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ABSTRACT

Many signals of interest can be characterized by a finite
number of parameters per unit of time. Instead of span-
ning a single linear space, these signals often lie on a union
of spaces. Under this setting, traditional sampling schemes
are either inapplicable or very inefficient. We present a
framework for sampling these signals based on an injec-
tive projection operator, which “flattens” the signals down
to a common low dimensional representation space while
still preserves all the information. Standard sampling pro-
cedures can then be applied on that space. We show the nec-
essary and sufficient conditions for such operators to exist
and provide the minimum sampling rate for the represen-
tation space, which indicates the efficiency of this frame-
work. These results provide a new perspective on the sam-
pling of signals with finite rate of innovation and can serve
as a guideline for designing new algorithms for a class of
problems in signal processing and communications.

1. INTRODUCTION

Many signals of interest can be characterized by a finite
number of parameters (degrees of freedom) per unit of time.
Following the convention in [1], we call them signals with
finite rate of innovation. Instead of spanning a single linear
space, these signals often lie on a union of spaces, as shown
in the following examples.

Example 1 (Stream of Diracs) Consider a stream of K Diracs
periodized with period T . Within each period, the signal
x(t) =

∑K
k=1 ckδ(t − tk), where {tk}K

k=1 can be chosen
arbitrarily from [0, T ).

we see once the K locations are fixed, the signals span
a K dimensional subspace within one period. While with
locations unknown, we have a union of spaces.

Example 2 (2D Piecewise Polynomials) Now we consider
the discrete periodic 2-D piecewise polynomials of K pieces,

as shown in Figure 1. More specifically, each piece is a bi-
variate polynomial of degree less than d.

This kind of signals can be seen as a “cartoon” model of
natural images, since natural scenes are often made up from
several objects with smooth boundaries. Again, the signals
lie on a union of subspaces corresponding to all possible
boundaries.

Example 3 (Signals with Unknown Spectral Support) [2]
In this example, we consider the class of continuous-time
signals bandlimited to the spectral span F = [fmin, fmax].
We only know the spectral support of the signals occupies a
certain portion (say 1/5) of F , but we do not know the exact
location of the support.

For a fixed frequency support, these signals become a
(shift-invariant) subspace. When the support is unknown,
the signal class can be characterized as a union of subspaces.

Before going to the formal definition for signals with
finite rate of innovation, we will first look at the concept of
shift-invariant spaces [3, 4], which delineate the scope of
this paper.

Definition 1 (Shift-Invariant Spaces) S is called a (finitely
generated) shift-invariant space, if

S =

{∑
n∈Z

D∑
r=1

cnrϕr(
t

T
− n)

}
(1)

where {ϕr}D
r=1 are the generating functions of S and D is

called the length of S, denoted by len(S).

Familiar examples of shift-invariant spaces include ban-
dlimited signals, and uniform splines. A particularly in-
teresting case is when the generating functions ϕr( t

T ) are
compactly supported within a certain period, say [0, T ]. In
this case, signal segments in different periods are indepen-
dent of each other. While in each period, these signal seg-
ments belong to a finite dimensional space. Note that peri-
odic signals can be seen as a special case under this setting,
if we further impose cnr = ckr,∀n, k ∈ Z, r = 1 . . . d.
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Fig. 1. 2D Piecewise Polynomials.

Definition 2 (Signals with Finite Rate of Innovation) 1 Let
M denote a class of signals in a Hilbert space H. We call
M having finite rate of innovation, if it can be written as a
union of finitely generated shift-invariant subspaces. That
means M =

⋃
γ∈Γ

Sγ , where {Sγ}γ∈Γ is a collection of

shift-invariant spaces with len(Sγ) ≤ D and the index set
Γ ⊆ R

m.

