same as the number of antennas increases.

We extend the above results for a single scattering cluster
to multiple clusters. To model a highly correlated environ-
ment, consider a virtual matrix which is a superposition of
sub-matrices each of which by itself is modeled as a k-banded
matrix. If H_V is modeled as a block matrix with square sub-
matrices having distinct support in the transmitter and the re-
ceiver virtual angles, then we could write a closed form ex-
pression for capacity in terms of the statistics of these sub-
matrices. If H_V is modeled as a L block diagonal matrix with
each block a square N_i $(\sum_{i=1}^L N_i = N)$ and modeled as a k_i
banded matrix

$$H_V = diag \left[H_{V_1}, \ldots, H_{V_L} \right]$$

then the capacity can be written for large N as

$$C = \sum_{i=1}^{L} E_{H_{V_i}} \left[\log_2 \det \left(I_{N_i} + \frac{ρH_{V_i}H_{V_i}^H}{N} \right) \right].$$

This can then be written as

$$C = \sum_{i=1}^{L} \sum_{j=1}^{N_i} E_{\lambda_{ij}} \left[\log_2 \left(1 + \frac{ρ}{N} \lambda_{ij} H_{V_i} H_{V_i}^H \right) \right].$$

The marginal unordered eigenvalue distributions of H_{V_i}, $H_{V_i}^H$
are the same as long as its bandwidth scales with N_i. Only
those clusters whose bandwidths scale with number of anten-
neas contribute to the asymptotic limit on capacity. The remain-
ing clusters reach a saturation and thus contribute nothing to
capacity scaling. Physically, if more scattering paths are re-
solved with increasing number of antennas (zooming) [6], ca-
pacity will scale. Otherwise it will saturate. Thus if we denote

9 If however the assumption of distinct supports in the transmitter and receiver
is not valid, we could still use these results to obtain bounds for the capacity
scaling parameter using the results on eigenvalue inequalities of sums of Her-
mitian matrices. Here one should note that cross terms would vanish due to
the law of large numbers arising from the asymptotic analysis.

9

by S the index of the set of sub-matrices of H_V, whose band-
width scales with N, (16) becomes

$$C = \frac{1}{2π} \int_0^1 \log_2 \left(1 + ρ\rho x \right) \sqrt{\frac{4 - x}{x}} \, dx$$

$$\lim_{N \to \infty} \frac{C}{N} = \sum_{i \in S} \frac{N_i}{N} C_{ii}(ρ \frac{c_i k_i}{N})$$

where k_i is the bandwidth of ith cluster in S.10

V. NUMERICAL RESULTS

A correlated channel was simulated using H_V with a block
matrix structure depicting scattering clusters. A 57×57 channel
matrix with three sub-matrices of size 19 each and with varying
bandwidths was assumed. The correlation between different
antennas (ant. sep. = 1 in the figure means correlations between
antennas T_1 and T_2 say) is plotted in Fig. 2 as a function of
the bandwidth of the matrix. The bandwidth of the third block k_3
is held constant at 10 and k_1 and k_2 are varied. It is noticeable
that under the block model we can model a correlated channel
with varying correlation by varying the bandwidth. Particularly
significant is the higher correlation that can be modeled rela-
tive to the widely used product model for correlation of MIMO
channels.

The average mutual information of a fading channel (using
the virtual model) under equal power allocation at the trans-
mitter was evaluated in Section IV. We also saw that capacity
scaling and saturation are two different regimes of the same model.

Fig. 3a is an illustration of the semi-circle law in a GUE. We consider a 200×200 random matrix and plot the empirical dis-
tribution of eigenvalues scaled by the (square-root of the) size
of the matrix in Fig. 3a.

The empirical distribution of eigenvalues of an RBM ($N = 200$,
$k = 15$) scaled by the bandwidth and the size, respectively, are plotted in Fig. 4a and b, respectively. If this ratio of
k_i/N is maintained as N is increased to infinity the semi-circle
density will be observed. Otherwise the density will shrink
down to a delta function.

10 Assuming the ratio $c_i k_i / N$ is a constant independent of N for each sub-
matrix of H_V.11
We simulated the channel under the virtual model and Fig. 3b is a plot of how the two different capacity regimes are easily observable with a single cluster virtual channel matrix as bandwidth of the matrix is changed from a constant to a parameter proportional to the size of the matrix. The parameter k/N is changed from 0.15 (low scatterer concentration) to 0.9 (high scatterer concentration). The plots were generated by averaging over 10,000 independent channel realizations.

VI. CONCLUSIONS

We have used results from Random Banded Matrix Theory for assessing capacity of a correlated MIMO channel in the limit of large number of antennas. The virtual channel representation allows us to use RBMT for capacity analysis of MIMO channels and we see that scaling and saturation are two sides of the same coin. The capacity scales provided that we increase the number of antennas a proportionate number of scattering paths are resolvable. If fixed scattering paths are resolvable then the capacity reaches an asymptotic limit. The ability to resolve new scattering paths is modeled by the ratio k/N of the banded virtual matrix and the capacity scaling parameter is seen to be proportional to this ratio. This result is in agreement with what is reported in [7] except that [7] does not identify a region where capacity does not scale. In an asymptotic sense, a correlated channel is like an i.i.d. channel except for the received SNR reduced by the factor k/N. This is formalized by a closed form expression for the asymptotic capacity of correlated MIMO channels that we obtain.

ACKNOWLEDGMENT

The authors would like to thank Dr. Ville Uski for introducing us to some of the results in RBMT, and the anonymous reviewers for helping us improve the quality of the paper.

APPENDIX

A. Proof of Claim in Section IV

The workhorse of our proof is the theorem by Grenander and Silverstein [14] which was extended to the complex case in the Appendix of [15]. This theorem states that as long as each row and column of H_V have D i.i.d. $N(0,1)$ complex entries and D scales with $N^{1/2}$, $H_{V\beta}$ converges to the Silverstein’s density function. The proof then proceeds using the fact that the norm of the differences in empirical distribution functions of two matrices AA^H and BB^H is bounded by the ratio of the rank of $A - B$ and their size [14]. Using one of these matrices as a D-connected channel matrix [15] and the other as a banded H_V with $D = \epsilon k$, we are done for $k = \alpha N^{\beta}, \beta \in (0, 1]$ where α and ϵ are constants. We are done for $\beta = 1$ by the left continuity of the norm operator for a fixed N and α.

REFERENCES