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Abstract—In this paper, our contributions to the subspace
learning problem are two-fold. We first justify that most popular
subspace learning algorithms, unsupervised or supervised, can
be unitedly explained as instances of a ubiquitously supervised
prototype. They all essentially minimize the intraclass compact-
ness and at the same time maximize the interclass separability,
yet with specialized labeling approaches, such as ground truth,
self-labeling, neighborhood propagation, and local subspace ap-
proximation. Then, enlightened by this ubiquitously supervised
philosophy, we present two categories of novel algorithms for
subspace learning, namely, misalignment-robust and semi-super-
vised subspace learning. The first category is tailored to computer
vision applications for improving algorithmic robustness to image
misalignments, including image translation, rotation and scaling.
The second category naturally integrates the label information
from both ground truth and other approaches for unsupervised
algorithms. Extensive face recognition experiments on the CMU
PIE and FRGC verl.0 databases demonstrate that the misalign-
ment-robust version algorithms consistently bring encouraging
accuracy improvements over the counterparts without considering
image misalignments, and also show the advantages of semi-su-
pervised subspace learning over only supervised or unsupervised
scheme.

Index Terms—Dimensionality reduction, image misalignment,
semi-supervised subspace learning, supervised subspace learning,
unsupervised subspace learning.

I. INTRODUCTION

IMENSIONALITY reduction techniques [12] are sig-
D nificant for both data representation and classification
in many computer vision applications. These algorithms can
be roughly divided into three categories. The first category is
unsupervised, which includes the pioneering work Principal
Component Analysis (PCA) [11], and also involves most
manifold learning algorithms, such as ISOMAP [17], Locally
Linear Embedding (LLE) [14], as well as its linear extension
Neighborhood Preserving Embedding (NPE) [9], [6], and
Laplacian Eigenmaps (LE) [2] with its linear extension Lo-
cality Preserving Projections (LPP) [10]. The second category
is supervised, and it utilizes the class label information for pur-
suing efficient representation for classification. Among them,
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the most popular ones are Linear Discriminant Analysis (LDA)
[7] and its variants, including Nonparametric Discriminant
Analysis (NDA) [8], Marginal Fisher Analysis (MFA) [19] and
Local Discriminant Embedding (LDE) [4]. The third category is
semi-supervised [3], [16] which addresses the problem on how
to utilize unlabeled data for promoting supervised algorithms.
A survey of semi-supervised learning is referred to [21]. In
this work, we focus on linear dimensionality reduction, namely
subspace learning, techniques owing to their simplicity and
effectiveness. Despite of the variety of many popular subspace
learning algorithms, Yan et al. [19] claimed that they can be
mathematically unified within a general framework, called
Graph Embedding. This framework derives a low-dimensional
feature space which preserves the adjacency relationship among
sample pairs in addition to constraints from scale normalization
or a penalty graph [19].

In this paper, beyond the commonness in mathematical for-
mulation [19] shared by different subspace learning algorithms,
we claim that most popular subspace learning algorithms, no
matter supervised or unsupervised, can be unitedly explained
as instances of a ubiquitously supervised prototype, yet with
specialized labeling approaches. The prototype pursues a
low-dimensional subspace which minimizes the intraclass
compactness and at the same time maximizes the interclass
separability. This unified prototype provides new perspectives
to understand many popular subspace learning algorithms. For
example, PCA is a specific LDA, which regards each sample
as a unique class; NPE is also supervised by propagating the
label of each sample to the nearest sample in the subspace
constructed by its k-nearest neighbors.

The proposed ubiquitous prototype is for general problems;
when specific to computer vision applications, this prototype
may suffer from the image misalignment issue, which is gen-
erally encountered in applications related with images. Here,
misalignment means that the image cropping process is not
always perfect, and there may exist translations in horizontal
and vertical axes, rotation and scaling compared to the ideal
cropping rectangle. In Fig. 1, we demonstrate the affection
of image misalignments to PCA subspace. The results show
that the small misalignments of the images may cause great
changes to the subspaces, and the reconstructed images of the
misaligned images from the well-aligned subspace are blurred.
There were some attempts to deal with the misalignment issue
within the context of unsupervised algorithms. Shashua [22]
explored the possibility of using manifold pursuit to cope with
image misalignments for PCA, and Frey et al. [23] proposed to
learn a transformation invariant component model (including
PCA and Independent Component Analysis) in a generative
framework. However, these algorithms are unsupervised and,
therefore, generally not as good as supervised algorithms for
classification purpose. In this paper, we present a general
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Fig. 1. Affection of image misalignments to PCA subspaces. (a) 20
well-aligned training images of size 64 by 64 pixels. (b) 20 slightly misaligned
images with scaling less than 1 & 0.05 and translation less than £2 pixels.
(c) Reconstructed images for (a) using the PCA space learned from well-aligned
training images. (d) Reconstructed images for (b) using the PCA space learned
from well-aligned training images. (e) Correlation between the corresponding
principal components of the two PCA spaces trained on well-aligned and
misaligned images, which shows that two PCA spaces differ greatly in term
of component-to-component similarity. Note that the dashed line is used to
indicate the locations with correlation of 1.

