Extremal Inequalities for Quadratic Multiterminal Information Theory

Pramod Viswanath

University of Illinois at Urbana-Champaign

June 15, 2006
Multi-terminal Information Theoretic Problems

Information Transmission

$m_1 \rightarrow (\hat{m}_1, \hat{m}_2) \rightarrow (\hat{x}_1, \hat{x}_2)$

Multiple Access
Multi-terminal Information Theoretic Problems

Information Transmission

\[m_1 \rightarrow (\hat{m}_1, \hat{m}_2) \]

\[m_2 \rightarrow (\hat{m}_1, \hat{m}_2) \]

Multiple Access

\[(m_1, m_2) \rightarrow \hat{m}_1 \]

\[(m_1, m_2) \rightarrow \hat{m}_2 \]

Broadcast
Multi-terminal Information Theoretic Problems

Information Transmission

Multi-terminal Information Theoretic Problems

Information Representation

Broadcast
Multi-terminal Information Theoretic Problems

Information Transmission

Multiple Access

Broadcast

Information Representation

Distributed Source Coding

Multiple Description
Multi-terminal Information Theoretic Problems

Information Transmission

\[m_1 \rightarrow (\hat{m}_1, \hat{m}_2) \]

\[m_2 \rightarrow (\hat{m}_1, \hat{m}_2) \]

Multiple Access

\[(m_1, m_2) \rightarrow \hat{m}_1 \]

\[(m_1, m_2) \rightarrow \hat{m}_2 \]

Broadcast

Information Representation

\[x_1 \rightarrow (\hat{x}_1, \hat{x}_2) \]

\[x_2 \rightarrow (\hat{x}_1, \hat{x}_2) \]

Distributed Source Coding

\[x \rightarrow \hat{x}_1 \]

\[x \rightarrow \hat{x}_2 \]

Multiple Description
Multi-terminal Information Theoretic Problems

Information Transmission

Multiple Access

Broadcast

Information Representation

Distributed Source Coding

Multiple Description
Game Plan

◦ Quadratic Multiterminal Problems
Game Plan

- Quadratic Multiterminal Problems

- Second-Order Constraints
 - Source and noise statistics
 - Transmit and reconstruction error signals
Game Plan

◊ Quadratic Multiterminal Problems

◊ Second-Order Constraints
 – Source and noise statistics
 – transmit and reconstruction error signals

◊ Derive Outer Bounds
Game Plan

- Quadratic Multiterminal Problems
- **Second-Order** Constraints
 - Source and noise statistics
 - transmit and reconstruction error signals
- Derive **Outer Bounds**
 - Extremal Inequalities
Game Plan

- Quadratic Multiterminal Problems

- Second-Order Constraints
 - Source and noise statistics
 - Transmit and reconstruction error signals

- Derive Outer Bounds
 - Extremal Inequalities

- For Gaussian signals, outer bound is tight
 - Natural inner bound
A Canonical Network Data Compression Problem

- Example: Sensor networks

- Multiple sensors observe a common environment
 - observations are correlated

- Need to compress observations
 - sensors work distributedly
 - at low rates

- Reconstruction by a fusion center
 - joint reconstruction
 - subject to distortion criterion
An Abstraction

$y_1^n \rightarrow \text{Enc 1}$

$y_2^n \rightarrow \text{Enc 2}$

$R_1 \rightarrow \hat{y}_1^n$

$R_2 \rightarrow \hat{y}_2^n$
An Abstraction

Sources $y_1(m)$ and $y_2(m)$ memoryless

Correlated Gaussian statistics
An Abstraction

Sources $y_1(m)$ and $y_2(m)$ memoryless with Gaussian statistics

Quadratic distortion constraints

$$\sum_{m=1}^{n} E \left[(y_i(m) - \hat{y}_i(m))^2 \right] \leq nd_i, \quad \text{for } i = 1, 2$$
An Abstraction

\[y_1^n \rightarrow \text{Enc 1} \rightarrow R_1 \rightarrow \hat{y}_1^n \]
\[y_2^n \rightarrow \text{Enc 2} \rightarrow R_2 \rightarrow \hat{y}_2^n \]

