
Ralf Koetter,
Andrew C. Singer,
and Michael Tüchler

apitalizing on the tremendous
per formance gains of turbo
codes and the turbo decoding
algorithm, turbo equalization is

an iterative equalization and decoding
technique that can achieve equally impres-
sive performance gains for communication
systems that send digital data over chan-
nels that require equalization, i.e., those
that suffer from intersymbol interference
(ISI). In this article, we discuss the turbo
equalization approach to coded data trans-
mission over ISI channels, with an empha-
sis on the basic ideas and some of the
practical details. The original system intro-
duced by Douillard et al. can be viewed as
an extension of the turbo decoding algo-
rithm by considering the effect of the ISI
channel as another form of error protec-
tion, i.e., as a rate-1 convolutional code.

Background and Organization
Graphical models for turbo codes (and low-
density, parity-check (LDPC) codes), togeth-
er with the various iterative algorithms for

C

©
IM

A
G

E
S

TA
T

E

IEEE SIGNAL PROCESSING MAGAZINEJANUARY 2004 67
1053-5888/04/$20.00©2004IEEE

IEEE SIGNAL PROCESSING MAGAZINE68 JANUARY 2004

decoding them, have provided substantial insights into the
dramatic performance improvements achievable through
their use [1]–[4]. For an overview about graphical models,
we also refer to [5]. The flurry of research in related topics
over the last decade has produced a number of communi-
cations and signal-processing algorithms that leverage
turbo decoding approaches to provide similar gains in per-
formance for a wide array of problems [6]–[14]. The orig-
inal system introduced in [9] leveraged the ideas of the
turbo decoding algorithm to the related problem of equal-
ization and decoding. We seek to provide an overview of
the turbo equalization approach, with an algorithmic
description and intuitive explanation of each of the steps
involved in designing such a communication system.

In the following section, we provide a brief overview
of the turbo equalization approach. Then, we present a
basic system model for a coded data transmission sys-
tem together with a notional system example. Next,
optimal detection strategies are discussed, followed by
separate equalization and decoding methods. The
turbo equalization algorithm is described in more
detail, together with some measures of system perform-
ance for our example. Extensions and concluding
remarks are presented in the last section.

Overview
In this section, we provide a high-level overview of
turbo equalization, placing an emphasis on the con-
cepts involved and delay a more mathematical develop-
ment to subsequent sections of the article. The focus of
our discussion will be the communication link depicted
in Figure 1, which contains a system configuration for a
digital transmitter as part of a communication link.
These basic elements are contained in most practical
communication systems and are essential components
of a transmitter such that turbo equalization can be
used in the receiver.

The role of the encoder, which is the first block in
Figure 1(a), is to take the binary data sequence to be
transmitted as input and produce an output that contains

not only this data but also additional redundant informa-
tion that can be used to protect the data of interest in the
event of errors during transmission. There are a wide
variety of practical methods for introducing such redun-
dancy in the form of an error control code (ECC) (also
referred to as forward error correction); however, we will
assume that a convolutional code is used for our purpos-
es. The goal of forward error correction is to protect the
data from the possibility of random single-bit errors or
short bursts of errors that might occur in the data stream
as a result of additive noise in the transmission or receiver
errors. To ensure that such errors appear random and to
avoid long error bursts, an interleaver is used to random-
ize the order of the code bits prior to transmission. This
process is completely reversible and is simply mirrored in
the receiver. Finally, the permuted code bits are then con-
verted into electrical signal levels that can be modulated
either at baseband or onto a carrier for transmission over
a passband channel. Such modulation could take a variety
of forms in such diverse applications as wired or wireless
transmission, optical communications, optical data stor-
age, magnetic recording, or even acoustic communica-
tion systems. The process of mapping binary code bits
into channel symbols suitable for modulation is depicted
by the mapper in Figure 1.

The traditional methods of data protection used in
ECC do not work well when the channel over which
the data is sent introduces additional distortions in the
form of ISI. When the channel is bandlimited or for
other reasons is dispersive in nature, then the receiver
will, in general, need to compensate for the channel
effects prior to employing a standard decoding algo-
rithm for the ECC. Such methods for channel compen-
sation are typically referred to as channel equalization.
Even when the actual transmission medium is nondis-
persive, often the transmit-and-receive filtering that
takes place in a practical system gives rise to sufficient
ISI such that equalization becomes necessary.

Given observations of the received data, the receiver
now has essentially one task to complete: estimate the

data that was transmitted. To do
this optimally, in terms of minimiz-
ing the bit error rate (BER), the
receiver must find the set of trans-
mitted bits that are most probable,
given knowledge of the complex sta-
tistical relationship between the
observations and the transmitted
bits. Such a receiver, as depicted in
Figure 1(b) as receiver A, takes into
account the ECC, the interleaver,
the symbol mapping, and knowl-
edge of the channel. With so many
factors involved, the resulting statis-
tical relationship rapidly becomes
difficult to manage in an efficient
manner. As such, in most practical
systems, receiver A is simply infeasi-

� 1. System configuration and three receiver structures: the optimal detector (receiver A),
one-time equalization and decoding using hard or soft decisions (receiver B),
and turbo equalization (receiver C).

Encoder

Interleaver

Mapper

Channel

ak ak ak ak

bk

ck

xk xk

ck

bk s(bk)
s(bk)

s(ck)
s(ck)

s(xk)

yk yk ykyk

s′(bk)

s′(ck)

Optimal Detector

System
Configuration

Receiver A Receiver B Receiver C

Demapper

Decoder

Deinterleaver

Demapper

Equalizer/Detector

Decoder

Deinterleaver Interleaver

Mapper
Equalizer/Detector

–

ˆ ˆ ˆ

ˆ

ˆ

ˆ

–

(a) (b) (c) (d)

IEEE SIGNAL PROCESSING MAGAZINEJANUARY 2004 69

ble, as it amounts to essentially trying to fit all possible
sequences of transmitted bits to the received data, a
task whose complexity grows exponentially in the
length of the data transmitted.

The way that most practical receivers have been
designed is to first process the received observations to
account for the effects of the channel and to make esti-
mates of the transmitted channel symbols that best fit
the observed data. A number of criteria for perform-
ance have been used for such equalizers, ranging from
those attempting to simply invert the channel (so-
called zero forcing equalizers) to linear and nonlinear
equalizers based on minimizing a mean-squared error
(MSE) metric to even those that are symbol-error-rate
(SER) optimal by maximizing the likelihood of the
observations given the channel and data model. These
equalization methods constitute the first step in receiv-
er B from Figure 1(c). Once the transmitted channel
symbols have been estimated, they can be demapped
into their associated code bits, deinterleaved, and then
decoded using a BER optimal decoder for the ECC.
The most straightforward way to implement this sepa-
rate equalization and decoding process is for the equal-
izer to make hard decisions as to which sequence of
channel symbols were transmitted and for these hard
decisions to be mapped into their constituent binary
code bits. These binary code bits can then be processed
with the decoder for the ECC. The process of making
hard decisions on the channel symbols actually destroys
information pertaining to how likely each of the possi-
ble channel symbols might have been, however. This
additional “soft” information can be converted into
probabilities that each of the received code bits takes
on the value of zero or one that, after deinterleaving, is
precisely the form of information that can be exploited
by a BER optimal decoding algorithm. Many practical
systems use this form of soft-input error control decod-
ing by passing soft information between an equalizer
and decoding algorithm.

The remarkable performance of turbo codes makes
it clear that the soft information need not only flow in
one direction. Once the error control decoding algo-
rithm processes the soft information it can, in turn,
generate its own soft information indicating the relative
likelihood of each of the transmitted bits. This soft
information from the decoder could then be properly
interleaved and taken into account in the equalization
process, creating a feedback loop between the equalizer
and decoder, through which each of the constituent
algorithms communicates its beliefs about the relative
likelihood that each given bit takes on a particular
value. This process is often termed “belief propaga-
tion” or “message passing” and has a number of
important connections to methods in artificial intelli-
gence, statistical inference, and graphical learning theo-
ry. The feedback loop structure described here and
depicted in receiver C in Figure 1(d) is essentially the
process of turbo equalization.