solution for promoting algorithmic robustness for general
subspace learning. First, we propose a general regularization
term which characterizes the robustness of a subspace to the
above four types of image misalignments. Then we justify that
this objective function essentially characterizes the intraclass
compactness, and, hence, this regularization term can be inte-
grated into the ubiquitously supervised prototype, yielding the
general formulation for misalignment-robust subspace learning.
In addition, this ubiquitous prototype elicits us to develop the
general formulation for semi-supervised subspace learning,
which integrates the labels from both ground truth and the
labeling approaches used by unsupervised learning algorithms.

The rest of the paper is organized as follows. Section II in-
troduce the ubiquitously supervised prototype for most popular
subspace learning algorithms, followed by the detailed justifi-
cations. The general formulations for misalignment-robust and
semi-supervised subspace learning are introduced in Section III.
Experimental results are presented in Section IV, and we con-
clude this paper in Section V.

II. UBIQUITOUSLY SUPERVISED SUBSPACE LEARNING

Here, we assume that the training data are given as
X = [z1,%9,...,zN] where ; € R™ and N is the total
number of samples. For a supervised classification problem,
like face recognition, the training data can be rearranged
as X¢ = [z§,29,...,2; ],c = 1,2,..., N, where n. is
the number of training samples for the cth class, zg is the
mean of the samples belonging to the cth class, namely
z§ = Yo 15/n., and we have N = Zi\;l n.. For ease of
representation, we add a special class X Ve+1 = [xév”H] where
xéVCH = Z, which is the mean of all training data, and, thus,
we have n .11 = 0. In practice, dimensionality reduction is in
great demand owing to the fact that the effective information
for classification often lies within a lower dimensional feature
space.
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A simple but effective way for dimensionality reduc-
tion is to find a column linearly independent matrix
P = [p1,p2,...,pa) € R |pi|]| = L,k = 1,2,...,d,
for transforming the original hlgh dlmensmnal datum z into a
low-dimensional form y € R?¢ (usually d < m) as

y=PTz (D

Many algorithms, supervised or unsupervised, have been pro-
posed for pursuing such a P. In this paper, we justify that most
popular subspace learning algorithms can be unitedly explained
as instances of a ubiquitously supervised prototype, and the di-
versities of these algorithms come from the labeling approaches,
namely how to get class labels. In the following, we first intro-
duce the common supervised subspace learning prototype, and
then demonstrate in detail how the supervised and unsupervised
subspace learning algorithms can be explained by this prototype
along with specialized labeling approaches.

A. Ubiquitously Supervised Prototype

Two criterions can be used for measuring the potential clas-
sification capability of a low-dimensional feature space [19],
namely, intraclass compactness and interclass separability.

Intraclass Compactness: The intraclass compactness is
characterized by the weighted sum of the distances between
sample pairs of the same class. Denote the nonnegative matrix
We e R(ret)x(ne+1) g5 the weight matrix measuring the im-
portance of the data pairs within the cth class for characterizing
intraclass compactness, and then the intraclass compactness
can be measured by

ZZZHPT s — PTas|
c=11=0 7=0
= Tr(P"S,P) (2
where S, = S22 S0 S W (a6 — 26)(a§ — 25)T and

Tr( - ) means the trace of a square matrix.