- **Sources** $y_1(m)$ and $y_2(m)$ memoryless with Gaussian statistics
- **Quadratic** distortion constraints
- **Question:** What are optimal distributed compression schemes?
Multiterminal Information Theory

- Classical open question in network information theory
 - Multiterminal distributed source coding
Multiterminal Information Theory

- Classical open question in network information theory
 - Multiterminal distributed source coding
- Performance criterion: asymptotic rates of compression
Multiterminal Information Theory

- Classical open question in network information theory
 - Multiterminal distributed source coding
- Performance criterion: asymptotic rates of compression
- Formal question:

 What is the rate-distortion region?
Multiterminal Information Theory

- Classical open question in network information theory
 - Multiterminal distributed source coding
- Performance criterion: asymptotic rates of compression
- Formal question:

 What is the rate-distortion region?

- Long-standing open problem
Lossless Distributed Compression

- Discrete sources of information
- Distortions tolerated: $d_1 = d_2 = 0$

- Classical result of Slepian and Wolf: (1973)

 a binning scheme ensures no-loss distributed compression
Lossless Distributed Compression

- Discrete sources of information
- Distortions tolerated: $d_1 = d_2 = 0$

- Classical result of Slepian and Wolf: (1973)

a binning scheme ensures no-loss distributed compression

- Suggests a natural strategy for lossy compression:
 - First, digitize the analog source into bits
 - Second, use Slepian-Wolf binning to convey the bits losslessly
A Natural Separation Scheme

\[y_1^n \xrightarrow{\text{VQ–1}} \text{Binning Scheme–1} \xrightarrow{R_1} \hat{y}_1^n \]

\[y_2^n \xrightarrow{\text{VQ–2}} \text{Binning Scheme–2} \xrightarrow{R_2} \hat{y}_2^n \]
A Natural Gaussian Separation Scheme

VQ-1 and VQ-2 are Gaussian quantizers
Optimality of Natural Separation Scheme

- Gaussian separation scheme evaluated by Berger and Tung (1978)
Optimality of Natural Separation Scheme

- Gaussian separation scheme evaluated by Berger and Tung (1978)

- Optimality unresolved
 - one of several longstanding open problems
Main Result

- The Gaussian separation scheme is optimal for Gaussian sources.
Main Result

- The Gaussian separation scheme is \textit{optimal} for Gaussian sources

- \textbf{Robustness:}

 - Gaussian statistics is the \textit{worst-case} scenario for this scheme.
 - among sources with same second order statistics
Main Result

- The Gaussian separation scheme is **optimal** for Gaussian sources.

- **Robustness:**
 - Gaussian statistics is the **worst-case** scenario for this scheme.
 - among sources with same second order statistics
 - Scheme optimal when terminals are **remote**
Remote Terminals

\[
\begin{aligned}
 y_1^n &\rightarrow + & z_1^n &\rightarrow Enc 1 & R_1 &\rightarrow \hat{y}_1^n \\
\end{aligned}
\]

\[
\begin{aligned}
 y_2^n &\rightarrow + & z_2^n &\rightarrow Enc 2 & R_2 &\rightarrow \hat{y}_2^n \\
\end{aligned}
\]

◊ Natural separation scheme is still optimal
Mathematical Challenge

- functional optimization problem
- infinite sequence of problems
Mathematical Challenge

- functional optimization problem
- infinite sequence of problems
- “non-convex” constraints
- “non-convex” objective function
Mathematical Challenge

- functional optimization problem
- infinite sequence of problems
- “non-convex” constraints
- “non-convex” objective function

Local calculus-based techniques insufficient
The Proof

- Derivation of a new information-theoretic inequality
- Gaussians have an optimality property
- Proof technique crucially uses:

 operational nature of the problem
Prior Work

Natural Gaussian Separation Scheme
Prior Work

Oohama Outer Bound (1997)
Prior Work

Oohama Outer Bound (1997)

Sufficient to characterize: Sum Rate
Different strategies provide different correlation between errors $(y_1 - \hat{y}_1)$ and $(y_2 - \hat{y}_2)$

Key idea: Form an equivalence class of strategies with the same correlation coefficient
A Natural Lower Bound

- Let θ be the empirical correlation coefficient of the errors.
A Natural Lower Bound

◊ Let θ be the empirical correlation coefficient of the errors.