While the process of equalization and decoding
through the feedback loop structure of receiver C is
essentially complete, it is important to consider the
effect that the soft information generated from one bit
in one of the constituent algorithms (equalizer or
decoder) will have on other bits in the other con-
stituent algorithm. When processing soft information
as an input to the equalizer or decoder, it is assumed
that the soft information about each bit (or channel
symbol) is an independent piece of information. This
enables simple, fast algorithms to be used for each of
the equalizer and decoder. If the decoder formulates its
soft information about a given bit, based on soft infor-
mation provided to it from the equalizer about exactly
the same bit, then the equalizer cannot consider this
information to be independent of its channel observa-
tions. In effect, this would create a feedback loop in the
overall process of length two: the equalizer informs the
decoder about a given bit, and then the decoder simply
reinforms the equalizer what it already knows. To avoid
such short cycles in the feedback and in hopes of avoid-
ing local minima and limit cycle behavior in the
process, when soft information is passed between con-
stituent algorithms, such information is never formed
based on the information passed into the algorithm
concerning the same bit. Basically, this amounts to the
equalizer only telling the decoder new information
about a given bit based on information it gathered
from distant parts of the received signal (thanks to the
interleaver). Similarly, the decoder only tells the equal-
izer information it gathered from distant parts of the
encoded bit stream. As a result, the iterative equaliza-
tion and decoding process can continue for many itera-
tions before cycles are introduced, which eventually
limits further improvements. This process of only pass-
ing “extrinsic information” between constituent
decoders is essential to the performance of turbo
decoding algorithms.

System Model
We begin with the goal of any communication system,
which is to reliably transmit data over a given channel. As
depicted in the transmission model in Figure 1(a), the

The flurry of research in related
topics over the last decade has
produced a number of
communications and SP
algorithms that leverage turbo
decoding approaches to provide
similar gains in performance
for a wide array of problems.

IEEE SIGNAL PROCESSING MAGAZINE70 JANUARY 2004

job of the transmitter is to send a stream of K binary data
ak , k = 1, 2, . . . , K , over the channel in a manner that
will enable a receiver to correctly recover the original data
stream with high probability. This is done in several steps.
First, the binary data is protected from potential errors in
the transmission process by introducing redundancy in
the form of an ECC, producing a longer sequence of N
(binary) code bits b k , k = 1, 2, . . . ,N . We are interested
in the case of binary codes, i.e., the alphabet of the ak
and the b k is {0, 1} and addition (using the sign ⊕) and
multiplication are performed modulo-2.

The rate R=K /N of the code, which lies between
zero and one, specifies the amount of added redundant
information. In this article, we use a rate-1/2 convolu-
tional code given by the generator (1+D2 1+D +D2)

[15]. With this rate, K data bits ak are encoded to 2K
code bits b k . Thus, the redundant information are K
extra code bits. An encoder circuit for this code is
depicted in Figure 2. We assume that the two delay ele-
ments in this circuit are zero at the beginning of the
encoding process (time k =0) and at the end (time
k =K). Obviously, the last two data bits aK −1 and aK
must be fixed to zero to achieve the latter assumption,
which implies a small rate loss. This loss can be con-
trolled by considering long sequences and can be
avoided with tail-biting encoding [16].

To improve the performance of the ECC by spread-
ing out any burst errors that might occur in the chan-
nel, an interleaver is used to scramble the data sequence
b k , creating the binary sequence c k . The interleavers
used in this article are the so-called S -random inter-
leavers [17]. They randomly spread the bits b k with the
only restriction that each pair in a group of S consecu-
tive bits (b k, . . . , b k+S−1) must be at least S indices
apart after interleaving. Figure 3 depicts a three-ran-
dom interleaver for 18 code bits.

The code bits c k need to be physically modulated
over the communication channel, which is typically
done by grouping together code bits c k into short
blocks of, say, q bits each and mapping them onto a
modulation waveform, or channel symbol, xk . The
modulation could be in the form of binary phase shift
keying (BPSK), where a given pulse shape is modulated
with either a +1 or −1, i.e., the bit c k ∈ {0, 1} is
mapped to a symbol xk as xk =(−1)c k . In this case,
q =1. An example with q = 2 is quadrature phase shift
keying (QPSK) in which xk =(−1)c 2k−1 + j (−1)c 2k . Such
complex modulation symbols naturally arise in the con-
text of passband communication systems, in which
magnitude and phase can be used to convey complex
values easily. For simplicity, we will focus here on BPSK
and refer to [13] for higher-order modulations.

The series of transmit pulse shapes modulated with
the symbols xk , k = 1, 2, . . . ,N , is transmitted over a
linear and time-invariant (or slowly time varying) com-
munication channel with known channel impulse
response (CIR). A coherent symbol-spaced receiver
front end with precise knowledge of the signal phase
and symbol timing receives the transmitted waveforms,
which are distorted by the channel and by white
Gaussian noise added in the receiver front end. The
received waveforms are passed through the receive fil-
ter, which is matched to the transmit pulse shape and
the CIR. Sampling the receive filter output yields a
sequence of samples yk given by

yk = nk +
L∑

l =0

h l xk−l , k = 1, 2, . . . ,N , (1)

where the real-valued coefficients h l are the sampled
impulse response of the cascade of the transmit filter,
the channel, and the receive filter. This response is
assumed to be of finite length L +1, i.e. h l = 0, for
l > L . The symbols xk , k < 1, transmitted prior to x1,
are assumed to be zero.

Using BPSK modulation yields that the xk and the
channel output

∑L
l =0 h l xk−l are real valued such that it

suffices to consider only the real part of the noise
added in the receiver front end. Thus, provided that
the receive filter satisfies the Nyquist criterion, the
noise samples nk are independent and identically dis-
tributed (IID) real-valued Gaussian noise samples dis-
tributed with p(n)=exp(−n2/(2σ 2))/

√
2πσ 2 .

A tapped delay line circuit implementing the equiva-
lent time-discrete model (1) for transmission of data in
a bandlimited, additive noise channel is depicted in
Figure 4 for L =2. The example channel used in this
article is a length-three channel taken from [18], with
the coefficients h0 = 0.407, h1 = 0.815, h2 = 0.407.

We will assume that these coefficients are known to the
receiver and do not vary in time. For this channel, the
channel law (1) can be expressed in matrix form
y=Hx+n, where the length-N vectors y and n and
the N ×N matrix H are given by� 3. A 3-random interleaver for 18 code bits.

� 2. Encoder of a convolutional code, where each incoming data
bit ak yields two code bits (b2k−1, b2k) via b2k−1 =ak ⊕ ak−2

and b2k =ak ⊕ ak−1 ⊕ ak−2 .

ak

b2k–1

b2k

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18

c18c17c16c15c14c13c12c11c10c9c8c7c6c5c4c3c2c1

IEEE SIGNAL PROCESSING MAGAZINEJANUARY 2004 71

y1
y2
...

yN

 =

h0 0 0 0 0 · · · 0
h1 h0 0 0 0 · · · 0
h2 h1 h0 0 0 · · · 0
0 h2 h1 h0 0 · · · 0

. . .
. . .

. . .

0 0 · · · 0 h2 h1 h0

·

x1
x2
...

xN

+

n1
n2
...

nN

 .

The symbols xk from the alphabet {+1,−1} have unit
average power which, at the receiver input, yields the
signal-to-noise ratio (SNR)

SNR = signal power
noise power

=
∑L

l =0 |h l |2
σ 2 = 1

σ 2 .

This transmission model gives rise to serious distortions
due to ISI. Nevertheless, the information theoretic lim-
its of transmission through this channel are well under-
stood [19]–[22]. For example, it is possible to
numerically compute the largest rate for which we can
transmit reliably over this channel given that the sym-
bols xk are binary as well as independent and identically
distributed (IID) [21]. Given the BPSK alphabet
{+1,−1}, this rate is at most 1 bit per channel use.
This bound is attained when the SNR approaches ∞.
In our example, where R=1/2 bits are transmitted per
channel use, an SNR of at least −1.6 dB is required for
reliable data transmission. The question to be answered
in the remainder of this article is therefore: How can
we design a receiver with tractable computational com-
plexity, for a fixed finite sequence length N , that can
achieve a reasonably small error rate at an SNR as close
as possible to −1.6 dB?