Interclass Separability: The interclass separability is char-
acterized by the weighted sum of the distances between sample
pairs of different classes. The larger is the sum, the greater is the
potential classification capability. Note that the distances may
also be measured between the samples and means. Denote the
nonnegative matrix W2 ¢ R(mer +1)x(ne, +1) a5 the weights
between the data denoted as X! and X for measuring in-
terclass separability, and then the interclass separability can be
formulated as

ey Mey
8P - Y Y P -
c1#co 1=0 j=0

Tr(PT S, P)

Ne Ne c1,C 2 >
where Sy = > . D702 S Wi (2 — af?) ()t —
co\T
To obtain a low-dimensional feature space that is good for
classification, it is desirable to minimize the intraclass compact-
ness, namely minp Tr(PTS,,P), and at the same time maxi-
mize the interclass separability, namely maxp Tr(PT S, P).

cl,c>

Pra | w
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To simultaneously achieve the above two objectives, we can
solve the following optimization problem [7]

Tr(PTS, P
P* = arg min i )

P Te(PTS,P) @

In the following subsections, we will introduce in detail that
most popular subspace learning algorithms can be justified as
instances of the above prototype with specialized labeling ap-
proaches.

B. Supervised Algorithms

1) Linear Discriminant Analysis (LDA) [1]: Objective func-
tion: LDA searches for the directions that are the most effective
for discrimination, by minimizing the ratio between the intra-
class and interclass scatters, namely

Zi\; Doicy iPT ¢ — Plag

5-
N, T,.c T, .Ne+1
> iy e || PTay — PTag

2

min
P

&)

Justification: It is easy to verify that the numerator only
includes the distance between samples and the corresponding
means of the same class, while the denominator consists only the
weighted distances between means of difference classes (here
the total mean is considered to be a special class as mentioned
above). Thus, wee" = Ne,c = 1,2,..., N and wee =0
forc # ¢’,c < N and ¢’ < N.Hence, LDA is an instance of the
ubiquitously supervised prototype as demonstrated in (2)—(4).
The labels used are directly from the ground truths.

2) Marginal Fisher Analysis (MFA) [19]: Objective func-
tion: By removing the underlying assumption of LDA, that is,
the samples of each class follow Gaussian distribution, MFA
provides a new way to measure the intraclass compactness and
interclass separability in a nonparametric way [19]

2

N. . .
Zc:l ZjENfl (i) or ielel () ||P ,{Uf — P x;

|PT:EZ? — PT:E;l

min

P
Ec Z(i,j)GPkQ (c) or (j,i)EPr,(c")

2

(6)

where N (7) indicates the index set of the k; nearest neighbors
of the sample ¢ within the cth class, and Py, (c) is a set of data
pairs that are the ko nearest pairs among the set {(z¥, xj,), c#
Vi, j,c}.

Justification: In the objective function of MFA, the numer-
ator is the sum of distances between the data pairs, one of which
is among the k; nearest neighbors of another datum within the
same class; while the denominator is the sum of the distances be-
tween the marginal sample pairs from different classes. Hence,
MFA is also a special case of (2)—(4); and similar to LDA, the
class labels are from ground truths.

C. Unsupervised Algorithms

1) Principal Component Analysis (PCA) [11]: Objective
function: PCA searches for the projection directions which can
best reconstruct the original data along with the data mean;
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equivalently, these projection directions yield the maximal vari-
ations for the training data, and the optmization problem is

N
1
maxz ||PT(;1:1; — a?)||2 = min — —.
ria Py 1P (2 — 2)[)?

N

Justification: As seen from the above formula, the objective
function of PCA is in a very similar form as the proposed super-
vised prototype except for the constant in the numerator. Does
there exist certain relationship between PCA and supervised al-
gorithm like LDA? Here, we justify that PCA is essentially a
specific LDA with self-labeling approach according to the fol-
lowing explanations. First, each data is considered to consti-
tute a unique class, and then the labeled datum is denoted as
X¢ = [§,2f],c = 1,2,..., N, where 2§ = z{ = z.; con-
sequently, we have the mean data XV *! = [z]. Based on this
explanation, the (2) equals to zero, and the maximization of (3)
equals to minimize the objective function of PCA in (7) with
the assumption that wee' = n.=1c=1,2,...,N and
Wee = 0 for c # c,¢c < Nand ¢ < N. Therefore, PCA
is also a specific instance of the ubiquitously supervised proto-
type.

2) Locality Preserving Projections (LPP) [10]: Objective
function: LPP finds an embedding that preserves local infor-
mation and best detects the essential manifold structure of the
data set. Its objective function is

N N
Yim et 1PTai — PTa| P W,
SN, Di|PTz; — PTx|?