◊ Cooperative lower bound:

\[
y_1^n \quad \rightarrow \quad \text{Cooperative Encoder} \quad \rightarrow \quad \hat{y}_1^n \quad \text{Decoder} \quad \rightarrow \quad \hat{y}_2^n
\]

\[
y_2^n \quad \rightarrow \quad \text{Cooperative Encoder} \quad \rightarrow \quad R_1 + R_2 \quad \text{Decoder} \quad \rightarrow \quad \hat{y}_2^n
\]
A Natural Lower Bound

Let θ be the empirical correlation coefficient of the errors.

Allow encoders to cooperate:

\[R_1 + R_2 \geq R_{coop}(\theta) := \frac{1}{2} \log \frac{|K_y|}{d_1 d_2 (1 - \theta^2)} \]

Point-to-Point compression problem
Problem of Reconstructing the Sum

\[y_1^n \rightarrow \text{Enc 1} \rightarrow R_1 \rightarrow \text{Decoder} \rightarrow \hat{y}_\text{sum}^n \]

\[y_2^n \rightarrow \text{Enc 2} \rightarrow R_2 \rightarrow \text{Decoder} \rightarrow \hat{y}_\text{sum}^n \]

\[y^n_{\text{sum}} = y_1^n + y_2^n \]
Reconstructing the Sum

\[y^n_{\text{sum}} = y^n_1 + y^n_2 \]

\[\frac{1}{n} \sum_{m=1}^{n} E[(y_{\text{sum}}(m) - \hat{y}_{\text{sum}}(m))^2] \leq d_o \]
Reconstructing the Sum

◊ Let $d_o = 2d(1 + \theta)$.

◊ The scheme from before is a feasible scheme for the y-sum problem.

◊ Hence

$$R_1 + R_2 \geq R_{\text{sum}}(\theta)$$

◊ Optimal architecture for the y-sum problem: **Natural Gaussian Separation Scheme**

 – Oohama, 1997
Two Bounds

Combine the cooperative and y-sum lower bounds:

$$R_1 + R_2 \geq \min_{\theta \in (-1,1)} \max (R_{\text{coop}}(\theta), R_{\text{sum}}(\theta))$$
Combine the cooperative and y-sum lower bounds:
Two Bounds

- Combine the cooperative and y-sum lower bounds:

- Conclusion: $R_{\text{coop}}(\theta^*) \geq R_1 + R_2 \geq R_{\text{coop}}(\theta^*)$
Upshot

◊ Studied the canonical quadratic Gaussian distributed source coding problem

◊ Resolved the optimality of a natural Gaussian analog-digital separation scheme
Mathematical Import

\[
\max \ h(Y_1Y_2|C_1C_2)
\]

- Y_1, Y_2 are jointly Gaussian
- $C_1 - Y_1 - Y_2 - C_2$
- $\text{Var}(Y_i|C_1, C_2) \leq d_i, \quad i = 1, 2$
Mathematical Import

\[
\max h(Y_1 Y_2 | C_1 C_2)
\]

- \(Y_1, Y_2\) are jointly Gaussian
- \(C_1 - Y_1 - Y_2 - C_2\)
- \(\text{Var}(Y_i | C_1, C_2) \leq d_i, \quad i = 1, 2\)

Solution:

\((Y_1, Y_2, C_1, C_2)\) jointly Gaussian
Mathematical Import

\[
\min_{Y_1, Y_2} \max_{C_1, C_2} h(Y_1 Y_2 | C_1 C_2) - h(Y_1 Y_2)
\]

