17. Unconstrained optimization

Gâteaux differential: T is a possibly non-linear transformation from X to Y. $\delta T(x; h)$ is called the Gâteaux differential of T at x in the direction h if

$$\delta T(x; h) = \lim_{\alpha \to 0} \frac{T(x + \alpha h) - T(x)}{\alpha}$$

Note:

(i) This definition requires the concept of a norm in Y (since the concept of a limit requires it), but X can be just a vector space.

(ii) The Gâteaux differential generalizes the concept of a directional derivative of $f: \mathbb{R}^n \to \mathbb{R}$.
(iii) If \(\delta T(x; h) \) exists \(\forall h \), then
\[T \] is said to be Gateaux differentiable.

(iv) The definition makes sense only if \(x + \alpha h \in \text{Domain}(T) \) for sufficiently small \(\alpha \).

(v) For each fixed \(x \), \(\delta T(x; h) \)

is a possibly nonlinear transformation from \(x \) to \(y \).

(vi) Since the definition does not require a \(\| \cdot \| \) in \(X \), \(T \) need not be continuous for \(\delta T(x; h) \) to exist.

Frechet derivative: Suppose there exists a linear operator \(T(x) \in \mathcal{B}(x, Y) \) s.t.
\[
\lim_{\|h\| \to 0} \frac{\|T(x+h) - T(x) - T'(x)h\|}{\|h\|} = 0,
\]

then \(T'(x) \) is called the Frechet derivative of \(T \) at \(x \).

Note: (i) The Frechet derivative requires the concept of a norm in \(X \) as well.

(ii) If \(T'(x) \) exists, then the Gateaux differential \(\delta T(x; h) = T'(x)h \)

In this, \(\delta T(x; h) \) is also called the Frechet differential.

(iii) If \(T(x) \) exists, it is unique.

(iv) If \(T'(x) \) exists, then \(T \) is continuous at \(x \).

(v) We will write \(T'_x \) for \(T'(x) \)

sometimes

(vi) \((\lambda_1 T_1 + \lambda_2 T_2)'(x) = \lambda_1 T_1'(x) + \lambda_2 T_2'(x) \)

(vii) Terminology: \(T'(x) : X \to Y \)

is a bounded linear operator.
For each fixed \(x \), it takes \(h \) as input and outputs \(T'(x)h \in Y \).

(Recall that in multivariable calculus \(\nabla f(x) \) is the gradient (Fréchet derivative of \(f \) at \(x \)) and \(\nabla f(x) h \) is the directional derivative (Gâteaux differential) in the direction \(h \).) \(T'(x) \) is a continuous linear operator.

We say that \(T'(x) \) is continuous at \(x_0 \) if \(\| T'(x) - T'(x_0) \| \leq \varepsilon \) whenever \(\| x - x_0 \| \leq \delta \). This concept is different from that of \(T'(x) \) being a continuous linear operator.

Examples:

(i) \(f(x, y) = \int \frac{x^2 y}{x^4 + y^2}, (x, y) \neq (0, 0) \)

0, else.
This is not a continuous function at
$$(0,0)$$, so a Fréchet derivative cannot
exist there. But a Gâteaux differential
might as we will see.

$$\lim_{\alpha \to 0} \frac{f(x+\alpha h) - f(x)}{\alpha}$$

$$= \lim_{\alpha \to 0} \left(\frac{h_1^2 h_2 \alpha^3}{(h_1^4 \alpha^4 + h_2^2 \alpha^2)} - 0 \right) \frac{1}{\alpha}$$

$$= \lim_{\alpha \to 0} \frac{h_1^2 h_2}{h_2^2 + h_4 \alpha^2} = \begin{cases} 0 & \text{if } h_2 = 0 \\ \frac{h_1}{h_2} & \text{if } h_2 \neq 0 \end{cases}$$

Note that $\delta f(x; h)$ is not
even a linear operator on h.