®)

arg min
& P

where the weight matrix W is defined as W;; = exp{—||z; —
z;||?/t} if i € Ni(j) or j € Nyi(i); 0, otherwise. Ny(7)
means the indexes of the k nearest neighbors of sample z;
and t is a parameter for defining similarity. D is a diagonal
matrix with D;; = > j Wi;;. Note that the denominator is
SN Dul|PTai|)? instead of 32N | Dyi||[PTa; — PTE||? in
[10], and here we refine it for two reasons: 1) it naturally
satisfies the requirement of zero mean as in [2], the precursor
of LPP; and 2) the online available code of [10] practically
removes the mean for all the samples in the preprocessing PCA
step, and, hence, the implementation follows our formulation
of LPP here.

Justification: Besides acting as a popular manifold learning
algorithm, LPP can also be explained a specific multilabeled su-
pervised subspace learning algorithm by propagating labels via
the neighboring relationship. More specifically speaking, first,
each datum is considered to constitute a unique class, then the
label of each sample is propagated to its k nearest neighbors,
and consequently each sample has multiple labels. For each
class, X¢ = [z§,z{,..., 25 |,c = 1,2,..., N, where z{ is
the concerned sample and 5,5 = 2,3, ..., n,, are the neigh-
bors of z{ or the samples whose neighbors include z{. An il-
lustration of this label propagation process in LPP is shown in
Fig. 2. With the multilabel interpretation, the numerator of the
objective function characterizes the sum of the weighted (with
heat kernel function) distance between a sample and its k nearest
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Fig. 2. Tllustration of label propagation within neighborhood for LPP.

samples, while the denominator characterizes the interclass sep-
arability as in (3) (note that the D;; acts similarly as n. in LDA).

3) Neighborhood Preserving Embedding (NPE) [9]: Objec-
tive function: NPE is the linear extension of LLE [14], and it
seeks a low-dimensional feature space which preserves the lo-
cality reconstruction relationship. The optimization problem is
defined as

2
N
. >im1 HPTﬁEi - ZjeNk(i) PTWijz;
e N T,.. T (|2
izt |PTwi — PTx||

9

WheTre the matrix W is computed through minimizing
S i = X jenu Wigwsll?, st S, Wi = 1. The
definition of N(¢) is the same as in LPP. Similar to LPP,
the reasons to subtract the total mean in the denominator are
two-fold: 1) it naturally satisfies the requirement of zero mean
as in [14], the precursor of NPE; and 2) the online available
code of [9] practically removes the mean for all the samples in
the preprocessing PCA step, and the implementation follows
our formulation here.

Justification: Denote y; = Ejvzl Wi ;x;, then the objective
function of NPE can be rewritten as

N
> it [|1PTzi — PTyil?

ol 5 —.
Py ina 1P ey — PTa|?

(10)

Note that S; = {3 ;e n, i) Wii%i5 2o jen, i) Wij = 1} consti-
tutes a subspace plus an offset, and we call it k-subspace here.
NPE can be interpreted in the supervised manner as follows.
First, each datum is considered to constitute a unique class, and
then the label of each sample is propagated to the nearest datum
within the k-subspace S; constructed by its k nearest samples.
The resulting data set for the cth class is X¢ = [z§, z., y.], and
XN+ — [7]. Then the numerator is the sum of distances be-
tween samples of the same class while the denominator is the
sum of distances between samples and the total mean. There-
fore, NPE is also an instance of ubiquitously supervised proto-
type by propagating label with k-subspace approximation. An
illustration of this explanation is displayed in Fig. 3.

D. Discussions

As described above, most popular supervised or unsupervised
subspace learning algorithms can be explained in a supervised
manner. Here, we would like to highlight some aspects of this
unified supervised understanding.
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Fig. 3. TIllustration of label propagation by k-subspace approximation for NPE.

1) Instead of a unified mathematical formulation of graph
embedding as demonstrated in [19], we concern a unified
learning type in this work, and justify that most popular
subspace learning algorithms are essentially supervised ex-
cept for different labeling approaches.

2) Unlike the work of Yan et al. [19], our ubiquitously super-
vised prototype provides a supervised perspective to un-
derstand unsupervised subspace learning algorithms; and
these unsupervised algorithms are equivalent to the specific
labeling preprocessing approaches followed by instantia-
tions of the ubiquitously supervised prototype.