\(\diamond\) \(\text{Cov}(Y_1, Y_2)\) is fixed

\(\diamond\) \(C_1 - Y_1 - Y_2 - C_2\)

\(\diamond\) \(\text{Var}(Y_i | C_1, C_2) \leq d_i, \quad i = 1, 2\)

Solution:

\((Y_1, Y_2, C_1, C_2)\) jointly Gaussian
Multi-terminal Information Theoretic Problems

Information Transmission

Information Representation

Multiple Access

Broadcast

Distributed Source Coding

Multiple Description
Multiple Descriptions

Diamond vector Gaussian memoryless source x^n
A subset S of descriptions are received, $S \subset \{1, \ldots, L\}$

- Quadratic distortion covariance constraint
 - positive semidefinite partial order
A Classical Open Problem

◊ An achievable scheme
 – El Gamal and Cover, 1982

◊ Optimality for two scalar Gaussian descriptions
 – Ozarow, 1980

◊ Mathematical insight allows us to make progress
Symmetric Multiple Description for Vector Gaussian Source

Either any k descriptions or all descriptions are received
Symmetric Multiple Description for Vector Gaussian Source

Either any k descriptions or all descriptions are received

Main result: Optimality of an analog-digital layered architecture
Mathematical Import

\[
\min \quad I(C_1; C_2; \ldots; C_L) + I(C_1, \ldots, C_L; x^n)
\]

- \(x^n\) i.i.d. Gaussian

- \(\text{Cov}(x^n | C_i) \preceq D_i, \quad i = 1, \ldots, L\)

- \(\text{Cov}(x^n | C_1, \ldots, C_L) \preceq D_0\)
Mathematical Import

\[
\min \ I(C_1; C_2; \ldots; C_L) + I(C_1, \ldots, C_L; \mathbf{x}^n)
\]

- \(\mathbf{x}^n\) i.i.d. Gaussian
- \(\text{Cov}(\mathbf{x}^n|C_i) \preceq \mathbf{D}_i, \quad i = 1, \ldots, L\)
- \(\text{Cov}(\mathbf{x}^n|C_1, \ldots, C_L) \preceq \mathbf{D}_0\)

Solution:

\((\mathbf{x}^n, C_1, \ldots, C_L)\) jointly Gaussian
Mathematical Import

\[
\max_{x^n} \min_{C_1, \ldots, C_L} I(C_1; C_2; \ldots; C_L) + I(C_1, \ldots, C_L; x^n)
\]

- \(x^n\) i.i.d. and \(\text{Cov}(x)\) fixed
- \(\text{Cov}(x^n|C_i) \preceq D_i, \quad i = 1, \ldots, L\)
- \(\text{Cov}(x^n|C_1, \ldots, C_L) \preceq D_0\)

Solution:

\((x^n, C_1, \ldots, C_L)\) jointly Gaussian
Multi-terminal Information Theoretic Problems

Information Transmission

Information Representation

Multiple Access

Broadcast

Distributed Source Coding

Multiple Description
Vector Gaussian Broadcast Channel

○ Independent messages W_1, W_2
Vector Gaussian Broadcast Channel

- Independent messages W_1, W_2
- Z_i^n i.i.d. Gaussian $\mathcal{N}(0, K_i)$
Vector Gaussian Broadcast Channel

- Independent messages W_1, W_2
- Z^n_i i.i.d. Gaussian $\mathcal{N}(0, \mathbf{K}_i)$
- Quadratic transmit constraint: $\mathbb{E} \left[\frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_k \mathbf{X}_k^t \right] \preceq \mathbf{S}$
Independent messages W_1, W_2

Z_i^n i.i.d. real Gaussian with strictly positive covariance matrix, $i = 1, 2$

Power-covariance constraint: $E\left[\frac{1}{n} \sum_{k=1}^{n} X_k X_k^t\right] \preceq S$