(2) $f: \mathbb{E}^n \to \mathbb{R}$ is a function
with continuous partial derivatives

$$\delta f(x; h) = \lim_{\alpha \to 0} \frac{f(x+\alpha h) - f(x)}{\alpha}$$

Gâteaux
\[
\frac{\partial f}{\partial x_i} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}
\]

\[f'(x) = \left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \right)\]

Frechet

also denoted by \(\nabla f\), the gradient.

These follow from multivariable calculus.

(3) \(X = C[0, 1]\) and

\[f(x) = \int_0^1 g(x(t), t) \, dt,\]

where \(g_x\) is continuous in both \(x\) and \(t\),

\[
\delta f(x, h) = \lim_{\alpha \to 0} \left(\int_0^1 g \left(x(t) + \alpha h(t), t \right) dt \right) - \int_0^1 g \left(x(t), t \right) dt
\]

\[
= \int_0^1 g_x \left(x(t), t \right) h(t) \, dt.
\]
To prove that
\[f'(x) h = \int_0^1 g_x(x(t), t) h(t) \, dt, \]
we have to show that
\[\lim_{\| h \| \to 0} \frac{\| f(x + h) - f(x) - f'(x) h \|}{\| h \|} = 0. \]

See book for details.

Theorem:
\[T: Y \to Z, \quad S: X \to Y \]
\[(TS)(x) = T'(S(x)) S'(x). \]

(\text{Note: this is an extension of)
\[\frac{d}{dx} f(g(x)) = f'(g(x)) g'(x). \]

Theorem:
\[\| T(x + h) - T(x) \| \leq \| h \| \sup_{0 < \beta < 1} \| T'(x + \beta h) \|. \]
\[\text{for } h \text{ if } x + \beta h \in \text{domain of } T, \quad \beta \in [0, 1]. \]
Proof: By H–B theorem, \(\exists y^* \ s.t. \)
\[
y^* \left[T(x+h) - Tx \right] = \| T(x+h) - T(x) \|
\]
and \(\|y^*\| = 1 \). Consider the function
\[
\phi(x) = y^* \left[T(x + xh) - T(x) \right]
\]

Note that \(y^* \) is a bounded, linear functional (with linear being the important point for what we are going to say next). Therefore, we claim \(y^*(y)h = y^*(h) \).

To see this, note that
\[
\frac{\| y^*(y+h) - y^*(y) - y^*(h) \|}{\| h \|} = 0, \text{ hence the limit as } \| h \| \to 0 \\
\text{is also zero.}
\]

Thus, by the chain rule,
\(\varphi'(x) = y^* \left[T'(x + \alpha h) \right] \)

by the mean-value theorem,

\(\varphi(x) = \varphi(0) + \varphi'(x_0) \) for some

\(0 < x_0 < 1 \)

\(\implies y^* \left[T(x + h) - T(x) \right] \]

\(= y^* \left[T'(x + \alpha_0 h) \right] \)

LHS = \(\| T(x + h) - T(x) \| \) by our choice of \(y^* \)

RHS \leq \(\| y^* \| \| T'(x + \alpha_0 h) \| \)

\(\frac{1}{2} \| h \|^2 \sup_{0 < \alpha < 1} \| T''(x + \alpha h) \| \)

Theorem:

\(\| T(x + h) - T(x) - T'(x) h \| \)

\(\leq \frac{1}{2} \| h \|^2 \sup_{0 < \alpha < 1} \| T''(x + \alpha h) \| \)

\(\forall x + \beta h \in \text{Dom}(T) \forall \beta \in [0,1]. \)
Here T'' is the derivative of $T'.$

Optimization:

$$\min_{x \in \Omega} f(x).$$

Global min $x_0 \in \Omega$: $f(x_0) \leq f(x) \quad \forall x \in \Omega.$

Local min $x_0 \in \Omega$ (aka relative min.):