It is the job of the receiver to estimate the data that
was transmitted, making use of knowledge of how the
channel has corrupted the data together with the avail-
able redundancy that has been introduced to protect
the data, in the form of the ECC. While the ECC alone
would protect the data from additive noise, when the
channel introduces ISI adjacent channel symbols are
smeared together, introducing additional dependencies
among the transmitted channel symbols. Generally, the
problem of mitigating the effects of an ISI channel on
the transmitted data is called “equalization” or “detec-
tion,” while the subsequent problem of recovering the
data bits from the equalized symbol stream, making use
of the ECC, is called “decoding.”

For complexity reasons, these problems have tradi-
tionally been considered separately, with limited inter-
action between the two blocks. As such, substantial
performance degradation is typically induced through
the separation of these inherently dependent tasks. The
main contribution of much of the work in turbo equal-
ization to date has been to enable feasible approaches
to jointly solving the equalization and decoding tasks.

As a result, the performance gap between an optimal
joint decoding and equalization and that achievable
through systems with practical complexity has been
narrowed in a manner similar to that of near Shannon-
limit communications using turbo codes [23].

Optimal Detection
A natural starting point for the developments in this arti-
cle is the optimal receiver achieving the minimum proba-
bility of error P (ak
= âk) for each data bit ak . It is well
known that this is achieved by setting âk to that value
a∈{0, 1}, which maximizes the a posteriori probability
(APP) P (ak =a|y) given the observed sequence y, i.e.,

âk = argmax
a∈{0,1}

P
(
ak =a|y)

. (2)

An algorithm that achieves this task is commonly
referred to as a maximum a-posteriori probability
(MAP) algorithm, corresponding to “receiver A” in
Figure 1(b).

Where binary quantities are concerned, such as the
bits ak , it is convenient to work with log-likelihood
ratios (LLRs) rather than probabilities. The LLR for a
binary variable a is defined as

L (a) = ln
P (a = 0)

P (a = 1)
. (3)

The LLR L (a) contains the same information as any
of the two probabilities for P (a=0) or P (a=1). In
particular, we find that the sign of L (a) determines
whether P (a=0) is larger or smaller than P (a=1) with
the special case P (a=0) = P (a=1) = 1/2 when
L (a)=0. Similarly, we can define a conditional LLR of
a binary random variable a given y :

L (a|y) = ln
P (a = 0|y)

P (a = 1|y)
. (4)

Thus, the decision rule (2) can be written as

âk =
{

0, L
(
ak|y

) ≥ 0
1, L

(
ak|y

)
< 0.

(5)

The main problem with the MAP approach is that
computing the APPs is computationally demanding,
since y depends on the entire sequence
a = (a1a2 . . . aK)T of data bits ak as follows:

P
(
ak = a|y) =

∑

∀a:ak=a

P (a|y) =
∑

∀a:ak=a

p(y|a)P (a)
p(y)

. (6)

� 4. Tapped delay line circuit of the channel model (1) for L = 2.

xk

h0 h1 h2

nk

yk

IEEE SIGNAL PROCESSING MAGAZINE72 JANUARY 2004

The probability P (a) is the a-priori probability of the
sequence a, which can be used in (6) to include knowl-
edge about the source producing the bits ak . Usually,
the bits ak are assumed independent, i.e., the joint
probability P (a) factors as

∏K
n=1 P (ak). Applying the

APP decomposition in (6) and that of P (a) to the con-
ditional LLR L (ak|y) yields the following:

L
(
ak|y

) = ln

∑
∀a:ak=0 p(y|a)∏K

i=1 P (ai)
∑

∀a:ak=1 p(y|a)∏K
i=1 P (ai)

= ln

∑
∀a:ak=0 p(y|a)∏K

i=1:i �=k P (ai)
∑

∀a:ak=1 p(y|a)∏K
i=1:i �=k P (ai)︸ ︷︷ ︸

+L (ak)

= L ext
(
ak|y

) + L (ak). (7)

The quantity L ext(ak|y) is the extrinsic information
about ak contained in y. It adds to the a priori informa-
tion L (ak) about ak . Extrinsic LLRs will play a crucial
role in the turbo equalization setup.

Since the bits ak are usually assumed to be uniformly
distributed, i.e., they take on the values 0 or 1 equally
likely, we have that L (ak)=0.

As seen in (6), receiver A is impractical for large
block lengths K because of the exponentially growing
number 2K of terms p(y|a). In certain special cases,
i.e., if the memory in the channel and in the inter-
leaved coded sequence is only moderate, it is possible
to organize the computation in a significantly more
efficient fashion. Nevertheless, the number of opera-
tions per information bit grows exponentially in the
sum of channel and code memory, which in many
cases renders the problem intractable. In this situation,
turbo equalization offers suboptimal alternatives to the
optimal receiver, achieving comparable performance
while requiring significantly reduced complexity. We
will proceed by first developing the basic components
of a turbo equalizer in a setting that separates the
equalization and decoding tasks.

Separate Equalization and Decoding
Since a MAP algorithm for optimal joint equalization
and decoding is usually not feasible, a standard
approach to reducing the computational burden of the
receiver is to split the detection problem into the two
subproblems: equalization and decoding. This strategy
is illustrated in “receiver B” depicted in Figure 1. One
implementation communicates estimates x̂k , ĉ k , and b̂ k
from the same alphabet ({0, 1} or {−1,+1}) as xk , c k ,
and b k , respectively, from the equalizer to the decoder.
An alternative is to communicate reliability or soft
information s (xk), s (c k), and s (b k), which provides
more information on the relative likelihood that xk , c k ,
or b k take on any particular value.

We will consider two distinct families of algorithms
for the subproblem of equalization, namely, trellis-

based methods and equalization methods based on lin-
ear filtering. Typical trellis-based approaches include
MAP symbol detection [24], [25] and maximum-likeli-
hood (ML) sequence detection [18], [26]. A MAP
symbol detector simply applies rule (2) while ignoring
the effect of the code; i.e., it sets the symbol estimate
x̂k to that symbol x from {+1,−1}, which maximizes
the APP P (xk = x |y).

An ML sequence detector computes an estimate x̂
of the entire sequence x, which maximizes the likeli-
hood p(y|x). Both problems seem intractably com-
plex because of the huge number of terms p(y|x) to
be summed up as in (6) or to be maximized over for
ML sequence detection. However, we will describe
here a trellis-based approach in particular for MAP
symbol detection to show that these problems can be
solved efficiently.

MAP Symbol Detection
Consider the tapped delay line model of the transmit-
ter, channel, and receive filter depicted in Figure 4.
Assuming an impulse response length of L +1, the
tapped delay line contains L delay elements. Thus,
given a binary input alphabet {+1,−1} the channel can
be in one of 2L states ri , i = 1, 2, . . . , 2L , correspon-
ding to the 2L different possible contents of the delay
elements. We denote by S = {r1, r2, . . . , r2L } the set of
possible states. At each time instance k = 1, 2, . . . ,N
the state of the channel is a random variable sk ∈ S. It
is an important property of the memory present in the
system that, given sk , the state sk+1 can only assume
one of two values corresponding to a +1 or −1 being
fed into the tapped delay line at time k. The possible
evolution of states can thus be elegantly described in
form of a trellis diagram. Any path through the trellis
corresponds to a sequence of input and output symbols
read from the branch labels, where the output symbol
vk at time k is the noise-free output of the channel
model (1):

vk =
L∑

l =0

h l xk−l .

The trellis for the channel of Figure 4 is depicted
in Figure 5. A branch of the trellis is a four-tuple
(i, j, xi, j , vi, j) such that state sk+1 =rj at time k + 1
can be reached from state sk =ri at time k with input
xk = xi, j and output vk =vi, j , where xi, j and vi, j are
uniquely identified by the index pair (i j). The set of
all index pairs (i j) corresponding to valid branches
is denoted B. For the trellis in Figure 5, the set B is
as follows:

B={
(00), (01), (12), (13), (20), (21), (33), (32)

}
.