In this paper, we present a framework for sampling this
class of signals. We formulate the problem in Section 2
with a geometrical perspective relating sampling to the pro-
jection operators onto representation spaces. The key ob-
servation here is that the original signals can be fully re-
covered from their sampled values if the projector satisfies
certain conditions. In Section 3, we present the necessary
and sufficient conditions for the projectors. As a direct re-
sult, we also show the minimum sampling rate. In [1], the
authors propose the sampling scheme for certain special sig-
nals, such as the stream of Diracs and piecewise polynomi-
als. Developed within a very general setting, the results in
this paper indicate that actually a very broad class of signals
with finite rate of innovation can be (uniformly) sampled
without loss of information. Finally, we also (briefly) dis-
cuss how these results can serve as a guideline for designing
new sampling algorithms with more stability and robustness
against the noise.

2. SIGNAL REPRESENTATION THROUGH A
PROJECTION OPERATOR

From Definition 2, we see once the index γ is known, the
signals lie on a single space and traditional sampling scheme
can be applied here. However, in practice it is often very dif-
ficult to get these index parameters. For example, it is not a
trivial task to locate the discontinuities of a piecewise poly-
nomial signal, especially in the discrete case and with noise.
In this sense, we want to have a fixed sampling scheme that
works for all signals in M without having any knowledge
about which particular space the signals belong to.

1The difference between this definition and the one proposed in [1] is
discussed in [5].

Let x(t) denote the original signal. The traditional uni-
form sampling setup is to filter x(t) with a certain sampling
kernel (e.g. sinc), and get the samples y(nT ) by

y(nT ) =
∫ +∞

−∞
h(t−nT )x(t)dt = 〈h(t−nT ), x(t)〉, (2)

where h̃(t) = h(−t) is the sampling kernel and T is the
time interval. We see the samples y(nT ) are actually the
inner products between x(t) and h(t − nT ). Let S be the
shift invariant space generated by h(tT ), i.e. ϕ = h(tT ) in
Definition 1. It can be shown [5] that the sampling process
is equivalent (in the sense of one-to-one correspondence) to
the projection of the signals onto S. So in the following
discussion, we can just focus on the problem of projection.

Of course, we want that the original signals can be per-
fectly reconstructed from their sampled values. If we think
the sampling process as a mapping from the original signal
to the sample values, then it must be an invertible mapping.
We characterize this constraint through the following defi-
nition.

Definition 3 Let M denote a class of signals in the signal
space H. We call an orthogonal projection operator PS :
H �−→ S a representation for M, if any signal m ∈ M
can be uniquely determined by its image PSm, i.e. .

PSm1 = PSm2 if and only if m1 = m2 (3)

Now the natural questions to pursue are the following.

1. What are the necessary and sufficient conditions for
such projection operators to exist?

2. What is the efficiency of such a representation? Or
equivalently, what is the minimum sampling rate for
this class of signals?

Before going to the formal results in the next section, let
us fist consider a very simple case, from which we can gain
some valuable geometrical intuition. Here the signal space
H is R

3. S1, S2, and S3 are the one-dimensional subspaces
corresponding to three disjoint lines, and M = ∪3

i=1Si. As
shown in Fig. 2, we project M down to a certain space
and get PM = ∪3

i=1PSi, where P is the projection opera-
tor. We can see that there is a one-to-one mapping between
M and PM, as long as no two subspaces are projected
onto a same line. In this case, no information is lost while
we have a more compact representation of the original sig-
nals. Intuitively, we can think of this process as “flattening”
down the signals to a low dimensional representation space,
while still preserving the original structural information. It
is interesting to study the lower bound of the dimension of
the representation space, since the lower the dimension, the
more efficient the representation is. The lower bound is 2
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Fig. 2. The projection operator “flattens” the original sig-
nals down to a low dimensional representation space, while
the structural information is still preserved.

(i.e. a plane) in this case, because there must be information
loss if we project M onto any single line.

It is also straightforward to notice that the projection
operators that ensure one-to-one mapping are not unique.
Though in principle any of them can be used, they are very
different in the practical sense. For some projectors, the
projected lines are so close to each other that the system be-
comes very sensitive to noise and numerical imprecision. So
there is an issue in how to choose the “optimal” projection
operator. We will formalize the above geometric intuition
in the next section.