3) The unified explanation of both supervised and unsuper-
vised learning algorithms generalized the concept of intra-
class compactness and interclass separability with flexible
labeling approaches, which allows one to formulate mis-
alignment-robust subspace learning and semi-supervised
subspace learning in the following section.

III. TwO GENERAL FORMULATIONS EXTENDED
FroM UBIQUITOUS PROTOTYPE

The above ubiquitously supervised prototype and its in-
stances are generally proposed based on the assumption that
all those features are strictly aligned, namely, each dimension
of the feature has specific meaning. However, in many com-
puter vision applications, misalignment iS a common issue.
For example, in face recognition and hand written character
recognition, the cropping process is often not perfect. Subspace
learning algorithms often suffer from such misalignment issue,
which may severely degrade the algorithmic generalization
capability, since the image misalignment may make the dis-
tribution of the testing data greatly different from that of the
training data. Although there exist many methods to deal with
this problem such as bags of features or convolutional neural
network, we focus on subspace learning algorithms. In this sec-
tion, we provide a general solution for improving the robustness
and the generalization capability of the ubiquitously super-
vised prototype to the image misalignment issues encountered
in vision problems. In addition, we will introduce a general
formulation to semi-supervised subspace learning by naturally
integrating the label information from both ground truth and the
labeling approaches used by unsupervised learning algorithms.

A. Misalignment-Robust Subspace Learning

Image alignment is critical for extracting stable and robust fea-
tures in many computer vision applications such as face recogni-
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tion; however, the misalignment issues, including translations in
horizontal and vertical axes, scaling and rotation, are inevitable
especially for practical systems. Current subspace learning al-
gorithms mostly are sensitive to image misalignments as shown
in Fig. 1, yet few works have been devoted to explicitly solving
this problem. In this section, we provide a general solution to this
problem for all the subspace learning algorithms that can be ex-
plained by the ubiquitously supervised prototype.

1) Misalignment-Robust Regularization Term: To achieve
the misalignment robustness, there are several possible solu-
tions. One is to re-align the images with certain generative
models, and Tu’s work [18] belongs to this type. Another is
to seek a subspace which is robust to image misalignment.
Our solution belongs to this type. Since image misalignment
distribution is often roughly predictable, we define the mis-
alignment-robust regularization term in a probabilistic manner
as

N .
> / |PT2; — PTay(T,r,0)||*p(T, r,0) dT dr df
i=lp g

Y

where x;(T,r, 6) is the transformed image of z; from the mis-
alignment parameters, T = [T, T,] are the translation vari-
ables, and we assume they distribute within [—2,2] x [—2,2]
on pixel level; 7 is the scaling factor distributed within [0.9,
1.1] and 6 is the rotation angle distributed within [—5°, 5°];!

p(T, r,0) is the probability distribution function defined on T', r,
and 6. We assume that 7, T}, r and § are independent; then

p(T,r,0) = p(T,)p(Ty )p(r)p(@) We assume that each param-
eter roughly follows Gaussian distribution yet only validate with
the areas mentioned above.

Equation (11) can be computed out as

S (P)

N /
=1y g
x p(T,r,0)dT drdf

:i / Tr((PT

|1PTa; — PTay(T,r,0)]?

z; — PTa;(T,7,0))(PT;

=1y g
— PTay(T,r,0)D)p(T,r,0) dT dr df
N
= Z / Te(PT (x; — (T, 7,0))(x; — x(T,7,0))" P)
( )p(Ty)p(r)p(0) dz dy dr do
N
PT Z / (T, r,0))(;

— i(T,r,0))"p(To)p(T, )p(r)p(0) dz dy dr df | P

= Tr(PTS,,P).

IThese parameters are set according to the statistics of the misalignments
based on our own face alignment algorithm similar to ASM [5].
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Using the above definition, we basically exploit all data sam-
ples with reasonable image misalignment for each data point.
The term S'm(P) can be considered as characterizing the intr-
aclass compactness if we label the synthesized misaligned im-
ages with the same label as the original one.

2) General Misalignment-Robust Subspace Learning: Based
on the ubiquitously supervised prototype in (4) and the mis-
alignment-robust regularization term in (12), we have the gen-
eral formulation for misalignment-robust subspace learning as

Te(PTS,,P) + ATr(PTS,, P)
Tr(PT S, P)

min
P

Tr(PT(Sy + ASm)P)
Tr(PTS,P)

The integration of the two terms can more truthfully characterize

the intraclass compactness for the misaligned data, which brings

robustness to general subspace learning algorithms.