$\exists \delta > 0$ s.t. $B_\delta(x) \subseteq \Omega$ and

$$f(x_0) \leq f(x) \quad \forall x \in B_\delta(x).$$

Strict local min if

$$f(x_0) < f(x) \quad \forall x \in B_\delta(x).$$

Theorem: let $\delta f(x; h)$ be the

Gâteaux differential of a functional f over a normed space X, x_0 is a local min of f. Then,
\[(i) \quad \delta f(x; h) = 0 \quad \forall \ h \in X \]

\[(ii) \quad \text{If } f \text{ is defined only over a convex set } \Omega, \text{ then } \delta f(x; x - x_0) = 0 \quad \forall \ x \in \Omega. \]

Proof:

\[(i) \quad \frac{f(x_0 + \alpha h) - f(x_0)}{\alpha} \geq 0 \]

\[\Rightarrow \quad \delta f(x_0; h) \geq 0 \]

Consider the direction \(-h\):

\[\frac{f(x_0 - \alpha h) - f(x_0)}{\alpha} \geq 0 \]

Define \(\beta = -\alpha \):

\[\frac{f(x_0 + \beta h) - f(x_0)}{-\beta} \geq 0 \]

\[\Rightarrow \quad \frac{f(x_0 + \beta h) - f(x_0)}{\beta} \leq 0 \]
Letting \(\beta \to 0 \), we get \(\delta f(x_0; h) \leq 0 \)

(iii) If \(\Omega \) is a convex set, then
\[
\alpha x + (1-\alpha) x_0 \in \Omega \quad \forall x \in \Omega
\]

\[
f(x_0 + \alpha (x - x_0)) \geq f(x_0)
\]

\[
\frac{f(x_0 + \alpha (x - x_0)) - f(x_0)}{\alpha} \geq 0
\]

As \(\alpha \to 0 \), \(\delta f(x_0; x - x_0) \geq 0 \)

Example: \(\min \quad J = \int_{t_1}^{t_2} f(x(t), \dot{x}(t), t) \, dt \)

\(x(t_1), x(t_2) \) are given.

\[
\delta J(x; h) = \int_{t_1}^{t_2} \left(\frac{d}{dx} f(x + \alpha h, \dot{x} + \alpha \dot{h}, t) \right) \, dt
\]

\[
= \int_{t_1}^{t_2} \left(\frac{\partial f}{\partial x}(x, \dot{x}, t) h(t) + \frac{\partial f}{\partial \dot{x}}(x, \dot{x} + \alpha \dot{h}, t) \dot{h}(t) \right) \, dt
\]
\[
= \int_{t_1}^{t_2} \frac{\partial f(x, \dot{x}, t)}{\partial x} h(t) \, dt \\
+ \left. \frac{\partial f(x, \dot{x}, t)}{\partial x} h(t) \, dt \right|_{t_1}^{t_2} \\
- \int_{t_1}^{t_2} \dot{h}(t) \frac{d}{dt} \frac{\partial f(x, \dot{x}, t)}{\partial x} \, dt
\]

Second term: \(h(t_1) = h(t_2) = 0 \) since \(x(t_1), x(t_2) \) are fixed, \(\Rightarrow \) second term = 0.

\[\Rightarrow \delta f(x; h) = \int_{t_1}^{t_2} \left(\frac{\partial f(x, \dot{x}, t)}{\partial x} - \frac{d}{dt} \frac{\partial f(x, \dot{x}, t)}{\partial x} \right) h(t) \, dt\]

Setting this equal to zero gives us:

\[\frac{\partial f(x, \dot{x}, t)}{\partial x} = \frac{d}{dt} \frac{\partial f(x, \dot{x}, t)}{\partial \dot{x}}\]
This is called the Euler-Lagrange equation.

Note: Here we assumed that $X = C_1 [t_1, t_2]$. An additional assumption that f_x was continuous in t was also made in doing integration by path. But this can be removed (see book).