3. THE NECESSARY AND SUFFICIENT
CONDITIONS FOR THE PROJECTION

(SAMPLING) OPERATORS

Section 2 relates the sampling of signals with finite rate of
innovation to the problem of projecting signals onto repre-
sentation spaces. In this section, we will study the condi-
tions those projection operators must satisfy to ensure there
is no information loss in the process. For simplicity rea-
sons, we only discuss the case of periodic signals, where
the signals lie on a union of finite-dimensional spaces in
one period. Actually these results can be easily extended to
the case of general shift-invariant spaces [5].

3.1. Injective Projection Operators

Theorem 1 M is a class of signals in H having finite rate
of innovation. A projection operator P satisfies (3) if and
only if for all S̃ij � Si + Sj with (i, j) ∈ Γ × Γ, P is
an injective operator (one-to-one mapping) from S̃ij onto
PS̃ij .

Remark 1 Here PS̃ij denotes the image of S̃ij under P.
Since P is a linear operator, PS̃ij is still a subspace. We
define S̃ij as the sum, instead of the direct sum, of Si and
Sj , since we do not require the two subspaces to be disjoint.

Proof 1 The sufficiency of the condition is easy to show.
For any pair m1,m2 ∈ M such that Pm1 = Pm2. With-
out loss of generality, suppose m1 ∈ S1, m2 ∈ S2 and
hence m1 ∈ S̃12,m2 ∈ S̃12. Since P is an injective opera-
tor from S̃12 to P(S̃12), we must have

Pm1 = Pm2 ⇒ m1 = m2 (4)

Next, we will show the condition is also necessary by
contradiction. Suppose P satisfies (3), but there exists some
S̃12 = S1 + S2 such that P is not injective from S̃12 to
P(S̃12). Let {ϕk}K

k=1 denote a certain basis for S̃1,2 such
that {ϕk}n0

k=1 ∈ S1 and {ϕk}K
k=n0+1 ∈ S2 for some n0.

Note that such a basis can always be found. Since P is
not injective, there must be some s1 =

∑K
k=1 αkϕk and

s2 =
∑K

k=1 βkϕk with s1 �= s2 but Ps1 = Ps2. Now we
have

P

(
K∑

k=1

αkϕk

)
= P

(
K∑

k=1

βkϕk

)
(5)

It then follows from the linearity of P that

P

(
n0∑

k=1

(αk − βk)ϕk

)
= P

(
K∑

k=n0+1

(βk − αk)ϕk

)
(6)

Now let m1 =
∑n0

k=1(αk−βk)ϕk and m2 =
∑K

k=n0+1(βk−
αk)ϕk. It is clear that m1 �= m2, and m1 ∈ S1,m2 ∈ S2.
From (6), Pm1 = Pm2. This contradicts the assumption
that P satisfies (3). Therefore we must have P to be injec-
tive from S̃i,j to P(S̃i,j),∀(i, j) ∈ Γ × Γ. �

Corollary 1 (Minimum Sampling Rate) M is a class of
signals with finite rate of innovation. Let DM = max

(i,j)∈Γ×Γ
Dij ,

where Dij � dim(S̃ij). A necessary condition for P :
H �−→ S to be a representation for M is dim(S) ≥ DM .

Remark 2 Basically P : H �−→ S allows us to use D =
dim(S) real numbers to represent the signals in M. Of
course the smaller the number D, the more efficient the rep-
resentation can be. What Corollary 1 tells us is that the
lower bound of D is DM . It is impossible to use less than
DM numbers to fully represent the signal class M.

As an application of the Corollary, let us revisit the ex-
ample of piecewise polynomial signals. For simplicity of
exposition, we just consider the 1-D case. Within one pe-
riod, the signals contain K pieces of polynomials, each of
degree less than d. Intuitively, we should be able to repre-
sent any such signal by only Kd+K−1 numbers, in which
K − 1 numbers are used to locate the discontinuities, and
Kd to specify the polynomial coefficients. However, we can
verify that DM = (2K − 1)d in this case. It follows from
Corollary 1 that the minimum number of samples we need is
(2K −1)d, which is always strictly larger than Kd+K −1
when d > 1.



