The Supermarket Game

Jiaming Xu and Bruce Hajek

Abstract

A supermarket game is considered with N FCFS queues with unit exponential service rate and global Poisson arrival rate $N\lambda$. Upon arrival each customer chooses a number of queues to be sampled uniformly at random and joins the least loaded sampled queue. Customers are assumed to have cost for both waiting and sampling, and they want to minimize their own expected total cost. We study the supermarket game in a mean field model that corresponds to the limit as N converges to infinity in the sense that (i) for a fixed symmetric customer strategy, the joint equilibrium distribution of any fixed number of queues converges as $N \to \infty$ to a product distribution determined by the mean field model and (ii) a Nash equilibrium for the mean field model is an ϵ-Nash equilibrium for the finite N model with N sufficiently large. It is shown that there always exists a Nash equilibrium for $\lambda < 1$ and the Nash equilibrium is unique with homogeneous waiting cost for $\lambda^2 \leq 1/2$. Furthermore, we find that the action of sampling more queues by some customers has a positive externality on the other customers.

I. INTRODUCTION

A. Problem Formulation

Consider a supermarket game with N FCFS queues with exponential service rate one, and global Poisson arrival rate $N\lambda$. Assume $\lambda < 1$ and let $\mathcal{L} = \{1, \ldots, L_{\max}\}$. Upon arrival, each customer can choose a number $L \in \mathcal{L}$ of queues to be sampled uniformly at random, and the customer joins the sampled queue with the least number of customers, ties being resolved uniformly at random. Customers are assumed to have cost c per unit waiting time and c_s for sampling one queue. These cost parameters are the same for all the customers; heterogeneous waiting costs are considered in Section II-F.

For a fixed customer i, if she chooses L_i queues to sample, and all the other customers choose L_{-i}, then by PASTA (Poisson arrival sees time average), the expected total cost of customer i is given by

$$C(L_i, L_{-i}) = c\mathbb{E}[W(L_i, L_{-i})] + c_s L_i,$$

(1)

J. Xu and B. Hajek are with University of Illinois at Urbana-Champaign. Contact author is J. Xu: jxu18@illinois.edu. Last modified: February 9, 2012.
where \(\mathbb{E}[W(L_i, L_{-i})] \) is the expected waiting time (service time included) under the stationary distribution. The goal of customer \(i \) is to minimize her own expected total cost by choosing the optimal \(L_i \). Note that her own expected waiting time also depends on the other customers’ decisions, \(L_{-i} \). Therefore, it is a game among the customers and we call it the supermarket game, because often in supermarkets customers try to find counters with short queues to check out. In this paper, we characterize the Nash equilibria of the supermarket game and investigate the equilibrium behavior of customers.

Since the supermarket game is symmetric in the customers, we limit ourselves to symmetric strategies. We call \(L^* \in \mathcal{L} \) a pure strategy Nash equilibrium, if

\[
C(L^*, L^*) \leq C(L_i, L^*), \text{ for all } L_i \in \mathcal{L}.
\]

Since a pure strategy Nash equilibrium does not always exist, we are also interested in mixed strategy Nash equilibria.

Let \(\mathcal{P}(\mathcal{L}) \) denote the set of all probability distributions over \(\mathcal{L} \). The mixed strategy \(\mu_i \) for customer \(i \) is simply a probability distribution in \(\mathcal{P}(\mathcal{L}) \), i.e., \(\mu_i(L_i) \) is the probability that customer \(i \) samples \(L_i \) queues. If all the other customers use the mixed strategy \(\mu_{-i} \), then the expected total cost of customer \(i \) using \(\mu_i \) is given by

\[
C(\mu_i, \mu_{-i}) = \sum_{L_i=1}^{L_{\max}} C(L_i, \mu_{-i}) \mu_i(L_i),
\]

where \(C(L_i, \mu_{-i}) \) is the expected total cost of customer \(i \) choosing \(L_i \) given all the others choose the mixed strategy \(\mu_{-i} \).