The trellis description turns out to be extremely use-
ful in computing the APPs P (xk|y). Motivated by our
approach of separating the equalization from the decod-

IEEE SIGNAL PROCESSING MAGAZINEJANUARY 2004 73

ing task, we assume that the random variables
xk are IID, i.e., P (x) factors into

∏N
k=1 P (xk)

and xk takes on values +1 and −1 equally
for all k. To derive an efficient algorithm to
compute P (xk|y), we start by computing
the probability that the transmitted
sequence path in the trellis contained the
branch (i, j, xi, j , vi, j) at time k , i.e.,
P (sk =ri , sk+1 =rj |y). This APP can be com-
puted efficiently with the forward/backward
algorithm [24], [27], which is based on a
suitable decomposition of the joint distribu-
tion p(sk, sk+1, y) given by

p
(
sk, sk+1, y

) = p(y) · P
(
sk, sk+1|y

)
. (8)

The sequence y in p(sk, sk+1, y) can be
written as p(sk, sk+1, (y1, . . . , yk−1), yk, (yk+1, . . . , yN)).
Applying the chain rule for joint probabilities, i.e.,
P (a, b)=P (a)P (b |a), to this expression yields the fol-
lowing decomposition of p(sk, sk+1, y):

p(sk, y1,. . . ,yk−1)︸ ︷︷ ︸
αk(sk)

p(sk+1, yk|sk)︸ ︷︷ ︸
γk(sk ,sk+1)

p(yk+1,. . . ,yN |sk+1)︸ ︷︷ ︸
βk+1(sk+1)

.

The term αk(s) can be computed via the recursion:

αk(s) =
∑

∀s ′∈S
αk−1

(
s ′) γk−1

(
s ′, s

)
(9)

with the initial value α0(s)=P (s0 = s), the distribution
of the state at time k =0. The term βk(s) can be com-
puted via the recursion

βk(s) =
∑

∀s ′∈S
βk+1(s ′)γk(s , s ′) (10)

with the initial value βN (s)=1 for all s ∈ S. The term
γk(sk, sk+1) can be further decomposed into

γk(sk, sk+1) = P (sk+1|sk) · p(yk|sk, sk+1). (11)

The transition probability γk(ri , rj) is zero if the
index pair (i j) is not in B. For pairs (i j) from B, the
probability P (sk+1|sk) is governed by the corresponding
input symbol xi, j and p(yk|sk, sk+1) is governed by the
corresponding output symbol vi, j , i.e.,

γk
(
ri , rj

) =
{

P
(
xk = xi, j

) · p
(
yk|vk = vi, j

)
, (i j) ∈ B,

0, (i j) /∈ B.

(12)

For example, the term γk(r0, r0) for the trellis in
Figure 5 is P (xk =+1) · p(yk|vk =1.63), but the term
γk(r0, r3) is zero. From the channel law (1), i.e.

yk =vk +nk , and from the noise distribution it follows
that p(yk|vk) is given by

p(yk|vk) = exp
(− (yk − vk)

2/
(
2σ 2))

/
√

2πσ 2.

Next, we assemble the three probabilities α(sk),
γk(sk, sk+1), and β(sk) to obtain the APP P (xk = x |y).
All we need to accomplish this task is to sum the
branch APPs P (sk, sk+1|y) over all branches that corre-
spond to an input symbol xk = x , i.e.,

P (xk = x |y)=
∑

∀(i j)∈B:xi, j=x

P
(
sk =ri , sk+1 =rj |y

)
. (13)

For example, to compute the APP P (xk =+1|y)

using the trellis in Figure 5, the branch APPs of the
index pairs (0 0), (1 2), (2 0), and (3 2) have to be
summed over. We may include the demapping opera-
tion and seek the conditional LLR L (c k|y) of the code
bit c k :

L (c k|y) = ln
P (c k =0|y)

P (c k =1|y)
= ln

P (xk =+1|y)

P (xk =−1|y)
.

From (8), (13), and the decomposition of p(sk, sk+1, y)

it follows that

L (c k|y)

= ln

∑
∀(i j)∈B:xi, j=+1 αk (ri) · γk

(
ri , rj

) · βk+1
(
rj

)
∑

∀(i j)∈B:xi, j=−1 αk (ri) · γk
(
ri , rj

) · βk+1
(
rj

) .

Finally, the code bit estimates ĉ k are computed from
the sign of L (c k|y) as in (5).

Since the forward/backward algorithm is a basic
building block of our turbo equalization setup, we will
give a concise description in terms of matrix operations.
For a trellis with a set of states S let a set of matrices Pk
of dimensions |S| × |S| be defined as

� 5. A trellis representation of the channel in Figure 4. The states
r0 =(1, 1), r1 =(−1, 1), r2 =(1,−1), r3 =(−1,−1) are the possible contents of the
delay elements in Figure 4. The transitions from a state sk = ri at time k to a
state sk+1 = rj at time k+1 are labeled with the input/output pair xi, j / vi, j .

r3

r2 r2 r2 r2

r1 r1 r1 r1

r0 r0 r0 r0

r3 r3 r3–1/–1.63

1/1.63 1/1.63 1/1.63

–1/–1.63 –1/–1.63
1/–0.815

–1/0.815

1/0.815

1/0.815

1/0.815

–1/0.815
–1/0.815

1/–0.815

1/–0.815

1/–0.815

1/–0.815
1/–0.815

1/01/01/0

–1/0 –1/0 –1/0

k–1 k+1 k+2k

IEEE SIGNAL PROCESSING MAGAZINE74 JANUARY 2004

{Pk}i, j = γk
(
ri , rj

)
, (14)

where {·}i, j denotes the entry of a matrix in the i th
row and j th column. Moreover, let the matrices A(x)

be defined for x ∈ {+1,−1} as

{A(x)}i, j =
{

1, (i j) is a branch with xi, j = x ,

0, otherwise.
(15)

For example, for the trellis in Figure 5 we find that

A(+1)=

1 0 0 0
0 0 1 0
1 0 0 0
0 0 1 0

 , A(−1)=

0 1 0 0
0 0 0 1
0 1 0 0
0 0 0 1

 .

Let the matrices Bk(x) be the componentwise prod-
uct of A(x) and Pk . We arrive at the equations in Table
1, which reflect the forward/backward algorithm
derived in (9)–(13). In particular, the vectors fk and bk
keep track of the quantities αk(s) and βk(s). (In a prac-
tical implementation of the algorithm, a frequent
renormalization of the vectors is indicated to avoid
numerical underflow. That is, after each step in the
recursion to compute fk and bk , both vectors should be
multiplied with the sum of all |S| entries. Thus, after
normalization, all entries in fk or bk should add up to
one.) The algorithm stated in Table 1 is derived for the

situation that the channel is not in any predefined start-
ing or ending state and can be easily modified to
include this information.

Linear Equalization
The computational complexity of the trellis-based
approaches is determined by the number of trellis states,
equal to 2L , that grows exponentially with the number
L of delay elements in the tapped delay line in Figure 4.
This problem is exacerbated with higher-order signal
alphabets. For example, if the symbols xk are from an 8-
ary alphabet, there are 8L states in the trellis.

In contrast to MAP equalization, linear-filter-based
approaches perform only simple operations on the
received symbols, which are usually applied sequentially
to a subset yk of M observed symbols yk . Suppose this
subset is given by yk =(yk−4 yk−5 . . . yk+6)

T , i.e.,
M =11. For the considered length-three channel in
this article, the channel law (1) can be expressed in
matrix form yk =H̃xk +nk as

yk =

h2 h1 h0 0 0 · · · 0
0 h2 h1 h0 0 · · · 0

. . .
. . .

. . .