What is the capacity region?
Costa Scheme

\[W_1^n = X_1^n (W_1) + X_2^n (W_2) + Z_1^n \]

\[W_2^n = X_1^n (W_1) + X_2^n (W_2) + Z_2^n \]
\[
Y_1^n = X_1^n(W_1) + X_2^n(W_2) + Z_1^n
\]
\[
Y_2^n = X_1^n(W_1) + X_2^n(W_2) + Z_2^n
\]
\[e_{Y_1^n} = e_{X_1^n}(W_1) + e_{X_2^n}(W_2) + Z_1^n \]

\[e_{Y_2^n} = e_{X_2^n}(W_2) + Z_2^n \]
Costa Scheme

\[
\begin{align*}
\tilde{Y}_1^n &= \tilde{X}_1^n(W_1) + \tilde{X}_2^n(W_2) + Z_1^n \\
\tilde{Y}_2^n &= \tilde{X}_2^n(W_2) + Z_2^n
\end{align*}
\]
The Converse

- A natural scheme
The Converse

- A natural scheme

- Optimality recently shown
 - Weingarten, Steinberg and Shamai, 2005
The Converse

- A natural scheme

- Optimality recently shown
 - Weingarten, Steinberg and Shamai (2005)

Goal: Identify the underlying information theoretic inequality
The μ-Sum Problem

- A natural scheme

- Optimality recently shown
 - Weingarten, Steinberg and Shamai, 2005

Goal: Identify the underlying information theoretic inequality

- Focus on
 $$\max R_1 + \mu R_2, \quad \text{for } \mu \geq 1$$
Marton Outer Bound

\[(W_1, W_2) \rightarrow \text{Encoder} \rightarrow X^n \rightarrow \sum \rightarrow Y_1^n \rightarrow \hat{W}_1\]

\[(W_1, W_2) \rightarrow \text{Encoder} \rightarrow X^n \rightarrow \sum \rightarrow Y_2^n \rightarrow \hat{W}_2\]
Marton Outer Bound

\[R_1 \leq I(X; Y_1 | U), \quad R_2 \leq I(U; Y_2) \]
Marton Outer Bound

\((W_1, W_2) \)

Encoder

\(X^n \)

Decoder 1

\(\hat{W}_1 \)

Decoder 2

\(\hat{W}_2 \)

\(Z^n_1 \)

\(Y^n_1 \)

\(Z^n_2 \)

\(Y^n_2 \)

\(R_1 \leq I(X; Y_1 | U), \quad R_2 \leq I(U; Y_2) \)

\((X, U) \) are jointly Gaussian.
Maximizing the μ-Sum

\[R_1 + \mu R_2 \leq I(X; Y_1 | U) + \mu I(U; Y_2) \]

\[= - h(Z_n^1) + \mu h(X + Z_2) + \sum_u P_U(u) \left[h(X + Z_1 | U = u) - \mu h(X + Z_2 | U = u) \right] \]
Maximizing the μ-Sum

\[
R_1 + \mu R_2 \leq I(X; Y_1 | U) + \mu I(U; Y_2)
\]
\[
= - h(Z^n_1) + \mu h(X + Z_2)
\]
\[
+ \sum_u P_U(u) [h(X + Z_1 | U = u) - \mu h(X + Z_2 | U = u)]
\]
\[
= - \log(2\pi e)^n |K_{Z_1}|
\]
Maximizing the μ-Sum

$$R_1 + \mu R_2 \leq I(X; Y_1|U) + \mu I(U; Y_2)$$

$$= - h(Z_1^n) - \log(2\pi e)^n |K_{Z_1}|$$

$$+ \mu h(X + Z_2) \leq \frac{\mu}{2} \log(2\pi e)^n |S + K_{Z_2}|$$

$$+ \sum_u P_U(u) [h(X + Z_1|U = u) - \mu h(X + Z_2|U = u)]$$
Maximizing the μ-Sum

\[
R_1 + \mu R_2 \leq I(X; Y_1|U) + \mu I(U; Y_2)
\]
\[
= -h(Z_1^n) = -\log(2\pi e)^n|K_{Z_1}|
\]
\[
+ \mu h(X + Z_2) \leq \frac{\mu}{2} \log(2\pi e)^n|S + K_{Z_2}|
\]
\[
+ \sum_u P_U(u) [h(X + Z_1|U = u) - \mu h(X + Z_2|U = u)]
\]