3) Implementation Details: In the implementation, we uti-
lize some strategies for promoting computational efficiency of
(11). We use triangle distribution to approximate the gaussian
distribution, and for the integral of  and 6, we use the sampling
approach for approximating the integral. In our experiments, the
computation cost for .S,, is several seconds for each image with
unoptimized Matlab code on a PC with 2.8-HZ CPU and 1-G
memory.

The objective function in (12) is nonlinear, and commonly
there does not exist closed form solution. In this work, as con-
ventionally [7], we transform the objective function in another
form

(12)

= min
P

max Tr[(PT(Sy + ASm)P)) 1 (PT S, P)] (13)
and the generalized eigenvalue decomposition method is used
for deriving the projection matrix P [7].

4) Discussions: One naive way of dealing with image mis-
alignments might be to add more synthesized samples to the
training set by varying the parameters of translation, rotation
and scaling. Adding more synthesized samples to the training
set might help to some extent, but our solution is more general
and elegant:

1) Generally, directly adding synthesized samples is appli-
cable only for supervised subspace learning, where the syn-
thesized samples can be labeled as the same class with the
original datum from which they are generated. However,
for unsupervised subspace learning, the class label is not
explicitly used, so misalignment robustness cannot be well
achieved in these algorithms. This idea is illustrated using
PCA as in Fig. 1. The synthesized samples added will be
far away from the original datum according to the criteria
of PCA, which is inconsistent with the target of misalign-
ment robustness. In contrast, our algorithm can label the
misaligned samples with the original one and find a projec-
tion that make the misaligned data as compact as possible
while at the same time keeps to the criteria of the original
PCA.

2) Our misalignment-robust regularization term utilizes the
information from all possible misalignments by integral,
while the way of directly adding synthesized samples is
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Fig. 4. Latent difference among PCAs for the cases. Left: Directly adding syn-
thesized samples. Right: Misalignment-robust regularization term. Note that, for
(a), the samples synthesized from a datum are expected to be far away from the
datum after PCA, while for (b), the samples virtually sampled around a datum
are expected to be close to the datum after misalignment-robust PCA.

limited by the number of synthesized samples that can be
added. For examples, for a database with 10 000 training
samples as in our experiments, the computational cost will
be prohibitively high for algorithms like MFA, even we
only add 100 synthesized samples for each datum. The
computational cost of MFA mainly lies in the construc-
tion of the intrinsic and penal graphs, and adding only 100
synthesized samples for each datum will increase the com-
putational cost and memory requirement for the graphs by
10* times. In our framework, the matrix S,, is computed
in the same way as in the case without considering image
misalignments, and the matrix S,, is computed from the
integral process in (12).

3) Our algorithm is more flexible with the parameter A before
the misalignment robust regularization term. This param-
eter can be adjusted to the incoming data. For example, if
the misalignment for the incoming data is severe, A should
be larger to penalize the effects of the misalignment.

B. General Formulation for Semi-Supervised Subspace
Learning

Semi-supervised learning recently attracted much attention,
and was widely used for regression and classification problems
[21]. The main idea of semi-supervised learning is to utilize un-
labeled data for improving the classification and generalization
capability on the testing data. Fig. 5 illustrates the potential of
the unlabeled data in dimensionality reduction for classification.
Commonly the unlabeled data is utilized as an extra regular-
ization term in the objective function of traditional supervised
learning algorithms. In this work, motivated by the unified su-
pervised explanations for most popular subspace learning algo-
rithms, we present a general formulation for semi-supervised
subspace learning, and the objective functions of unsupervised
manifold learning algorithms, such as LPP and NPE, are used
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Fig. 5. Unlabeled data is useful for promoting classification capability.

as the regularization terms for supervised subspace learning al-
gorithms. That is

. yIr(PTS,P)+ (1 —~)Tx (PTS5P)

T Te(PTS,P)

(14)

where Tr(PTS” P) comes from the intraclass compactness
terms of LPP or NPE, v € (0,1) is a coefficient to balance
the supervised term and manifold regularization term, and
S, = vSw + (1 = 4)S.,. Note that the matrix S,, and S,
are computed from the labeled data as in (2) and (3) given the
weight matrices or graphs, while the term S, is computed from
both labeled and unlabeled data as in (2). The intraclass matrix
S‘w reflects the variance for both labeled and unlabeled data.
The advantages of the semi-supervised learning algorithm will
be validated by experiments as demonstrated in Section IV.

