2. Normed Space

- A vector space \(X \) over a field \(F (\mathbb{R} \text{ or } \mathbb{C}) \) is a set with two operations \(+ \) and \(\cdot \) satisfying the following properties: \(\forall x, y, z \in X, \alpha, \beta \in F \)

- \((x + y) + z = x + (y + z) \)
- \(x + y = y + x \)
- \(\exists 0 \in X \text{ s.t. } 0 + x = x \)
- \(\exists -x \text{ s.t. } x + (-x) = 0. \)

(Note: \(x + (-y) \) denoted by \(x - y \).)

- \(1 \cdot x = x \)
- \(\alpha (\beta x) = (\alpha \beta) x \)
- \((\alpha + \beta) x = \alpha x + \beta x \)
- \(\alpha (x + y) = \alpha x + \alpha y \)

Elements of \(X \) are called vectors, elements of \(F \) are called scalars.

Examples:

(i) \(\mathbb{R}^n \)

(ii) Infinite sequences with each element
belong to F:
\[x = (x_1, x_2, x_3, \ldots) \]

(iii) Infinite sequences with a finite number of non-zero elements:
\[x = (x_1, x_2, x_3, \ldots, x_n, 0, \ldots) \]

(iv) Space of continuous functions over $[0, T]$.

Normed space: A normed space X is a vector space endowed with a norm $\| \cdot \|$. A norm has to satisfy the following properties:

(i) $\| x \| = 0$ iff $x = 0$

(ii) $\| a x \| = |a| \| x \|$

(iii) $\| x + y \| \leq \| x \| + \| y \|$ (triangle inequality)

Examples:

(i) $C[0,T]$: The space of continuous functions in $[0, T]$, with

\[\| x \| = \max_{t \in [0, T]} |x(t)| \]

It is easy to verify that the
properties of a norm are satisfied.

\(C'[0,1] \): The space of continuously differentiable functions with

\[
\| x \| = \max_{t \in [0,1]} | x(t) | + \max_{t \in (0,1]} | x'(t) |
\]

Again, easy to verify that \(\| \cdot \| \) is a norm.

\(l_p \) space, \(1 \leq p \leq \infty \):

\(1 \leq p < \infty \),

\[
l_p = \left\{ (x_1, x_2, \ldots) : x_i \in \mathbb{F}, \quad \| x \|_p = \left(\sum_{i=1}^{\infty} |x_i|^p \right)^{\frac{1}{p}} \leq \infty \right\}
\]

\(l_\infty = \left\{ (x_1, x_2, \ldots) : x_i \in \mathbb{F}, \quad \| x \|_\infty = \sup |x_i| < \infty \right\}
\]

here, \(\sup \) means the smallest upper bound since we are considering infinite sequences \(x \) and hence, a max may not exist.

Example: \(x = (0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}, \ldots) \in l_p \)

with \(\| x \| = 1 \)
The proof that the norm associated with l^p spaces is indeed a norm is not trivial. The first two properties of a norm can be shown easily, but the triangle inequality relies on Minkowski's inequality, which uses Holder's inequality, which uses the generalized AM-GM inequality.

AM-GM inequality: (Arithmetic mean is greater than or equal to the geometric mean)

If $a, b > 0$, then $\sqrt{ab} \leq \frac{a+b}{2}$

Proof: Square both sides,

$$(a+b)^2 \geq 4ab$$

Then $(a+b) \geq 2 \sqrt{ab}$

Generalized AM-GM (a.k.a. Young's) inequality:

$0 \leq \alpha \leq 1$, $a, b > 0$. Then

$$a^\alpha b^{1-\alpha} \leq \alpha a + (1-\alpha)b$$

(Equality if $\alpha = 0$ or 1, or $a = b$)

Proof: Take log on both sides:

$$\alpha \log a + (1-\alpha) \log b \leq \log (\alpha a + (1-\alpha)b)$$
But this is the definition of strict concavity of log is strictly concave.

Hölder's inequality:

\[
\sum_{i=1}^{\infty} |x_i y_i| \leq \|x\|_p \|y\|_q
\]

if \(\frac{1}{p} + \frac{1}{q} = 1 \), \(1 \leq p < \infty \). Equality holds if

\[
\left(\frac{|x_i|}{\|x\|_p} \right) = \left(\frac{|y_i|}{\|y\|_q} \right) \quad \forall i
\]

Proof: We will prove the result for \(1 < p < \infty \). The cases \(p = 1 \) or \(\infty \) are easy. Rewrite the inequality as

\[
\sum_{i=1}^{\infty} \frac{|x_i|}{\|x\|_p} \frac{|y_i|}{\|y\|_q} \leq 1
\]

By **Young inequality**

\[
\frac{|x_i|}{\|x\|_p} \frac{|y_i|}{\|y\|_q} \leq \frac{|x_i|^p}{p \|x\|_p^p} + \frac{1}{q} \frac{|y_i|^q}{\|y\|_q^q}
\]

\[
\sum_{i} \frac{|x_i| |y_i|}{\|x\|_p \|y\|_q} \leq \frac{1}{p} + \frac{1}{q} = 1
\]
Equality \quad \frac{|x|_p}{\|x\|_p} = \frac{|y|_q}{\|y\|_q}

Raising to the power of \frac{1}{pq} gives the desired result.

The special case of \(p=q=2 \) is called the Cauchy–Schwarz inequality.

Minkowski's inequality

For \(1 \leq p \leq \infty \), \(\|x+y\|_p \leq \|x\|_p + \|y\|_p \).

