1. A linear transformation on a vector space X may be continuous with respect to some norm on X, but discontinuous with respect to another norm on X. To illustrate this, let X be the space c_0 of all sequences with only finitely many nonzero terms. This is a subspace of $l_1 \cap l_2$. Consider the linear transformation $T : c_0 \to \mathbb{R}$ given by

$$T((x_n)_{n \in \mathbb{N}}) = x_1 + x_2 + x_3 + \ldots, \quad (x_n)_{n \in \mathbb{N}} \in c_0$$

(a) Let c_0 be equipped with the l_1 norm. Prove that T is a bounded linear functional from $(c_0, \| \cdot \|_1)$ to \mathbb{R}.

(b) Let c_0 be equipped with the l_2 norm. Prove that T is not a bounded linear functional from $(c_0, \| \cdot \|_2)$ to \mathbb{R}.

Hint: Consider the sequences $(1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{m}, 0, \ldots), m \in \mathbb{N}$.

2. (a) Let B be a Banach space and let $f : B \to \mathbb{R}$ be a bounded linear functional. Show that the set $A = \{ x \in B : f(x) = \| f \| \}$ is closed and convex.

(b) Define $f : l_1 \to \mathbb{R}$ by $f(x) = \sum_{n=1}^{\infty} (1 - 1/n)x_n$. Show the following:

(i) $\| f \| = 1$.

(ii) The closed convex set $\{ x \in l_1 : f(x) = 1 \}$ has no closest point to 0.

3. (a) Let H to be a Hilbert space and let f be a bounded linear functional. Show that there exists $y \in H$ such that $\| y \| = 1$ and $f(y) = \| f \|$.

(b) Let $x = \{ x_n \}_{n \in \mathbb{N}} \in l_\infty$ and let $T_x : l_1 \to \mathbb{R}$ be defined by $T_x(y) = \sum_{n=1}^{\infty} x_n y_n$. What condition on x is needed so that there exists $y \in l_1$ such that $\| y \|_1 = 1$ and $|T_x(y)| = \| T_x \|$?

Hint: Use Hölder’s inequality and first evaluate $\| T_x \|$.

4. Let

$$c_0 = \left\{ x = \{ x_n \}_{n \in \mathbb{N}} \in l_\infty : \lim_{n \to \infty} x_n = 0 \right\}.$$

Then, c_0 is a Banach space with respect to $\| \cdot \|_\infty$. Find an isometric isomorphism between $(c_0)^*$ and l_1. Why does the same argument not work for $(l_\infty)^*$ and l_1?

5. (a) Consider a normed space X. Show that

$$\| x \| = \sup_{f \in X^*, \| f \| = 1} |f(x)|$$

and the sup is attained.
(b) If \(x \) in a normed space \(X \) is such that \(|f(x)| \leq c \) for all \(f \in X^* \) of norm at most 1, show that \(||x|| \leq c \).

6. Let \(X \) be a normed vector space and \(Z \) its subspace. Prove that if \(y \in X \) has distance \(d \) from \(Z \), then there exists a linear functional \(\Lambda : X \rightarrow \mathbb{R} \) such that

\[
||\Lambda|| \leq 1, \quad \Lambda(y) = d, \quad \text{and} \quad \Lambda(z) = 0, \forall z \in Z.
\]

(The distance referred is \(d = \inf_{z \in Z} ||z - y|| \))

7. Let \(g_1, g_2, \ldots, g_n \) be linearly independent linear functionals on a vector space \(X \). Let \(f \) be another linear functional on \(X \) such that for every \(x \in X \) satisfying \(g_i(x) = 0, i = 1, 2, \ldots, n \), we have \(f(x) = 0 \). Show that there exist constants \(\lambda_1, \lambda_2, \ldots, \lambda_n \) such that

\[
f = \sum_{i=1}^{n} \lambda_i g_i.
\]

Hint: Let \(S := \{ s_1 = g_1(x), s_2 = g_2(x), \ldots, s_n = g_n(x) : x \in X \} \). Show that \(S \) is a subspace of \(\mathbb{R}^n \) and then use the Hahn-Banach Theorem (extension form).