0 0 · · · 0 h2 h1 h0

 ·

xk−6

...

xk+6

+

nk−4

...

nk+6

 , (16)

where H̃ is an M ×(M +L) matrix. The symbols in yk
depend on transmitted symbols in the interval
{k−d, . . . , k+d} for d =6. This explains the choice of
the subset yk , which is used to compute estimates x̂k of
the transmitted symbol xk . We assume that xk , nk , or yk
are zero if k is outside the range {1, 2, ...,N }. Any type
of linear processing of yk to compute x̂k can be
expressed with the linear (affine) function

x̂k = fT
k yk + b k, (17)

where the length M , vector fk , and the scalar b k are
real-valued parameters subject to optimization. Clearly,
this processing model is similar to (1), i.e., there exists
a tapped delay line model similar to that in Figure 4
implementing (17).

The linear model (16) immediately suggests multi-
plying yk with a vector fk that recovers xk perfectly in
the absence of noise. With noise present an estimate
x̂k = xk + fT

k nk is obtained. This so-called zero-forcing
(ZF) equalizer [18] suffers from “noise enhancement,”
which can be severe if H̃ is ill conditioned. This effect
can be avoided using (linear) minimum mean square
error (MMSE) estimation [28].

A linear MMSE estimator computes x̂k such that the
mean squared error (MSE) E (|xk − x̂k|2) between xk
and x̂k is minimized, where E (·) denotes expectation.

The process of making hard
decisions on the channel
symbols actually destroys
information pertaining to
how likely each of the possible
channel symbols might
have been.

Input: Matrices Pk and Bk(x) for k = 1, . . . , N , length-|S|
column vectors fk and bk with f0 and bN initialized to
1 for all entries.

Recursively compute:
fk = Pk−1fk−1, k = 1, 2, ...,N ,

bk = PT
k bk+1, k = N − 1,N − 2, ..., 1,

Output: For k = 1, . . . ,N output the LLR

L (c k |y) = ln
fT

k Bk(+1)bk+1

fT
k Bk(−1)bk+1

.

Table 1. Equalization forward/backward algorithm.

IEEE SIGNAL PROCESSING MAGAZINEJANUARY 2004 75

This is achieved by the linear model

x̂k = E (xk) + fT
k

(
yk − E (yk)

)

fk = Cov(yk, yk)
−1Cov(yk, xk), (18)

which is not purely linear because of the bias terms
E (xk) and E (yk). The covariance Cov(a, b) of two col-
umn vectors is defined as E (abT)−E (a)E (bT). Using
(16) we can evaluate fk and E (yk) from

Cov(yk, yk) = σ 2I + H̃Cov(xk, xk)H̃T,

Cov(yk, xk) = H̃Cov(xk, xk),

E (yk) = H̃E (xk), (19)

where I is the M × M identity matrix. The independ-
ence assumption on the symbols xk yields that the
covariance Cov(xk, xk′) between any two different
symbols xk and xk′ vanishes. The covariance matrix
Cov(xk, xk) is therefore diagonal, and Cov(xk, xk) is
equal to u · Cov(xk, xk), where u is a column vector
of zeros with the seventh position set to one corre-
sponding to the seventh element xk of xk . The
remaining statistics E (xk) and Cov(xk, xk) are
obtained from P (xk)

E (xk)=
∑

∀x∈{+1,−1}x · P (xk = x),

Cov(xk, xk)=
∑

∀x∈{+1,−1} |x −E (xk)|2 · P (xk = x).

(20)

The estimates x̂k are usually not in the symbol
alphabet {+1,−1} and the decision whether +1 or −1
have been transmitted is usually based on the estima-
tion error ek = xk − x̂k . The distribution p(ek) of this
error, given the estimator (18), has zero mean and vari-
ance Cov(ek, ek)=Cov(xk, xk)−fT

k H̃u [20]. Assuming
furthermore that p(ek) is Gaussian yields

p(ek) = exp
(− e 2

k /(2 Cov(ek, ek)
)
/
√

2π Cov(ek, ek).

The hard decision of x̂k should be the symbol
x ∈ {+1,−1} maximizing p(ek) , which
turns out to be the symbol x of closest dis-
tance |x − x̂k| to x̂k .

Using the fairly standard IID assumption
on the symbols xk , we find that
E(xk)=0, Cov(xk, xk)=1 holds according
to (20), and we arrive at the standard linear
MMSE equalizer [18] according to (18):

x̂=fT
k yk, fk =

(
σ 2I+H̃H̃T

)−1
H̃u.

It is also possible to (nonlinearly) process
previous estimates to find the x̂k besides the
linear processing of yk . Such an approach is
also filter-based and called decision-feedback
equalization (DFE) [18].

Soft Processing
The equalizer can often provide more information to
the decoder than just the hard decisions (at the cost of
additional storage, processing, and communication),
such as probabilities that xk takes on a particular value
from {+1,−1}. The principle of using probabilities
(soft information) rather than hard decisions is often
referred to as “soft decoding.” This is shown in the
second implementation of receiver B in Figure 1(c), by
indicating that soft information s (·) is flowing along
the edges of the flowgraph.

A natural choice for the soft information s (xk) about
the transmitted symbols xk are the APPs P (xk|y) or,
similarly, the LLRs L (c k|y) (including demapping),
which are a “side product” of the MAP symbol detec-
tor. Also, the (somewhat less complex) Viterbi equaliz-
er may produce approximations of L (c k|y) using, e.g.,
the soft-output Viterbi algorithm [29].

For filter-based equalizers, extracting soft informa-
tion s (xk) is more involved [8], [12]. A common
approach is to assume that the estimation error,
ek = x̂k −xk , is Gaussian distributed with PDF p(ek).
This approach can apply to other equalization algo-
rithms producing estimates x̂k as well.

Decoding
The LLRs L (c k|y) can be converted back to probabili-
ties as

P (c k = c |y)= exp
(−c · L (c k|y)

)

1+exp
(−L (c k|y)

) , (21)

where c ∈ {0, 1}. After deinterleaving P (c k|y) to P (b k|y),
we are faced with the classical problem of decoding a
binary convolutional code with probabilistic input. Let

p = (
P (b1|y) P (b2|y) ... P (bN |y)

)T

be the set of probabilities input to the decoder. We seek
an efficient MAP decoder computing estimates âk of
the transmitted data bits ak from the LLRs L (ak|p), as
in (5). Such a decoder may again use the
forward/backward algorithm operating on a trellis

� 6. A trellis representation of the convolutional code of Figure 2. The trellis
states correspond to the content of the delay elements as
r0 = (0, 0), r1 = (1, 0), r2 = (0, 1) and r3 = (1, 1).

r3 r3 r3r3

r2 r2 r2 r2

r1 r1 r1 r1

r0 r0 r0 r0

k–1 k k+1 k+2

1/10 1/10 1/10
0/01 0/01 0/01

1/01
1/01

1/01
0/10 0/10 0/10

1/00 1/00 1/000/11

1/11 1/11 1/11

0/11
0/11

0/00 0/00 0/00

IEEE SIGNAL PROCESSING MAGAZINE76 JANUARY 2004

description for the code, because its encoder in Figure
2 is a tapped delay line similar to that of the channel in
Figure 4. A trellis description of the encoder is given in
Figure 6. The trellis branches are denoted by the tuple
(i, j, ai, j , b1,i, j , b2,i, j), where ai, j is the input bit ak
and (b1,i, j , b2,i, j) are the two output bits (b2k−1, b2k)

belonging to the state transition (sk =ri , sk+1 =rj). The
set B of valid transitions is the same as for the channel
trellis in Figure 5.

To apply the forward/backward algorithm as in
Table 1, we have to adjust the way in which the matri-
ces Pk and A(x) are formed. We start by redefining the
transition probabilities γk(sk, sk+1) contained in Pk

γk(ri , rj) =
{

P (ak = ai, j)·
0,

P
(
b2k−1 = b1,i, j |y

)
P

(
b2k = b2,i, j |y

)
, (i j) ∈ B,

. . . (i j) /∈ B.