Tension to be resolved!
Maximizing the μ-Sum

\[R_1 + \mu R_2 \leq I(X; Y_1|U) + \mu I(U; Y_2) \]
\[= - h(Z_1^n) = - \log(2\pi e)^n |K_{Z_1}| \]
\[+ \mu h(X + Z_2) \leq \frac{\mu}{2} \log(2\pi e)^n |S + K_{Z_2}| \]
\[+ \sum_u P_U(u) [h(X + Z_1|U = u) - \mu h(X + Z_2|U = u)] \]

\[\text{Underbrace} \]
\[\text{Tension to be resolved!} \]

\[\diamond \text{If} \]
\[\max_{\text{Cov}(X) \preceq S_u} h(X + Z_1) - \mu h(X + Z_2) \]
\[\text{is concave in} \ S_u \]
Maximizing the μ-Sum

\[
R_1 + \mu R_2 \leq I(X; Y_1 | U) + \mu I(U; Y_2) = -h(Z_1^n) + \mu h(X + Z_2) + \sum_u P_U(u) [h(X + Z_1 | U = u) - \mu h(X + Z_2 | U = u)]
\]

\[
\leq -\log(2\pi e)^n |K_{Z_1}| + \frac{\mu}{2} \log(2\pi e)^n |S + K_{Z_2}|
\]

Tension to be resolved!

- If

\[
\max_{\text{Cov}(X) \preceq S_u} h(X + Z_1) - \mu h(X + Z_2)
\]

is concave in S_u
Main Result

\[
\max_x h(X + Z_1) - \mu h(X + Z_2)
\]

- \(Z_1, Z_2\) Gaussian with strictly positive covariance matrices
- \(X\) independent of \(Z_1, Z_2\)
- \(\text{Cov}(X) \preceq S\)
Main Result

\[
\max_X \ h(X + Z_1) - \mu h(X + Z_2)
\]

- \(Z_1, Z_2 \) Gaussian with strictly positive covariance matrices
- \(X \) independent of \(Z_1, Z_2 \)
- \(\text{Cov}(X) \preceq S \)

Solution:

\(X \) is Gaussian
Corollary 1

\[
\max_{(x_1, x_2)} h(x_1 + x_2)
\]

- \(X_1, X_2\) jointly distributed
- \(\text{Var}(X_1) \leq a_1\)
- \(\text{Var}(X_2) \leq a_2\)
Corollary 1

\[
\max_{(X_1, X_2)} \ h(X_1 + X_2)
\]

- \(X_1, X_2\) jointly distributed
- \(\text{Var}(X_1) \leq a_1\)
- \(\text{Var}(X_2) \leq a_2\)

Solution:

\((X_1, X_2)\) jointly Gaussian and “lined-up”.
Corollary 1

\[
\max_{(X_1, X_2)} h(X_1 + X_2)
\]

\(X_1, X_2 \) jointly distributed

\(h(X_1) \leq a_1 \)

\(h(X_2) \leq a_2 \)
Corollary 1

\[
\max_{(X_1, X_2)} h(X_1 + X_2)
\]

- \(X_1, X_2\) jointly distributed
- \(h(X_1) \leq a_1\)
- \(h(X_2) \leq a_2\)

Solution is not:

\((X_1, X_2)\) jointly Gaussian and “lined-up”

- Cover and Zhang, 1994
Corollary 1

\[
\max_{(X_1, X_2)} h(X_1 + X_2 + Z)
\]

