16. Linear Operators

- T: x → y is called a linear operator if T(x) ∈ Y and
 \[T(\alpha x_1 + \beta x_2) = \alpha T(x_1) + \beta T(x_2) \]
 \[\forall \alpha, \beta \in \mathbb{R}, \ x_1, x_2 \in X. \]

- If X and Y are normed spaces, then T is continuous at \(x \) if given \(\varepsilon > 0 \), there exists \(\delta = \delta_\varepsilon > 0 \) such that
 \[\| T(x) - T(y) \| \leq \varepsilon \]
 \[\forall y: \| y - x \| \leq \delta \]

- T is said to be bounded if
 \[\| T(x) \| \leq M \| x \| \text{ for all } x \]
 for some \(M < \infty \). In this case,
 \[\| T \| = \sup_{x \neq 0} \frac{\| T(x) \|}{\| x \|} \]
 \[= \sup_{\| x \| = 1} \| T(x) \| \]

 \[\| T \| = \sup_{\| x \| = 1} \| T(x) \| \]
The following theorem is along the lines of a similar result for linear functionals.

Theorem: Let \(T : X \to Y \) be a linear operator.

(i) \(T \) is continuous if \(x \in X \).

(ii) \(T \) is continuous if it is bounded.

\[\square \]

\(\mathcal{B}(X, Y) \): Space of all bounded linear operators from \(X \) to \(Y \). It is a normed space with the operator norm defined earlier.

Theorem: \(\mathcal{B}(X, Y) \) is a Banach space if \(X \) is a normed space and \(Y \) is a Banach space.

Proof: Use the 3-step procedure to prove that a space is Banach.

\[\square \]

Examples:

(i) Let \(A \) be an \(m \times n \) matrix and consider it to be a linear operator from \(\mathbb{R}^m \) to \(\mathbb{R}^n \).
with both spaces equipped with the l_2-norm.

$$\|A\| = \sup_{\|x\|=1} \|Ax\| = \sup_{\|x\|=1} \sqrt{x^T A^T A x} = \sqrt{\lambda_{\text{max}}(A^T A)}$$

by a result from linear algebra.

$\sqrt{\lambda(A^T A)}$ are called the singular values of A. Thus, $\|A\|$ is equal to the largest singular value.

(2) Let $T : M \to C([0,1])$, where $M \subset C([0,1])$ is the subspace of continuously differentiable functions, be defined as

$$T x = \frac{d}{dt} x(t)$$

T is linear, but is not bounded, because $\|x\|$ can be bounded, but its derivative can be unbounded.

However, if the domain (the space over which T is defined) is defined to be $D([0,1])$, the
space of continuously differentiable functions with

$$\|x\| = \max_{t \in [0,1]} |x(t)| + |x'(t)|,$$

then T is bounded.

$$\|T\| = \sup_{\|x\|=1} \max_{t \in [0,1]} |x'(t)|$$

$$= 1$$

since the numerator ≤ 1 and

the norm can be made arbitrarily close to the denominator may make

$|x(t)|$ close to zero.

Some definitions and properties of linear operators

(1) Domain: $T: X \rightarrow Y$ may have a domain $D \subset X$, i.e.,

the set of vectors over which it is defined.
(2) \(R(T) \): range of \(T \)
\[= \{ y : y = Tx \text{ for some } x \in X \} \]

(3) \(N(T) \): null space of \(T \)
\[= \{ x : Tx = 0 \} \]

(4) Let \(S \subseteq D \).
\[\{ y : y = Tx \text{ for some } x \in S \} \]

is called the image of \(S \).
Denoted by \(T(S) \).

(5) Let \(S \subseteq R(T) \).
\[\{ x : y = Tx \text{ for some } y \in S \} \]

is called the pre-image or inverse image of \(S \).
Denoted by \(T^{-1}(S) \).