(Note: This establishes that \(\| \cdot \|_p \) is a norm by proving the triangle inequality since the other two conditions for a norm are easy to prove.)

Proof:

\[
\sum_i |x_i + y_i|^p = \sum_i |x_i + y_i|^{p-1} |x_i + y_i| \\
\leq \sum_i |x_i + y_i|^{p-1} |x_i| + \sum_i |x_i + y_i|^{p-1} |y_i| \\
\leq \left(\sum_i |x_i + y_i|^{q-1} \right)^{\frac{1}{q}} \|x\|_p + \left(\sum_i |x_i + y_i|^{q-1} \right)^{\frac{1}{q}} \|y\|_p
\]
\[
\begin{align*}
\left(\sum_i |x_i + y_i|^p \right)^\frac{1}{q} & \leq \left(\|x\|_p + \|y\|_q \right) \\
& = \left(\frac{p}{q} \right)^\frac{1}{q} \cdot \left(\|x\|_p + \|y\|_q \right) \\
& = \|x + y\|_p \\
& \Rightarrow \left(\|x + y\|_p \right)^{\frac{1}{q}} \leq \|x\|_p + \|y\|_q \\
& \Rightarrow \|x + y\|_p \leq \|x\|_p + \|y\|_q
\end{align*}
\]

\[\square\]

\text{\underline{l^p spaces.}} \quad \text{The space of functions} \quad \text{in} \quad [0, T] \quad \text{for which} \quad \|x\|_p = \left(\int_0^T |x(t)|^p \, dt \right)^{\frac{1}{p}} \quad \text{exists is called the} \quad l^p[0, T] \quad \text{space,} \quad 1 \leq p < \infty.

\text{For} \quad p = \infty, \quad \text{the same definition holds} \quad \|x\|_\infty = \sup_{t \in [0, T]} |x(t)|.

\text{As in the case of l^p space, one uses an integral version of Holder's} \quad \text{and Minkowski inequalities to prove}
that $\|x\|_p$ is indeed a norm, but we will not do so here.

Note: $\int_0^T |x(t)|^p \, dt$ is not affected if we change $x(t)$ in a set of measure zero in $[0, T]$. Functions that differ in a set of measure zero in L_p are treated as the same element of L_p. Similarly, the essential supremum of x is the same as a supremum but ignores what happens in sets of measure zero.

$$\|x\|_\infty = \text{ess sup } |x(t)|$$

$$= \inf \left\{ \sup_{x(t) = y(t), t \in [0, T]} |y(t)| \right\} \text{ a.e.}$$

```
a.e. means almost everywhere.
```

The definition of $L_p[0, T]$ can be extended to functions \(\{x(t), a \leq t \leq b\} \) in the natural manner, in which case the space is called $L_p[a, b]$.
Dimension of a vector space X

(This discussion does not require a normed space)

- Let $\mathcal{B} = \{a_1, a_2, \ldots, a_n\}$, where $a_i \in X$. The span of \mathcal{B}, $\text{span}(\mathcal{B})$, is defined as:

$$\{ x \in X : x = \sum_{i=1}^{n} \alpha_i a_i \text{ for } \alpha_i \in \mathbb{F} \}$$

- \mathcal{B} is said to span X if $X = \text{span}(\mathcal{B})$.

- X is said to be a linear combination of \mathcal{B} if

$$x = \sum_{i=1}^{n} \alpha_i a_i \text{ for } \alpha_i \in \mathbb{F}$$

- \mathcal{B} is said to be linearly independent if no $a_i \in \mathcal{B}$ can be written as a linear combo of $\mathcal{B} \setminus a_i$.
A linearly independent set A is said to be a basis for X if $X = \text{span}(A)$.

- X is said to be finite-dimensional if $X = \text{span}(A)$ for some finite set A. X is infinite-dimensional if there exists no such finite set A.

Theorem: If $A = \{a_1, a_2, \ldots, a_n\}$ and $B = \{b_1, b_2, \ldots, b_m\}$ are two bases for X, then $m = n$, i.e., two bases for X have the same number of elements. n is called the dimension of X.

Proof: Suppose $m < n$. Since B is a basis for X, $\text{span}(B) = X$. Further, $\text{span} \{a_1, b_1, b_2, \ldots, b_m\} = X$. Note that $\text{span} \{a_1, b_1, b_2, \ldots, b_m\} = X$. Note that a_i can be written as $\sum_{i=1}^{m} c_i b_i$.

a_i can be written as $\sum_{i=1}^{m} c_i b_i$.
at least one \(a_i \neq 0 \). Assume \(a_i \neq 0 \).

\[a_1 = a_1 b_1 + \sum_{i=2}^{m} \frac{a_i}{a_1} b_i \]

\[b_1 = \frac{1}{a_1} a_1 - \frac{1}{a_1} \sum_{i=2}^{m} \frac{a_i}{a_1} b_i \]

Thus, \(b_i \) can be expressed as a linear combo of \(\{a_1, b_2, \ldots, b_n\} \).

\[X = \text{span} \{a_1, b_2, \ldots, b_m\} \]

Next, use the fact \(a_2 \) can be written as a linear combo of \(a_1, b_2, \ldots, b_n \) to show that

\[X = \text{span} \{a_1, a_2, b_3, \ldots, b_n\} \]

Continuing,

\[X = \text{span} \{a_1, a_2, \ldots, a_m\} \]

\[\{a_1, \ldots, a_m\} \text{ is not linearly independent.} \]

\[\Rightarrow \text{ contradiction } \Rightarrow n = m. \]