(22)

For example, the term γk(r0, r0) for the trellis in Figure
6 equals P (ak =0)P (b2k−1 =0|y)P (b2k =0|y) , where
P (ak =0)=1/2 under the IID assumption on the data
bits. The code bit probabilities follow from (21). The
matrices A(x) are defined for x ∈ {0, 1} as

{
A(x)

}
i, j =

{
1, (i j) is a branch with ai, j = x ,

0, otherwise.

Besides the LLRs L (ak|p) required to compute the
estimates âk , the decoder may compute as well the
LLRs L (b k|p). These LLRs will serve as a priori infor-
mation for the equalizer forward/backward algorithm
later. They can be computed using the forward/back-
ward algorithm for decoding in Table 2 by simply
changing the definition of the matrices A(x). The code
bit LLRs L (b2k−1|p), k =1, 2, ..., K are computed by
choosing A(x) as

{
A(x)

}
i, j =

{
1, (i j) is a branch with b1,i, j = x ,

0, otherwise.

The LLRs L (b2k|p), k =1, 2, ..., K are computed by
choosing A(x) as

{
A(x)

}
i, j =

{
1, (i j) is a branch with b2,i, j = x ,

0, otherwise.

We arrive at the forward/backward algorithm for
decoding in Table 2. We note that this algorithm uses a
different initialization of the vectors fk and bk , which is
due to the termination of the encoder to the zero state
r0 at time steps k =0 and k =K .

The performance of our example communication
scheme, in conjunction with either hard bit estimates
or soft information passed from the equalizer to the
decoder (performing ML decoding), is depicted in
Figure 7. We note the familiar 2-dB gain in SNR when
soft information is used. Unfortunately, the best
scheme (MAP symbol detection and decoding) is still
7.7 dB away from the performance limit at −1.6 dB
SNR at a data error rate of 10−5.

The unimpressive performance of the separate equal-
ization and decoding strategies exhibited in Figure 7 is
due to a number of independence assumptions in the
derivation of the soft information exchanged. In partic-
ular, while computing the APPs P (xk|y) we invoked
the IID assumption on the symbols xk , i.e., all 2N pos-
sible sequences x are assumed to be equally likely, i.e.,
P (x)=1/2N . There are only 2K valid sequences x,
however, each belonging to a particular information
word a. The equalizer in receiver B should therefore
compute the APPs as

P
(
xk = x |y)=

∑

all 2K valid x:xk = x

p(y|x)P (x)

p(y)
, (23)

where P (x) = 1/2K for valid x. While this approach
would yield significantly improved performance, the
computational complexity is clearly prohibitive since we
cannot use the trellis-based forward/backward algo-
rithm anymore and must resort to exhaustive search.

Turbo Equalization
A closer look at the way in which the entries in Pk are
formed in (12) in the equalizer forward/backward

� 7. Performance of separate equalization and decoding
(receiver B) when either hard estimates (dashed lines) or soft
information (solid lines) are passed from the equalizer to the
decoder. The systems transmits K=512 data bits and uses a
16-random interleaver to scramble N=1, 024 code bits. The SNR
threshold at –1.6 dB is the lowest SNR for which reliable
transmission is possible.

D
at

a
B

it
E

rr
or

 R
at

e

100

10–2

10–4

–1.6

SNR in dB

Linear MMSE Equalization

MAP or APP Detection

0 2 4 6 8 10

The process of only passing
“extrinsic information” between
constituent decoders is
essential to the performance
of turbo decoding algorithms.

IEEE SIGNAL PROCESSING MAGAZINEJANUARY 2004 77

algorithm reveals that they consist of two entries,
namely, p(yk|vk =vi, j) and P (xk = xi, j) , where
p(yk|vk =vi, j) can be interpreted as “local” evidence
about which branch in the trellis was traversed, and
P (xk = xi, j) takes on the role of “prior” information,
which accounts for any prior knowledge about the
probability of any branch in the trellis. In the separate
equalization and decoding strategy given in the previ-
ous section, the equalizer does not have any prior
knowledge available, and the formation of entries in Pk
relies solely on the observed data yk . On the other
hand, the decoder forms the corresponding entries in
Pk without any local observations but entirely based on
bitwise probabilities P (b k|y) provided by the equalizer.
The bitwise probabilities are assembled into prior prob-
abilities on the branches in (22). In any case, the for-
ward/backward algorithm can be abstracted as a device
that takes any observation y and any bitwise prior prob-
ability and produces bit-wise APP values. A block dia-
gram building block of the forward backward
algorithm is given in Figure 8.

The performance of a forward/backward algorithm
can be greatly improved if good a priori information is
available. Since we have two forward/backward algo-
rithms, one for equalization and one for decoding, it is
a natural idea to feed back the APP values of the indi-
vidual bits obtained by one forward/backward algo-
rithm as a priori information to the other. This is the
main idea of turbo equalization. Some caution has to
be exercised when creating the feedback
loop, however. In particular, we have to
avoid creating direct feedback that is too
strong. This consideration leads to the
notion of extrinsic and intrinsic information.

We showed already that the conditional
LLR L (ak|y) of the bit ak given the observa-
tion y splits into the extrinsic LLR L ext(ak|y)

of ak contained in y plus the intrinsic LLR
L (ak). It follows from (7) that L ext(ak|y)

does not depend on L (ak).
In the case of the forward/backward

equalization algorithm that outputs
L (c k|y), we can apply the same functional
relation to separate the two contributions
to L (c k|y) into extrinsic information
L ext(c k|y)=L (c k|y)−L (c k) and intrinsic
information L (c k). In turbo equalization, as
in the turbo decoding principle in general,
only extrinsic information is fed back, as
depicted in Figure 9. Feeding back intrinsic
information L (c k) (included in L (c k|y))
would create direct positive feedback, which
would lead to fast convergence, though typi-
cally far from the globally optimal solution.

The interleavers are included into the iter-
ative update loop to further disperse the
direct feedback effect. In particular, the for-
ward/backward algorithm creates output

that is locally highly correlated. The correlations
between neighboring symbols are largely suppressed by
the use of an interleaver.

The notation of L (b|p) = Forward/Backward
(L ext(b|y)) will be used for the formation of an output
sequence of LLRs L (b k|p) using the forward/back-
ward algorithm for decoding as shown in Table 2 using
the LLRs L ext(c k|y) deinterleaved to L ext(b k|y) as a pri-
ori LLRs. We will use the notation L (c|y) =
Forward/Backward (L ext(c|p) for the formation of an
output sequence of LLRs using the forward/backward
algorithm for the equalizer utilizing the extrinsic LLRs
L ext(b k|p) interleaved to L ext(c k|p) as a priori LLRs.
We summarize the operations of a turbo equalization
scheme in Table 3.

While this formulation of the turbo equalization algo-
rithm is based on two forward/backward algorithms,

� 8. The forward/backward algorithm as a schematic block
taking prior probabilities and observations as input and
producing a posteriori probabilities as output.

Observations y

Prior Probabilities L(a)

Forward/Backward

Algorithm

a Posteriori
Probabilities L(b)

� 9. Block diagram of a turbo equalizer. At the center of the turbo equalizer are
two forward/backward algorithms that can operate on observations and prior
information about individual bits. Only the extrinsic information is fed back in
the iterative loop. The observation input of the forward backward algorithm for
the decoder is grounded to indicate that the decoding algorithm operates on a
priori values alone.

Algorithm

Equalizer

Forward/Backward

Algorithm

Forward/Backward

Observations

y a Posteriori
Probabilities

a Posteriori
Probabilities

Prior Probabilities

Prior Probabilities

Interleaver

Lext(ckp)

Lext(bkp)

Lext(bky)

L(bkp)

Lext(cky)

L(cky)

Extrinsic Information

Extrinsic Information

+

+

Deinterleaver

Decoder

–

–

any pair of equalization and decoding algorithms that
make use of soft information can be used as constituent
algorithms for the turbo equalizer by simply replacing
the operation L (c|y) = Forward/Backward (L ext(c|p))

by another operation, L (c|y) = Equalizer (L ext(c|p)),
where this operation is any equalization algorithm that
can map channel observations and soft inputs from the
decoder into soft outputs to feed back into the decoder.