Theorem: \(T : X \to Y \; S : Y \to Z \)

Then \(ST \) is defined as
\[STx = S(T(x)) \] \(ST \) is linear and
\[\| ST \| \leq \| S \| \| T \| . \]
Proof: Easy.

Solving \(y = T x \) for a given \(y \)

Three cases:

- Unique solution exists
- No solution
- Too many solutions.

Unique solution case: When does a unique solution exist?

Suppose \(T \) is one-to-one (i.e., if \(y_1 = T x_1 \) and \(y_2 = T x_2 \), then \(y_1 = y_2 \) if \(x_1 = x_2 \)) and onto \((\mathbb{R}(T) = Y)\), then given \(y \), there is a unique \(y \)

Solving \(y = T x \): in this case, we denote the solution by

\[x = T^{-1}(y). \]

\(T^{-1} \) is called the inverse of \(T \).
Theorem:

(1) T^{-1} is linear

(2) If X and Y are Banach spaces, then T^{-1} is also bounded if T is bounded.

Proof:

(1) $T^{-1}(\alpha y_1 + \beta y_2) = x$

$\Rightarrow \alpha y_1 + \beta y_2 = Tx$

$\Rightarrow \alpha T x_1 + \beta T x_2 = Tx$

$\Rightarrow T(\alpha x_1 + \beta x_2) = T x$

$\Rightarrow x = \alpha x_1 + \beta x_2$

(2). This is a deep result in functional analysis called the Banach inverse theorem. We will not prove it here.

To consider the other case, i.e., when $y = Tx$ has many solutions or no solution, we have to define the concept of an adjoint of an operator, which is the equivalent of transpose of a matrix.
Adjoint: The adjoint $T^*: Y^* \to X^*$ is an operator that takes $y^* \in Y^*$ as input and produces $T^*y^* \in X^*$ as output. The definition of T^* requires some thought.

(1) Note that $Tx \in Y$. Thus, given y^*, we can evaluate y^* at Tx, which in our bracketed notation, is $\langle Tx, y^* \rangle$.

(2) For a fixed y^*, $\langle Tx, y^* \rangle$ is a functional over X. Also

$$|\langle Tx, y^* \rangle| \leq \|T\| \|x\| \|y^*\| \leq \|T\| \|x\| \|y^*\|$$

Thus, $f(x) = \langle Tx, y^* \rangle$ is a bounded linear functional since, from above,

$$\left\| f(x) \right\| \leq \|T\| \|y^*\|,$$

i.e., $f \in X^*$.

(3) The above facts (1) and (2) can be summarized as follows:
Consider a linear operator T. Then, for each y^*, T and y^* together define a functional $f(x)$, i.e., T defines an operator from
\[y^* \rightarrow x^* \] This operator is called the adjoint \(T^* \). More compactly, \(T^* \) is defined by
\[\langle Tx, y^* \rangle = \langle x, T^* y^* \rangle \]

Example: Let \(A_{m \times n} \) be a matrix operator from \(\mathbb{R}^m \) to \(\mathbb{R}^n \), each endowed with the \(l_2 \) norm.

\((\mathbb{R}^m)^\prime = \mathbb{R}^m \) and \((\mathbb{R}^n)^\prime = \mathbb{R}^n \)

Then, \(A^* : \mathbb{R}^n \rightarrow \mathbb{R}^m \) and is defined by
\[(x, A^* y) = (Ax, y) \]
\[x^T A^* y = x^T A^T y \]
\[\Rightarrow \quad A^* = A^\top \] as expected.

In function notation,
\[T^* y^* (x) = y^* (Tx) \]
\[T^* y^* x = y^* T x \]

In \(T^* \) is also sometimes defined by
\[T^* y^* = y^* T \]

Thus, \(T^* \) and \(y^* \) of \(T \) are
both functionals on X. Thus T° is an operator whose composition with every y^* gives a function identical to the composition of y^* with T.