It is worthy to highlight that, compared to other specific algo-
rithms for semi-supervised learning, our contribution is to offer
aunified framework and solution, and the recent proposed algo-
rithm, Semi-Supervised Discriminant Analysis (SDA) [24], is a
special case of this framework. The SDA algorithm is motivated
from using regularization for LDA when the labeled training set
is too small, and its objective function is

Te(PT S, P)
max
P Tr(PTS,P)+ aJ(P)

5)

where J(P) is the regularizer on the projection matrix P. In
[24], the authors used the Laplacian Graph [2] to compute .J ( P)
as

(16)

w

J(P) = Te(PTXLX"P) =Tt (P"S] P)

where L is the Laplacian matrix [25]. If we choose LDA graph
to compute S, and Sy, and choose Laplacian graph to compute
S, in our general formulation (14), it is exactly SDA.

IV. EXPERIMENT RESULTS

To evaluate the effectiveness of the proposed general frame-
work for misalignment-robust subspace learning, we system-
atically compare the original algorithms with their misalign-
ment-robust counterparts for PCA, LDA, MFA, and NPE. Two
popular face databases CMU PIE [15] and FRGC Verl.0 [13]
are used to for the comparison. Also, the advantages of gen-
eral semi-supervised subspace learning over only supervised or
unsupervised scheme are verified by integrating the MFA and
NPE algorithms. In all the experiments, the face recognition is

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 12, 2009 at 18:12 from |IEEE Xplore. Restrictions apply.



YANG et al.: UBIQUITOUSLY SUPERVISED SUBSPACE LEARNING

1 1
Tk
y a ~
[ o
 og ] &D_B * -
S 5 ot
= £
g 06 S8
& —+— MRLDA E —+— MRMFA
—— LDA " MFA
0.4 0.4
0 05 1 0.5 1
Misalignment Scale Misalignment scale
(@ O]
1 — L p—
o S R
E 0.8 A § 0.8 g" P
§ 06 ff»‘ 508 ||'{;
= {s = !
504 5 0.4
5] ;L 8 ‘
2 o2 ——MRLDA @ gol ——— MRMFA
i 14
------- LDA ------- MFA
u] 0
20 40 B0 100 200 300
Dimension Dimension

(e) 6]

247

o] O
08 ks
5 5
2 =
S06 =
2 —+— MRPCA o
£ || ——pca T | ——npE
0.4 0.4
‘ 05 1 0 05 1
Misalignment Scale Misalignment Scale
(© (d)
1 — 1
Boggl[ Loeememmmi e L1 —— -
g g |
E 06 : EEI.E !
5 04 Sna4
a o
2 02 —— MRPCA Zo2 ——— MRNPE
------- PCA ------- NPE
100 200 300 0 100 200 300
Dimension Dimension
(2

Fig. 6. Comparison between the original version and misalignment-robust counterparts of LDA, MFA, PCA, and NPE on the CMU PIE database with well-aligned
training set. Top: Face recognition accuracy versus misalignment scale. Down: Face recognition accuracy versus feature dimension at the misalignment scale of

0.6.

conducted by using Nearest Neighbor as the final classifier for
simplicity.

A. Data Set Preparation

The CMU PIE (Pose, Illumination and Expression) database
contains 41 368 images of 68 people under 13 different poses,
43 different illumination conditions, and with 4 different expres-
sions. In our experiment, the data set contains five near frontal
poses (C05, C07, C09, C27, C29) and all the images under dif-
ferent illuminations and expressions. So, there are 170 images
for each individual and more than 10 000 images are used for the
experiments. The images are well aligned by manually marking
the positions of two eyes, and finally cropped to the size of
32-by-32 pixels.

FRGC Verl.0 is a database from FRVT2006 evaluation, and
contains 275 persons and totally 5658 images of different res-
olutions. In this work, we implemented a face alignment algo-
rithm similar to Active Shape Models [5] to automatically align
the faces, and then crop the faces to the size of 32-by-32 pixels
based on the derived eye positions. Hence, unlike CMU PIE
database, there exist misalignments in FRGC Ver1.0.