For example, the linear MMSE equalizer can take
advantage of the a priori LLRs L ext(c k|p) interpreted as
probabilities on the transmitted symbol xk by recom-
puting E (xk) and Cov(xk, xk) according to (20), re-
estimation of x̂k via (18), and recomputing of s (xk).
Just as with the forward/backward equalization algo-
rithm, to avoid short feedback cycles, such computa-
tions are typically undertaken under the constraint that
s (xk) is not a function of L ext(c k|p) at the same index k
[12], [13]. This is equivalent to extracting only the
extrinsic part of the information in the iterative scheme.
We also note that several low-complexity alternatives
for re-estimating x̂k exist [12]–[14], [30]–[32].

The performance of our communication scheme
using receiver D from Figure 1 (turbo equalization) is
depicted in Figures 10 and Figure 11. We see a signifi-
cant performance gain over the iterations using either

IEEE SIGNAL PROCESSING MAGAZINE78 JANUARY 2004

� 10. Performance of turbo equalization after 0, 1, 2, and
10 iterations using APP detection. The system parameters are as
in Figure 7 (K=512, 16-random interleaver, SNR limit for reliable
transmission: –1.6 dB).

� 11. Performance of turbo equalization after 0, 1, 2, and
10 iterations using linear MMSE equalization. The system
parameters are as in Figure 7 (K=512, 16-random interleaver,
SNR limit for reliable transmission: –1.6 dB).

� 12. Two equivalent tapped delay line circuits of the channel
model (1) for L=2 including the precoder x̃k=xk · x̃k−1. That is,
the symbols xk are mapped before transmission to the symbols
x̃k=xk · x̃k−1. This mapping will not cause a complexity
overhead, since there exists a tapped delay circuit including the
precoder still requiring only two delay elements.

Input: Matrices Pk and Bk(x) for k = 1, . . . , K ,
length-|S| column vectors fk and bk with
f0 and bK initialized to 0 for all entries
except the first entry being 1.

Recursively compute:
fk = Pk−1fk−1, k = 1, 2, ..., K ,
bk = PT

k bk+1, k = K −1, k−2, ..., 1.

Output: For k = 1, 2, . . . , K output the LLR

L (ak |p) = ln
fT
k Bk(0)bk+1

fT
k Bk(1)bk+1

.

The LLRs L (bk |p) are computed similarly.

Table 2. Decoding forward/backward algorithm.

Input: Channel coefficients h l for l = 0, 1, . . . , L .
Observation sequence y.
A sequence of LLRs L ext(c|p) initialized to 0.
A predetermined number of iterations �.

Recursively compute for � iterations:
L (c|y) = Forward/Backward

(
Lext(c|p)

)

L ext(c|y) = L (c|y) − L ext(c|p)
L (b|p) = Forward/Backward

(
Lext(b|y)

)

L ext(b|p) = L (b|p) − L ext(b|y)

Output: Compute data bit estimates âkfrom L (ak |y).

Table 3. Turbo equalization algorithm.

D
at

a
B

it
E

rr
or

 R
at

e

100

10–2

10–4

–1.6

SNR in dB

0 2 4 6

10th

2nd 1st

0th

D
at

a
B

it
E

rr
or

 R
at

e

100

10–2

10–4

–1.6

SNR in dB

0 2 4 6

10th

2nd 1st 0th

xk

xk

xk

nk

yk

h2h1h0

xk

h0 h2

nk

yk

h1

~

~

the APP detector or the linear MMSE equalizer. We
note that for larger block lengths K , the linear MMSE
equalizer performance approaches that of the APP
detector [12]. The performance is lower bounded by
that of the underlying rate-1/2 code used over an ISI-
free channel at the same SNR, however. To improve
(lower) this bound and to approach the performance
limit (we are still 6 dB away at 10−5 BER), we require a
different error-correction code, such as the recursive
inner precoder x̃k = xk · x̃k−1 [33], [34] added to the
channel model as shown in Figure 12. Note the
improvement in the lower bound to within 1 dB of the
performance limit and the corresponding improvement
in the turbo equalization algorithm in Figure 13.

Extensions and Concluding Remarks
We see that the turbo equalization approach to reliable
communication over ISI channels is tightly connected to
recent work in turbo codes, LDPC codes, and iterative
decoding algorithms. Just as turbo equalization grew
out of the original turbo decoding algorithm, there are
numerous extensions of the basic turbo equalization
approach in which a wide variety of signal processing
tasks are incorporated into the joint estimation process
[6]–[8], [10]–[14], [35]–[41]. There are a host of addi-
tional ways in which to explore the turbo equalization
approach based on explicit graphical models and iterative
estimation algorithms, and we refer the interested reader
to the references mentioned here, the references con-
tained therein and, of course, to the contributions con-
tained in this special section. We hope that this brief
overview of the general concepts and salient features
enables further exploration into this topic that we find to
be both challenging and fascinating.

Ralf Koetter received his diploma in electrical engineer-
ing from the TU Darmstadt, Germany, in 1990 and his

Ph.D. degree from the Department of Electrical
Engineering, Linköping University, Sweden. From 1996
to 1997, he was a visiting scientist at the IBM Almaden
Research Lab. in San Jose, California. He was a visiting
assistant professor at the University of Illinois at
Urbana/Champaign and a visiting scientist at CNRS in
Sophia Antipolis, France from 1997 to 1998. He joined
the faculty of the University of Illinois at Urbana/
Champaign in 1999 and is currently an associate profes-
sor at the Coordinated Science Laboratory and the
Department of Electrical and Computer Engineering.
His research interests include coding and information
theory and their application to communication systems.
He was associate editor for coding theory and techniques
for IEEE Transactions on Communications and is an asso-
ciate editor for coding theory of IEEE Transactions on
Information Theory. He received an IBM Invention
Achievement Award in 1997, an NSF Career Award in
2000, and an IBM Partnership Award in 2001.

Andrew C. Singer received the S.B., S.M., and Ph.D.
degrees, all in electrical engineering and computer science,
from the Massachusetts Institute of Technology in 1990,
1992, and 1996, respectively. Since 1998, he has been on
the faculty of the Department of Electrical and Computer
Engineering at the University of Illinois at Urbana-
Champaign, where he is currently an associate professor
and a research associate professor in the Coordinated
Science Laboratory. During the academic year 1996, he
was a postdoctoral research affiliate in the Research
Laboratory of Electronics at MIT. From 1996 to 1998, he
was a research scientist at Sanders, A Lockheed Martin
Company, in Manchester, New Hampshire. His research
interests include statistical signal processing and communi-
cation, universal prediction and data compression, and
machine learning. He was a Hughes Aircraft Masters
Fellow and the recipient of the Harold L. Hazen
Memorial Award for excellence in teaching in 1991. In
2000, he received the National Science Foundation
CAREER Award, in 2001 the Xerox Faculty Research
Award, and in 2002 was named a Willett Faculty Scholar.
He is an associate editor for IEEE Transactions on Signal
Processing and is a member of the MIT Educational
Council, Eta Kappa Nu, and Tau Beta Pi.

Michael Tüchler studied electrical engineering from 1995
to 1997 at the Technical University Ilmenau, Germany,
and from 1997 to 1998 at the Technical University
Munich, Germany. He received his M.S. degree from
the University of Illinois at Urbana-Champaign in 2000.
Currently he is pursuing a Ph.D. degree at the Institute
for Communications Engineering at the Technical
University Munich, Germany. In 2001, he was a visiting
scientist at the IBM Research Lab Zurich, Switzerland.
His research interests include coding theory, equaliza-
tion, and estimation techniques with application to wire-
line and wireless communication systems, magnetic
recording, and sensor networks.

IEEE SIGNAL PROCESSING MAGAZINEJANUARY 2004 79

� 13. Performance of turbo equalization after 0, 1, 2, and 10
iterations using MAP symbol detection and the precoder

x̃k = xk · x̃k−1.The system parameters are as in Figure 7 (K=512,
16-random interleaver, SNR limit for reliable transmission: –1.6
dB). The line displayed with “x” marks is the performance of the
same system with K = 25, 000 and S random interleaving
(S = 40) after 20 iterations.