Theorem: \[\| T^\circ \| = \| T \| \quad \text{and} \quad T^\circ \text{ is linear.} \]

Proof: T° is linear is easy to prove.

\[\| T^\circ \| = \sup_{\| y^* \| = 1} \| T^\circ y^* \| \]

\[= \sup_{\| y^* \| = 1} \left\{ \sup_{\| x \| = 1} \langle x, T^\circ y^* \rangle \right\} \]

\[= \sup_{\| y^* \| = 1} \sup_{\| x \| = 1} \langle x, T^\circ y^* \rangle \]

\[\leq \sup_{\| y^* \| = 1} \| x \| \sup_{\| x \| = 1} \| y^* \| \]

\[\leq \| T \| \sup_{\| y^* \| = 1} \| x \| \|

Now, we prove the reverse inequality:

\[\| T \| \leq \| T^\circ \| \]

\[\| T \| = \sup_{\| x \| = 1} \| T x \| \]

Let x be a vector with $\| x \| = 1$.
\(Tx \in Y. \text{ By } \mathbf{H} - \mathbf{B}, \exists y^* \in Y^* \text{ s.t.}
\)
\[
\|y^*\| = 1 \quad \text{and} \quad \langle Tx, y^* \rangle = \|Tx\|
\]
\[
\iff \langle x, T^* y^* \rangle = \|Tx\|
\]
\[
\implies \|Tx\| = \langle x, T^* y^* \rangle \leq \|x\| \|T^* y^*\| = \|x\| \sup_{\|y^*\| = 1} \|T^* y^*\|
\]
\[
\implies \|T\| = \sup_{\|x\| = 1} \|Tx\| \leq \sup_{\|x\| = 1} \|T^* y^*\| = \|T^*\| = \|T^* y^*\| = \sup_{\|y^*\| = 1} \|T^* y^*\|
\]

Properties of adjoints:

(i) If \(I \) is the identity operator from \(X \) to \(X \), then
\[
T^* = I
\]

(ii) \((A_1 + A_2)^* = A_1^* + A_2^*\)

(iii) \((\alpha A)^* = \alpha A^* \quad \forall \alpha \in \mathbb{R}\)

(iv) \((A_1 A_2)^* = A_2^* A_1^*\)

(v) \((A^{-1})^* = (A^*)^{-1}\)

\[
\]
\(Y^* = Y \) and \(X^* = X \). In this case, \(T^* \) can be defined as

\[
(Tx \mid y) = (x \mid T^* y)
\]

Note that, in this case, \(T^{**} = T \).

\(T \) is called **self-adjoint** if \(T = T^* \)

Note: this definition makes sense only if \(Y = X \).

\(T \) is called **positive definite** if

\[
(Tx \mid x) \geq 0 \quad \forall x \in X
\]

Example: Let \(X = Y = L_2[0,1] \).

Let \(T x = \int_0^t K(t,s) x(s) \, ds \)

Find \(T^* \).

Solution: First, \(T \) must be a bounded linear operator,

\[
\|Tx\|^2 = \int_0^t \left(\int_0^t K(t,s) x(s) \, ds \right)^2 \, dt
\]

\[
\leq \int_0^t \left(\int_0^t |K(t,s)| \, ds \right)^2 \, dt \int_0^t |x(s)|^2 \, ds \, dt
\]

CS inequality

\[
\leq \|x\|^2 \int_0^t \int_0^t K^2(t,s) \, ds \, dt
\]
\[
< (\text{Constant}) \|x\|^2
\]

if
\[
\int_0^1 \int_0^1 K(t,s) \, ds \, dt < \infty.
\]

We will assume this is true.

\[
(Tx|y) = \int_0^1 \left[\int_0^t K(t,s) x(s) \, ds \right] y(t) \, dt
\]

\[
= \int_0^1 \left(\int_s^t K(t,s) y(t) \, dt \right) x(s) \, ds
\]

\[
= (x, T^* y)
\]

\[
\Rightarrow \quad T^* y = \int_0^1 K(t,s) y(t) \, dt
\]

for some fixed
\[
0 \leq t_1 < t_2 < \ldots < t_n \leq 1.
\]

Example: \(X = C[0,1], \ Y = \mathbb{R}^n\) (i.e., \(\mathbb{R}^n\) with the \(l_2\)-norm). Define
\[
T(x) = (x(t_1), x(t_2), \ldots, x(t_n))
\]
Find $T^+(x)$

Solution: $T x \in E^n$ since $(E^n)^* = E^n$

because E^n is a Hilbert space.