3.2. An Equivalent Condition

The following equivalent condition is usually more useful
in practice than the one in Theorem 1.

Proposition 1 M is a class of signals in H having finite
rate of innovation. A projection operator P : H �−→ S
satisfies (3) if and only if for all S̃ij with (i, j) ∈ Γ×Γ, the
following matrix

G =


〈ϕ1, φ1〉 〈ϕ2, φ1〉 · · · 〈ϕN , φ1〉
〈ϕ1, φ2〉 〈ϕ2, φ2〉 · · · 〈ϕN , φ2〉

...
...

. . .
...

〈ϕ1, φD〉 〈ϕ2, φD〉 · · · 〈ϕN , φD〉

 (7)

has full column rank, where {ϕi}N
i=1 are the basis vectors

of S̃ij and {φi}D
i=1 are the basis vectors of S.

We can see that a necessary condition for any D × N
matrix G to have full column rank is D ≥ N . This leads to
the same result in Corollary 1 for the minimum dimension
(sampling rate) of the projection space.

To show how to make use of the above results, let us re-
examine the periodic signals containing stream of Diracs in
Example 1. In [1], Vetterli etc. propose a sampling scheme
for these signals by using the sinc kernel. It can be seen
as projecting the signals onto the space spanned by D basis
vectors {ej(2πkt)/T }D

k=1. Actually, we will see this is just
one of the many possible solutions.

First, the basis vectors for S̃ij are {ϕi = δ(t − ti)}D
i=1,

with 0 ≤ t1 < t2 < . . . < tD < T and D = 2K. If we
specifically choose the basis vectors of the projection space
to be φ1 = f(t),φ2 = f2(t), . . . , φD = fD(t) with f(t) an
arbitrary function defined on [0, T ], then the inner product
〈ϕi, φj〉 = 〈δ(t − ti), f j(t)〉 = f j(ti). The matrix G can
now be written as

G =


f(t1) f(t2) · · · f(tD)
f2(t1) f2(t2) · · · f2(tD)

...
...

. . .
...

fD(t1) fD(t2) · · · fD(tD)

, (8)

which is a Vandermonde system. To ensure G nonsingular
(and hence having full column rank), the only requirement
is f(ti) �= f(tj), for all 0 ≤ ti < tj < T [6]. It is easy
to verify that f(t) = ej(2πt)/T is one of the functions sat-
isfying the above requirement. Since there are lots of other
choices of suitable f(t), it is possible to find some f(t) hav-
ing better performance, e.g. with shorter support or more
robustness against the noise.

3.3. The Existence of Injective Projections

Using the classical Baire’s Theorem [7] in analysis, we can
show that the minimum sampling rate can always be achieved

when the index set Γ is countable, as stated by the following
theorem.

Theorem 2 Let a Hilbert space H denote the signal space.
Let M be an arbitrary class of signals in H having finite
rate of innovation with a countable index set Γ. We can
always find a representation for M through a projection
operator P from H to S satisfying (3), where dim(S) =

max
(i,j)∈Γ×Γ

dim(S̃ij) is the minimum sampling rate. Further-

more, those feasible operators form a dense set in the space
of linear operators.

4. CONCLUSION AND FUTURE WORK

We considered the sampling of signals with finite rate of in-
novation. The key idea is to model those signals as a union
of shift-invariant spaces and find a suitable projection oper-
ator which “flattens” the signals down to a low dimensional
representation space while still preserves all the informa-
tion. We discussed the necessary and sufficient conditions
for such operators to exist. Meanwhile, we also provided
the minimum sampling rate of these signals. The results in
the paper are developed within a very general setting and
provide a new perspective on the problem of sampling sig-
nals with finite rate of innovation. The insight and various
conditions developed here can serve as a guideline for de-
signing new algorithms for a class of related problems in
signal processing and communications.
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