21. Duality

- Consider all hyperplanes that lie below \(w(z) \).

\[
\mathbf{w}(z) = \max \{ \text{y-intercept of all hyperplanes that lie below } w(z) \}
\]

- Thus, \(\mathbf{w}(z) \) (which is a min problem) can be converted to a max problem involving the y-intercepts of hyperplanes.

- The max y-intercept is achieved by the hyperplane determined
by the Lagrange multipliers z_0.

This is the essence of duality theory.

Consider

$$\inf_{x \in \mathcal{X}} f(x) = \mu_0$$

s.t.

$$g(x) \leq 0$$

Define the dual functional:

$$\varphi(g^*) = \min_{x \in \mathcal{X}} f(x) + \langle g(x), g^* \rangle$$

on the positive cone $\mathcal{P}^+ \ (we\ will\ say\ g^* \geq 0)$

Theorem:

1. $\varphi(g^*) \leq \mu_0$. Thus,

$$\inf_{g^* \geq 0} \varphi(g^*) \leq \mu_0$$

2. $\varphi(g^*)$ is concave.
Note: No condition are needed on f, g, Ω.

Proof:

(1) \[f(x) + \langle g(x), z^* \rangle \leq f(x) \quad \text{since} \quad z^* \in \Phi^+ \quad \text{and} \quad g(x) \leq 0 \quad \text{w.r.t.} \quad \Phi \]

Thus, $\Phi(z^*) = \min_{x \in \Omega} f(x) + \langle g(x), z^* \rangle$

\[\leq \min_{x \in \Omega} f(x) + \langle g(x), z^* \rangle \quad \text{if} \quad g(x) \leq 0 \]

\[= \min_{x \in \Omega} f(x) = \mu_0 \quad \text{if} \quad g(x) \leq 0 \]

(2) \[\Phi(\alpha z_1^* + (1-\alpha) z_2^*) = \min_{x \in \Omega} f(x) + \langle g(x), \alpha z_1^* + (1-\alpha) z_2^* \rangle \]

\[= \min_{x \in \Omega} \alpha (f(x) + \langle g(x), z_1^* \rangle) \]

\[+ (1-\alpha) (f(x) + \langle g(x), z_2^* \rangle) \]
\[\alpha \varphi(g_1^+) + (1-\alpha) \varphi(g_2^+) \]

Theorem: Assume the conditions in the necessary part of the global theory.

(i) Then,

\[\mu_0 := \inf_{x \in \mathcal{A}, \varrho(x) \leq 0} f(x) = \max_{g^+ \geq 0} \varphi(g^+) \]

and the max on the RHS is achieved at \(g_0^+ \geq 0 \).

(ii) If the inf on the LHS is achieved at some \(x_0 \), then

\[\langle \varrho(x_0), g_0^+ \rangle = 0 \]

and

\[\mu_0 = \inf_{x \in \mathcal{A}} f(x) + \langle \varrho(x), g_0^+ \rangle. \]

Proof: (i) We already showed that \(\varphi(g^+) \leq \mu_0 \). The global theory established the
existence of \(\xi^* \) achieving \(\mu_0 \).

Thus, (i) is proved.

(ii) Established in global theory.

The following theorem makes the connection between \(\varphi(\xi^*) \) and the figure we drew at the beginning of this lecture.

Theorem:

\[
\varphi(\xi^*) = \inf_{\xi \in \Gamma} \omega(\xi) + \langle \xi, \xi^* \rangle
\]

where \(\Gamma = \{ \xi : \exists x \in \mathbb{R} \text{ s.t. } C(x) \leq \xi \} \)

Proof:

\[
\varphi(\xi^*) = \inf_{x \in \mathbb{R}} f(x) + \langle C(x), \xi^* \rangle
\]

\[
= \inf_{x \in \mathbb{R}} f(x) + \langle C(x) - \xi, \xi^* \rangle + \langle \xi, \xi^* \rangle
\]

\[
\leq \inf_{\xi \in \Gamma} f(x) + \langle \xi, \xi^* \rangle
\]
\[\Rightarrow \psi(\mathbf{z}^*) \leq \inf_{\mathbf{z} \in \Gamma} \omega(\mathbf{z}) + \langle \mathbf{z}, \mathbf{z}^* \rangle \]

Conversely, \(\forall x_i \in \mathcal{L} \)

\[f(x_i) + \langle c(x_i), \mathbf{z}^* \rangle \]

\[\geq \inf_{x \in \mathcal{L}} f(x) + \langle c(x), \mathbf{z}^* \rangle \]

\[= \inf_{x \in \mathcal{L}} f(x) + \langle \mathbf{z}, \mathbf{z}^* \rangle \]

\[c(x) = c(x_i) \]

\[\geq \inf_{x \in \mathcal{L}} f(x) + \langle \mathbf{z}, \mathbf{z}^* \rangle \]

\[= \inf_{x \in \mathcal{L}} f(x) + \langle \mathbf{z}, \mathbf{z}^* \rangle \]

\[= \omega(c(x_i)) + \langle c(x_i), \mathbf{z}^* \rangle \]

\[\geq \inf_{\mathbf{z} \in \Gamma} \omega(\mathbf{z}) + \langle \mathbf{z}, \mathbf{z}^* \rangle \]

\[\Rightarrow \psi(\mathbf{z}^*) \geq \inf_{\mathbf{z} \in \Gamma} \omega(\mathbf{z}) + \langle \mathbf{z}, \mathbf{z}^* \rangle \]

D
Back to the figure in \mathbb{R}^n

1. $\phi(\lambda) = \inf_{z \in P} w(z) + \lambda^T z$, $\lambda \geq 0$

$\gamma + \lambda^T z = k$ is a hyperplane

1. States that this hyperplane supports the region above the curve w when $k = \phi(\lambda)$.

When $z = 0$, $\gamma = \phi(\lambda)$ for this hyperplane, so $\phi(\lambda)$ is the y-intercept of this hyperplane.