$((C[0,1])^*) = NBV[0,1].$

$$
\langle Tx, y^* \rangle = \sum_{i=1}^{n} x(k_i) y_i
$$

$$
= \int x(t) \, dv(t) = \langle x, T^+ y^* \rangle
$$

where

![Diagram](image)

so $T^+ y^*$ is $v(t)$ given above.

Relationship between range & nullspace

We will only consider the situation $T : X \to Y$, where X and Y are Hilbert spaces. The more general cases are treated in the book.

We will assume $T \in B(X, Y)$, i.e., T is a bounded linear operator.
First recall relationships for a matrix A: suppose $y = Ax$, i.e., $y \in \text{R}(A)$

$$y^T \bar{y} = 0$$

$$\iff \quad x^T A^T \bar{y} = 0$$

Thus, if $A^T \bar{y} = 0$, then $y^T \bar{y} = 0$

i.e., $(\text{R}(A))^\perp = (\text{N}(A^T))$

A similar relationship holds for operators between Hilbert spaces.

Theorem:

(i) $(\text{R}(T^*))^\perp = \text{N}(T)$

(ii) $(\text{R}(T^*))^\perp = \text{N}(T)$

Proof:

(i) $T: X \to Y$ and $T^*: Y \to X$

$$\text{R}(T) \subseteq Y \quad \text{N}(T^*) \subseteq Y$$

$y \in \text{R}(T) \iff y = Tx \quad \forall x \in X$

$\bar{y} \in \text{N}(T^*) \iff 0 = T^* \bar{y}$

$\langle y | \bar{y} \rangle = \langle Tx | \bar{y} \rangle = \langle x | T^* \bar{y} \rangle = 0$
Thus, if \(g \in \mathcal{N}(T^*) \) and \(y \in (R(T))^\perp \),

then \(g \perp y \).

\[\Rightarrow \quad \mathcal{N}(T^*) \subseteq (R(T))^\perp \]

Suppose \(g \in (R(T))^\perp \), then

\[(Tx \mid g) = 0 \]

By the definition of adjoint,

\[(Tx \mid g) = (x \mid T^* g) = 0 \]

Since \(g \in (R(T))^\perp \), this relationship is true for all \(x \). \(\Rightarrow \) \(T^* g = 0 \)

or \(g \in \mathcal{N}(T^*) \).

i.e., \((R(T))^\perp \subseteq \mathcal{N}(T^*) \).

(ii) Similar to (i).

Now, let's take the complement of (i) above:

\((R(T))^\perp = (\mathcal{N}(T^*))^\perp \)

It is easy to see that \((R(T))^\perp \)

is a subspace. If it is closed,
by the decomposition theorem, Y can be decomposed as

$$Y = R(T) \oplus R(T)$$

This decomposition is unique, i.e., given $y \in Y$, there is a unique $y_1 \in R(T)$ and $y_2 \in R(T)$ such that $y = y_1 + y_2$.

$$\Rightarrow R(T) \perp = R(T)$$

However, if $R(T)$ is not closed, then

$$R(T) = \overline{R(T)} (\text{the closure of } R(T)).$$

The reason is that both

$$(R(T))' \quad \text{and} \quad (\overline{R(T)})'$$

are the same, by the continuity of the inner product. And thus,

$$R(T) = (\overline{R(T)})' = \overline{R(T)}$$

by the decomposition theorem. Thus, we have the following corollary to the previous theorem.