- \(Z \) Gaussian with a strictly positive variance
- \(X_1, X_2 \) jointly distributed
- \(\text{Var}(X_1) \leq a_1 \)
- \(h(X_2 + Z) \leq a_2 \) for \(a_2 \leq a_2^0 \)
Corollary 1

\[
\max_{(X_1, X_2)} h(X_1 + X_2 + Z)
\]

- Z Gaussian with a strictly positive variance
- X_1, X_2 jointly distributed
- $\text{Var}(X_1) \leq a_1$
- $h(X_2 + Z) \leq a_2$ for $a_2 \leq a_2^o$

Solution:

(X_1, X_2) jointly Gaussian and “lined-up”
Corollary 2

\[
\min_X h(X + Z)
\]

- \(Z \) Gaussian with a strictly positive covariance matrix
- \(X \) independent of \(Z \)
- \(h(X) \geq a \)
Corollary 2

$$\min_{X} h(X + Z)$$

- Z Gaussian with a strictly positive covariance matrix
- X independent of Z
- $h(X) \geq a$

Entropy Power Inequality:

- X Gaussian
- covariance matrix proportional to K_Z
Corollary 2

$$\min_X h(X + Z)$$

- Z Gaussian with a strictly positive covariance matrix
- X independent of Z
- $h(X) \geq a$
- $\text{Cov}(X) \preceq S$
Corollary 2

\[
\min_X h(X + Z)
\]

- Z Gaussian with a strictly positive covariance matrix
- X independent of Z
- \(h(X) \geq a \)
- \(\text{Cov}(X) \preceq S \)

Solution:

\(X \) is still Gaussian.
An Isoperimetric View

\[\min_X h(X + Z) \]

- \(Z \) Gaussian with a strictly positive covariance matrix
- \(X \) independent of \(Z \)
- \(h(X) \geq a \)
An Isoperimetric View

\[
\min_{\mathbf{X}} \mu h(\mathbf{X} + \mathbf{Z}) - h(\mathbf{X})
\]

- \(\mathbf{Z} \) Gaussian with a strictly positive covariance matrix
- \(\mathbf{X} \) independent of \(\mathbf{Z} \)
- \(\mu \geq 1 \)
An Isoperimetric View

\[
\min_{X} \mu h(X + Z) - h(X)
\]

- A monotone path (Dembo, Cover and Thomas, 1991)

\[X_\lambda := \sqrt{1 - \lambda}X_0 + \sqrt{\lambda}X_G^*\]

\[X_0: \text{ arbitrary}\]

Classical Fisher Information Inequality
An Isoperimetric View

\[
\min_X h(X + Z)
\]

- \(Z \) Gaussian with a strictly positive covariance matrix
- \(X \) independent of \(Z \)
- \(h(X) \geq a \)
- \(\text{Cov}(X) \preceq S \)
An Isoperimetric View

\[\min_{\boldsymbol{X}} \mu h(\boldsymbol{X} + \boldsymbol{Z}) - h(\boldsymbol{X}) \]

- \(\boldsymbol{Z} \) Gaussian with a strictly positive covariance matrix
- \(\boldsymbol{X} \) independent of \(\boldsymbol{Z} \)
- \(\mu \geq 1 \)
- \(\text{Cov}(\boldsymbol{X}) \preceq \boldsymbol{S} \)
An Isoperimetric View

$$\min_x \mu h(X + Z) - h(X)$$

- A monotone path

$$X_0 : \text{Cov}(X_0) \preceq S$$

$$X^*_G : \text{optimal Gaussian solution}$$

$$X_\lambda := \sqrt{1 - \lambda} X_0 + \sqrt{\lambda} X^*_G$$

Novel Fisher Information Inequality
Credits

◊ Distributed Source Coding
 – Aaron Wagner and Saurabh Tavildar
 – arXiv:cs.IT/0510095

◊ Multiple Descriptions
 – Hua Wang
 – arXiv:cs.IT/0510078

◊ Broadcast Channel
 – Tie Liu
 – arXiv:cs.IT/0604025