Multiple Antennas: A Network View

Pramod Viswanath
University of Illinois, Urbana-Champaign

October 7, 2002

DIMACS Workshop on Wireless

Joint work with D. Tse at UCB and L. Zheng at MIT.
MIMO in Wireless Networks

- Explosion of research in recent years
 - information theory
 - coding
 - signal processing

- Much focus on point-to-point channels

- To understand impact of multiple antennas in wireless networks, need broader view
Multiple Access Example

Question: what does adding one more antenna at each mobile buy me?
Multiple Access Example

Question: what does adding one more antenna at each mobile buy me?

• Looking at each point-to-point link in isolation:
Question: what does adding one more antenna at each mobile buy me?

- Looking at point-to-point link in isolation:
 - (roughly) doubles the link capacity.
• Looking at the network:
 – number of users is greater than number of receive antennas
 – increase in overall system capacity negligible

• But does adding that antenna still buy me something?
Outline of Talk

- Review of diversity-multiplexing tradeoff in point-to-point channels.
- Extension to multiple access scenario.
- Speculation on a theory for general networks.
Point-to-Point MIMO Channel

M transmit and N receive antennas.

I.I.D. Rayleigh fading model.
Degrees of Freedom

- point-to-point link: M transmit, N receive antennas
- i.i.d. Rayleigh fading (Foschini 96):

 \[C \sim \min\{M, N\} \log \text{SNR} \quad \text{bits/s/Hz}. \]

- Multiple antennas provide $\min\{M, N\}$ degrees of freedom
- spatial multiplexing gain of $\min\{M, N\}$
- C' is the ergodic capacity.
Diversity

- Ergodic capacity assumes infinite-depth interleaving
- Impossible in a slow fading environment
- Unreliability due to fading is a first-order issue.
- In 1 by 1 Rayleigh fading channel: very poor error probability.
- Example: for BPSK:

\[P_e \sim \text{SNR}^{-1} \quad \text{at high SNR} \]

- In \(M \) by \(N \) channel, however,

\[P_e \sim \text{SNR}^{-MN} \quad \text{at high SNR} \]

- Multiple antennas provide a maximum of \(MN \) diversity gain.
But each is only a single-dimensional view of the situation. The right way to formulate the problem is a tradeoff between the two types of gains.
Fundamental Tradeoff

Focus on high SNR and slow fading situation.

A space-time coding scheme of block length T achieves

- **Spatial Multiplexing Gain** r : if data rate $R = r \log \text{SNR}$ (bps/Hz)
- **Diversity Gain** d : if error probability $P_e \sim \text{SNR}^{-d}$

Equivalently:

- $d \rightarrow r^{*}_{M,N}(d)$
- $r \rightarrow d^{*}_{M,N}(r)$

A tradeoff between data rate and error probability.
Fundamental Tradeoff

Focus on high SNR and slow fading situation. A space-time coding scheme of block length T achieves

Spatial Multiplexing Gain r : if data rate $R = r \log \text{SNR}$ \,(bps/Hz) and

Diversity Gain d : if error probability $P_e \sim \text{SNR}^{-d}$

Fundamental tradeoff: for any r, the maximum diversity gain achievable: $d^*_{M,N}(r)$.

$$r \rightarrow d^*_{M,N}(r)$$

Equivalently:

$$d \rightarrow r^*_{M,N}(d)$$

A tradeoff between data rate and error probability.
Optimal Tradeoff

(Zheng, Tse 02) If block length \(T \geq M + N - 1 \):

Spatial Multiplexing Gain: \(r = \frac{R}{\log \text{SNR}} \)

Diversity Gain: \(d^*(r) \) \(\min\{M, N\}, 0 \) \(0, MN \)

To guarantee a multiplexing gain of \(r \) \(\text{integer} \), the best diversity gain achievable for any space-time code is \((M - r)(N - r) \).
(Zheng, Tse 02) If block length $T \geq M + N - 1$:

For multiplexing gain of r (r integer), best diversity gain achievable is $(M - r)(N - r)$.

Optimal Tradeoff

Spatial Multiplexing Gain: $r = R / \log \text{SNR}$

Diversity Gain: $d^*(r)$

(min{M,N},0)

(0,MN)

(1,(M−1)(N−1))

(2, (M−2)(N−2))

(r, (M−r)(N−r))

(min{M,N},0)
Multiple Access

- For point-to-point, multiple antennas provide diversity and multiplexing gain.
- With K users, multiple antennas discriminate signals from different users too.
- i.i.d. Rayleigh fading, N receive, M transmit antennas per user.
Multiuser Diversity-Multiplexing Tradeoff

Suppose we want every user to achieve an error probability:

\[P_e \sim \text{SNR}^{-d} \]

and a data rate

\[R = r \log \text{SNR} \text{ bits/s/Hz.} \]

What is the optimal tradeoff between
\(d \) (diversity gain) and \(r \) (multiplexing gain)?