Corollary:

(i) $\overline{R(T)} = N(T^*)'$

(ii) $\overline{R(T^*)} = N(T)'$
Example illustrating $R(T)$ need not be closed.

Before we present the example, we note that all infinite sequences with a finite number of non-zero elements $\in l_2$. The closure of this set is l_2.

Now comes the example.

$$T(x) = \left\{ \frac{x_1}{2^{1/2}}, \frac{x_2}{2^{1/2}}, \frac{x_3}{2^{1/2}}, \ldots \right\}$$

$T(x) \in l_2$ if $x \in l_2$. Further

$$||T|| = ||(1, \frac{1}{2^{1/2}}, \frac{1}{3^{1/2}}, \ldots)||_2 < \infty$$

$\lim_{n \to \infty} \frac{1}{n} = 0$.

Clearly, all sequences with a finite # non-zero elements $\notin R(T)$. Thus,

$$\overline{R(T)} \subset l_2.$$

However, $\left\{ 1, \frac{1}{2}, \frac{1}{3}, \ldots \right\} \in l_2$, but cannot be in $R(T)$ because x has to be $\left\{ 1, \frac{1}{2^{1/2}}, \frac{1}{3^{1/2}}, \ldots \right\}$ for this to happen. But such an $\alpha \notin l_2$.

\Box
\[y = T \mathbf{x} \text{ has no solution} \]

\[
\begin{align*}
\min & \quad \| y - T \mathbf{x} \| \\
\text{This is equivalent of} & \quad \min \| y - \hat{y} \| \\
& \quad \hat{y} \in R(T)
\end{align*}
\]

If an optimum solution exists (it may not exist \(R(T) \) need not be closed),

\[y - \hat{y} \in R(T) \]

\[\Rightarrow \quad y - \hat{y} \in \mathcal{N}(T^\perp) \]

\[\Rightarrow \quad T^\perp y - T^\perp \hat{y} = 0 \]

\[\Rightarrow \quad T^\perp y = T^\perp \hat{y} \]

But \(\hat{y} = T \mathbf{x} \)

\[\Rightarrow \quad T^\perp y = T^\perp T \mathbf{x} \]

If \(T^\perp T \) is invertible, then there
exists a unique solution
\[
x = (T^T T)^{-1} T^T y
\]

\[y = Tx \text{ has many solutions}
\]

\[
\min ||x||
\]

s.t.
\[y = Tx
\]

Let \(x_0\) be one solution to
\[y = Tx. \text{ Define}
\]
\[-z = x - x_0 \quad \forall x : Tx = y
\]
\[-Tz = Tx - T x_0 = y - y = 0
\]

Thus, the problem is
\[
\min ||z - x_0||
\]

s.t.
\[z \in M = \{z : Tz = 0\}
\]

or
\[
\min ||z - x_0||
\]

s.t.
\[z \in N^*(T)
\]

\(N^*(T)\) is closed since \(N^*(T) = R(T)\). Then,
(see Prop. 1, sec. 3.4 of book)
there exists a unique optimal \(\hat{x} \) and \(\hat{z} \). \(\hat{x} \) is optimal i.f.f.

\[\hat{z} = x_0 \in N(T)^\perp = R(T^*) \]

i.e., \(\hat{z} \) is optimal i.f.f. we can find \(\hat{y} \) s.t.

\[\hat{z} - x_0 = T^* \hat{y} \]

\[\hat{z} - x_0 = x \], \(x \) is optimal i.f.f.

\(\forall \hat{y} \in \mathcal{Y} \)

\[x = T^* \hat{y} \]

since \(x \) has to satisfy

\[y = XT^* \hat{y} \]

Thus, if we can find a \(\hat{y} \) solving the above equation, then the optimal \(\hat{x} \) is given by

\[\hat{x} = T^* \hat{y} \]

If \(TT^* \) is invertible, we have

\[\hat{y} = (TT^*)^{-1} y \]

and

\[\hat{x} = T^* (TT^*)^{-1} y \]