D

at
a

B
it

E
rr

or
 R

at
e

100

10–2

10–4

–1.6

SNR in dB

0 2 4 6

20th

10th 2nd

1st 0th

References
[1] F. Kschischang, B. Frey, and H.A. Loeliger, “Factor graphs and the sum-prod-

uct algorithm,” IEEE Trans. Inform. Theory, vol. 47, pp. 498–519, Feb.
2001.

[2] H.E. Gamal, “On the theory and application of space-time and graph-
based codes,” Ph.D. dissertation, Dept. Elec. Comput.Eng., Univ. of
Maryland at College Park, 1999.

[3] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
Inst. Systems Theory, Linköping University, Linköping, Sweden, 1996.

[4] R. Gallager, “Low density parity check codes,” IRE Trans. Inform. Theory,
vol. 8, pp. 21–28, Jan. 1962.

[5] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal Processing
Mag., vol. 21, pp. 28–41, Jan. 2004.

[6] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concatenat-
ed trellis coded modulation with iterative decoding: Design and perform-
ance,” in Proc. IEEE Global Telecomm. Conf., Nov. 1997.

[7] S. Benedetto and G. Mondorsi, “Unveiling turbo codes: Some results on
parallel concatenated coding schemes,” IEEE Trans. Inform. Theory, vol.
42, pp. 409–428, Mar. 1996.

[8] X. Wang and H. Poor, “Iterative (turbo) soft interference cancellation and
decoding for coded CDMA,” IEEE Trans. Commun., vol. 47, no. 7, pp.
1046–1061, 1999.

[9] C. Douillard, M. Jezequel, C. Berrou, A. Picart, P. Didier, and A. Glavieux,
“Iterative correction of intersymbol interference: Turbo equalization,”
European Trans. Telecomm., vol. 6, pp. 507–511, Sept.–Oct 1995.

[10] G. Bauch and V. Franz, “A comparison of soft-in/soft-out algorithms for
‘Turbo detection’,” in Proc. Int. Conf. Telecomm., June 1998, pp.
259–263.

[11] A. Anastasopoulos and K. Chugg, “Iterative equalization/decoding for
TCM for frequency-selective fading channels,” in Conf. Record 31th
Asilomar Conf. Signals, Systems Comp., vol. 1, Monteray, CA, Nov. 1997,
pp. 177–181.

[12] M. Tüchler, R. Koetter, and A. Singer, “Turbo equalization: Principles
and new results,” IEEE Trans. Comm., vol. 50, pp. 754–767, May 2002.

[13] M. Tüchler, A. Singer, and R. Kötter, “Minimum mean squared error
(MMSE) equalization using priors,” IEEE Trans. Signal Processing, vol. 50,
pp. 673–683, Mar. 2002.

[14] A. Glavieux, C. Laot, and J. Labat, “Turbo equalization over a frequency
selective channel,” in Proc. Intern. Symp. Turbo Codes, Brest, France, Sept.
1997, pp. 96–102.

[15] S. Lin and J.J. Costello, Error Control Coding. Englewood Cliffs, NJ:
Prentice-Hall, 1983.

[16] C. Weiss, C. Bettstetter, and S. Riedel, “Code construction and decoding
of parallel concatenated tail-biting codes,” IEEE Trans. Inform. Theory,
vol. 47, no. 1, pp. 366–386, Jan. 2001.

[17] C. Heegard and S. Wicker, Turbo Coding. Boston, MA: Kluwer, 1999.

[18] J. Proakis and M. Salehi, Communication Systems Engineering. Upper
Saddle River, NJ: Prentice-Hall, 1994, pp. 577–595.

[19] T. Cover and J. Thomas, Elements of Information Theory. New York:
Wiley, 1991.

[20] W. Hirt and J. Massey, “Capacity of the discrete-time Gaussian channel
with intersymbol interference,”IEEE Trans. Inform. Theory, vol. 34, pp.
380–388, May 1988.

[21] D. Arnold and H.-A. Loeliger, “On the information rate of binary-input
channels with memory,” in Proc. IEEE Intern. Conf. Comm., vol. 9, June
2001, pp. 2692–2695.

[22] A. Kavčic´, “On the capacity of Markov sources over noisy channels,” in
Proc. Global Commun. Conf. (Globecom), Nov. 2003.

[23] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: Turbo codes,” IEEE Trans. Comm., vol. 44, pp. 1261–1271,
Oct. 1996.

[24] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol.
20, pp. 284–287, Mar. 1974.

[25] Y. Li, B. Vucetic, and Y. Sato, “Optimum soft-output detection for chan-
nels with intersymbol interference,” IEEE Trans. Inform. Theory, vol. 41,
pp. 704–713, May 1995.

[26] G. Forney, “Maximum-likelihood estimation of digital sequences in the
presence of intersymbol interference,” IEEE Trans. Inform. Theory, vol. 18,
pp. 363–378, May 1972.

[27] L. Rabiner, “A tutorial on hidden Markov models and selected applica-
tions in speech recognition,” Proc. IEEE, vol. 77, pp. 257–286, Feb. 1989.

[28] H. Poor, An Introduction to Signal Detection and Estimation, 2nd ed.
New York: Springer-Verlag, 1994.

[29] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision out-
puts and its applications,” in Proc. IEEE Global Telecomm. Conf., 1989, pp.
1680–1686.

[30] M. Tüchler and J. Hagenauer, “Turbo equalization using frequency
domain equalizers,” in Proc. Allerton Conf., Monticello, IL, Oct. 2000, pp.
1234–1243.

[31] D. Raphaeli and A. Saguy, “Linear equalizers for Turbo equalization: A
new optimization criterion for determining the equalizer taps,” in Proc.
2nd Intern. Symp. Turbo Codes, Brest, France, Sept. 2000, pp. 371–374.

[32] Z. Wu and J. Cioffi, “Turbo decision aided equalization for magnetic record-
ing channels,” in Proc. Global Telecomm. Conf., Dec 1999, pp. 733–738.

[33] K. Narayanan, “Effect of precoding on the convergence of turbo equaliza-
tion for partial response channels,” IEEE J. Select. Areas Commun., vol. 19,
pp. 686–698, Apr. 2001.

[34] I. Lee, “The effect of a precoder on serially concatenated coding systems
with an ISI channel,” IEEE Trans. Comm., vol. 49, pp. 1168–1175, July
2001.

[35] P. Alexander, A. Grant, and M. Reed, “Iterative detection and code-divi-
sion multiple-access with error control coding,” European Trans.
Telecomm., vol. 9, pp. 419–425, Sept.–Oct. 1998.

[36] S. Ariyavisitakul and Y. Li, “Joint coding and decision feedback equaliza-
tion for broadband wireless channels,” IEEE J. Select. Areas Commun., vol.
16, pp. 1670–1678, Dec. 1998.

[37] A. Anastasopoulos and K. Chugg, “Adaptive soft-in soft-out algorithms
for iterative detection with parameteric uncertainty,” IEEE Trans.
Commun., vol. 48, pp. 1638–1649, Oct. 2000.

[38] A. Anastasopoulos and K. Chugg, “Adaptive iterative detection for phase
tracking in turbo-coded systems,” IEEE Trans. Commun., vol. 49, pp.
2135–2144, Dec. 2001.

[39] J. Nelson, A. Singer, and R. Koetter, “Linear iterative turbo-equalization
(LITE) for dual channels,” in Proc. 33rd Asilomar Conf. Signals, Systems,
Comp., Oct. 1999.

[40] J.R. Barry, A. Kavč ic´, S.W. McLaughlin, A. Nayak, and W. Zeng,
“Iterative timing recovery,” IEEE Signal Processing Mag., vol. 21, pp.
89–102, Jan. 2004.

[41] J.M.F. Moura, J. Lu, and H. Zhang, “Structured LDPC codes with large
girth,” IEEE Signal Processing Mag., vol. 21, pp. 42–55, Jan. 2004.

IEEE SIGNAL PROCESSING MAGAZINE80 JANUARY 2004