Assume a block length \(T \geq KM + N - 1 \).
Optimal Multiuser D-M Tradeoff

- For $r = 0$, diversity is MN
- For $r = \min\{M, \frac{N}{K}\}$, diversity is 0
Multiuser Tradeoff: \(M < N/(K + 1) \)

- diversity-multiplexing tradeoff of each user is \(d^*_{M,N}(r) \)
- as though it is the only user in the system
Multiuser Tradeoff: \(M > N/(K + 1) \)

- \(r \leq N/(K + 1) \): Single-user tradeoff curve
Multiuser Tradeoff: \(M > N/(K + 1) \)

- \(r \leq N/(K + 1) \): Single-user tradeoff curve
- \(r \) from \(N/(K + 1) \) to \(\min\{M, N/K\} \):
 - tradeoff as though the \(K \) users are pooled together: \(KM \) antennas and rate \(Kr \),
Question: what does adding one more antenna at each mobile buy me?
Scenario of 1 transmit antenna

Adding one more transmit antenna does not increase the number of degrees of freedom for each user. However, it increases the maximum diversity gain from N to $2N$. More generally, it improves the diversity gain $d(r)$ for every r.

Spatial Multiplexing Gain: $r = R / \log \text{SNR}$

Diversity Gain: $d(r)$

Optimal tradeoff
Answer: Adding one more transmit antenna

- No increase in number of degrees of freedom
- However, increases the maximum diversity gain from N to $2N$.
- Improves diversity gain $d(r)$ for every r.
Tradeoff Between Users

• We have been looking at the symmetrical, equal rate case.

• More generally, we can ask:

 What is the optimal tradeoff between the achievable multiplexing
 gains for a given diversity gain d?

• Given by the multiplexing gain region $C(d)$ for a given d.
• Multiplexing gain region $\mathcal{C}(d)$ is a cube: $r_i \leq r^*_{M,N}(d)$

• Single user performance for every user

• Require:
 - $M \leq N/(K + 1)$ (large number of receive antennas), or
 - $M > N/(K + 1)$ but $d \geq d^*_{K_M,N}[N/(K + 1)]$ (high diversity requirement)
Multiplexing Region: General Case

If \(d \in \left[d_{(k-1)M,N}[N/k], d_{kM,N}[N/(k + 1)] \right] \):

\[
C(d) = \left\{ (r_1, \ldots, r_K): \sum_{i \in S} r_i < r_{|S|M,N}(d), \quad \forall S \text{ with } |S| = 1 \text{ or } |S| \geq k \right\}
\]

- \(r_{|S|M,N}(d) \) is point-to-point M-D tradeoff with \(|S| \) Tx and \(N \) Rx antennas.
- As \(d \) decreases, more and more constraints become active.
- Finally, \(2^K - 1 \) constraints are active: \(C(d) \) is a polymatroid.
$r_{2M,N}^*(d)$ is total multiplexing gain in system with $2M$ transmit antennas pooled together.
Suboptimal Receiver: the Decorrelator/Nuller

- Consider case of $M = 1$ transmit antenna for each user
- Number of users $K < N$
Tradeoff for the Decorrelator

- Maximum diversity gain is $N - K + 1$
- “costs $K - 1$ diversity to null out $K - 1$ interferers” (Winters et al '93)
Tradeoff for the Decorrelator

- Maximum diversity gain is $N - K + 1$
- “costs $K - 1$ diversity to null out $K - 1$ interferers” (Winters et al ’93)
- Adding one receive antenna provides:
 - either more reliability per user
 - or accommodate 1 more user at the same reliability.
Tradeoff for the Decorrelator

- Optimal tradeoff curve also a straight line
 - but with a maximum diversity gain of N.
- Adding one receive antenna provides more reliability per user and accommodate 1 more user.
Multiple Antennas in General Networks

Multiple antennas serve multiple functions:

- diversity
- spatial multiplexing
- multiple access
- broadcast
- interference suppression
- cooperative relaying (distributed antennas)
- etc

What is the fundamental performance tradeoff in general?

Our approach may give a simple picture.