B. Misalignment Robust Subspace Learning

In this section, we will introduce the experimental results on
two databases in two scenarios, and then discuss the parameter
selection problem of A.

1) Inhomogeneous Misalignment Scenario: CMU PIE Data-
base: For the CMU PIE database, we randomly select 100 im-
ages of each person for model training, and the left 70 images
for testing. As the images are well-aligned in the CMU PIE data-
base, we synthesize different scales of misalignments for testing
data. The scale 1 corresponds to the largest possible misalign-
ment with up to £2 pixels in translations, +2° rotation, and the
scaling between [0.95 1.05]. Two sets of experimental results
of the algorithms LDA, MFA, PCA, and NPE, as well as their
misalignment-robust counterparts are displayed in Fig. 6. The

first set (a), (b), (c), and (d) demonstrate the influence of mis-
alignments to different algorithms, and the second set (e), (f),
(g), and (h) show the algorithmic performance on different fea-
ture dimension in the case of testing data with misalignment
of scale 0.6. The results demonstrate that our proposed algo-
rithms can handle subspace mismatch issue caused by misalign-
ments much better than the counterparts without considering the
misalignment issue. Note that in this work, we do not focus
on evaluating which subspace learning algorithm is the best,
instead we evaluate the algorithmic robustness to image mis-
alignments; hence, we only implement the most popular sub-
space learning algorithms for comparison. For all the experi-
ments, we first conduct PCA to reduce the feature to a dimension
by retaining 98% of the energy, and then compare all the algo-
rithms on this dimensionality reduced feature space. For NPE,
the nearest neighbor number is set as 5, and the nearest neighbor
numbers for within-class and between-class are set as 5 and 20
for MFA in all the experiments.

2) Homogeneous Misalignment Scenario: FRGC Verl.O:
For the FRGC Verl.0 database, we randomly select half of the
images of each person for model training, and the left half for
testing. These images are automatically aligned and cropped,
and, hence, there exist misalignments for both training and
testing data. The comparison results of the original version and
the misalignment-robust counterparts of LDA, MFA, PCA, and
NPE are displayed in Fig. 7. As we can see, our misalignment
robust algorithms all outperform the original ones. That means,
our algorithms can learn a better subspace that is robust to
image misalignments.

3) Parameter Selection: In all the above experiments, we
need to choose the parameter A as in (12). Generally speaking,
the best A should be roughly proportional to the misalignment
degree. In Fig. 8, we show the influence of the weight A on face
recognition accuracy for three algorithms we have talked about
on the two databases. As we can see, overall the misalignment
algorithms are not very sensitive to the parameter; in a large
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range, these algorithms are much better than the corresponding
algorithms without the regularization term (A = 0). However,
different algorithms are different in sensitivity to the parameter:
MFA is the least sensitive algorithm to A. In real applications, A
depends on the incoming data or the accuracy of the alignment
algorithm and should be chosen empirically.

C. Effectiveness of Semi-Supervised Subspace Learning

We take as an example the MFA + NPE for semi-supervised
subspace learning. For the CMU PIE database, the first 20 im-
ages of each person are used for model training, and the 80 im-
ages thereafter are used as unlabeled data for semi-supervised
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Fig. 9. Semi-Supervised subspace learning using MFA and NPE on CMU PIE
and FRGC Ver1.0 databases.

learning and final classification.2 For FRGC Ver1.0 database,
we select 2 images for those subjects with only 6 images, and
one quarter of the images for others, as the training data, and
the rest are used as unlabeled data for semi-supervised subspace
learning and final classification. The comparison of MFA, NPE,
and the semi-supervised algorithm MFA + NPE are demon-
strated in Fig. 9, and the results show that the our semi-super-
vised learning brings encouraging accuracy improvements over
MFA and NPE alone.

V. CONCLUSION

In this paper, we proposed a ubiquitously supervised proto-
type which unitedly explains most popular subspace learning
algorithms as its instances. Then this prototype was further en-
hanced for computer vision applications to obtain the robust-
ness to image misalignments, and consequently the potential al-
gorithmic generalization capability was promoted. To the best
of our knowledge, it is the first work dedicated to tackling and
providing general solution to the image misalignment problem
encountered by most subspace learning algorithms in computer
vision applications. In addition, a general formulation for semi-
supervised subspace learning was presented by naturally inte-
grating the labels from both ground truth and the labeling ap-
proaches used by unsupervised learning algorithms.
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