Define the best response correspondence for customer \(i \) as \(\text{BR}(\mu_{-i}) := \arg \min_{\mu_i} C(\mu_i, \mu_{-i}) \). The correspondence \(\text{BR} \) is a set-valued function from \(\mathcal{P}(\mathcal{L}) \) to subsets of \(\mathcal{P}(\mathcal{L}) \). We call \(\mu^* \in \mathcal{P}(\mathcal{L}) \) a mixed strategy Nash equilibrium if

\[
C(\mu^*, \mu^*) \leq C(\mu_i, \mu^*), \text{ for all } \mu_i \in \mathcal{P}(\mathcal{L}).
\]

It is of interest to show the existence and uniqueness of a mixed strategy Nash equilibrium. However, the supermarket model with finite \(N \) queues is difficult to analyze due to the correlation among queues. For instance, we have no closed form expression for the stationary distribution. Therefore, we study the supermarket game in a mean field model. We also justify the mean field model and show that for any \(\epsilon > 0 \), a Nash equilibrium in the mean field model is an \(\epsilon \)-Nash equilibrium in the finite \(N \) model with sufficiently large \(N \).
\textbf{B. Motivation}

The supermarket game is relevant in the networking scenario where (1) the customers have options to choose which queue to join for their own interest; (2) there is no central dispatcher or tracker to route customers to particular servers; (3) global queue length information is not available and customers randomly choose a finite number of queues to probe; (4) there is cost associated with probing a server and waiting in a queue. For example, in a communication or transportation network, the flows or traffic can decide how many routes to be probed in order to find the route with small delay. Also, in large scale server farms or cloud clusters, the customers can decide how many servers to be probed to find the server with minimum delay. We address the following natural questions for these systems: What is the equilibrium behavior of the customers or flows? Is sampling or probing more queues by some customers beneficial or detrimental to the others?

\textbf{C. Main Results}

We study the supermarket game in a mean field model with homogeneous waiting cost and sampling cost. It is shown that:

\begin{itemize}
\item There exists a mixed strategy Nash equilibrium for all arrival rates $\lambda < 1$.
\item Nash equilibrium is unique for arrival rates $\lambda^2 \leq \frac{1}{2}$.
\item Nash equilibrium is unique for all values of c and c_s if and only if a local monotonicity condition is satisfied. This condition is used to explore the uniqueness numerically for $\lambda^2 > \frac{1}{2}$.
\item Multiple Nash equilibria exist for a particular example with $\lambda = 0.999$ and $L_{\text{max}} = 25$.
\item Nash equilibrium is unique for $\lambda = 0.999$ if the customers can only sample either one queue or two queues.
\item The action of sampling more queues by some customers has a positive externality on the other customers, which further implies that customers sample no more queues for any Nash equilibrium than for the socially optimal strategy.
\end{itemize}

Then, we consider the heterogenous waiting cost case and prove the existence of pure strategy Nash equilibrium in that case.

We also study the supermarket game with finite N. It is proved that:

\begin{itemize}
\item A propagation of chaos result and a coupling result similar to the ones in [1] and [2] hold, and thus the joint equilibrium distribution of any fixed number of queues converges as $N \to \infty$ to a product distribution determined by the mean field model.
\item A Nash equilibrium in the mean field model is an ϵ-Nash equilibrium in the finite N model.
\end{itemize}
The action of sampling more queues by some customers has a nonnegative externality on the customers who only sample one queue. However, for customers sampling more than one queue, it is unknown whether the externality is positive.

D. Related Work

The supermarket game is based on the classical supermarket model in which customers sample L queues. The supermarket model is an abstraction of path selection in networks and task assignment at server farms, and has been extensively studied in the literature. Vvedenskaya et. al. [3] shows that in the mean field model, the equilibrium queue sizes decay doubly exponentially for $L \geq 2$. Turner [2] proves an interesting coupling result for fixed N, which implies that the load in the network is handled better and more evenly as L increases. Graham [1] proves a chaoticity result on the path space, and Mitzenmacher [4] studies the model using Kurtz’s theorem. Furthermore, Luczak and McDiarmid [5] prove that for $L \geq 2$, the maximum queue length scales as $\ln \ln n / \ln L + O(1)$. The recent paper by Bramson et. al. [6] analyzes the supermarket model with general service time distributions. Ganesh et. al. [7] studies a variant of the supermarket model, where the customers initially join an arbitrary server, but may switch to other servers later independently at random.

In addition to the supermarket model, the mean field approach exploited in this paper, has also been used to analyze scheduling in queueing networks. For example, the CSMA algorithm in a wireless local area network is studied via mean field approach in [8]. Also, a recent work [9] investigates the performance tradeoff between centralized and distributed scheduling in a multi-server system for the mean field model. It shows that even a little centralization is enough to provide exponentially smaller delay than purely distributed scheduling. We note that, however, none of above work considers a game-theoretic framework.

The supermarket game proposed in this paper falls into a large research area involving equilibrium behavior of customers and servers, known as queueing games. A comprehensive survey can be found in [10]. A particularly relevant paper by Hassin and Haviv [11] studies a two line queueing system, where upon arrival each customer decides whether to purchase the information about which line is shorter, or randomly selects one of the lines. It shows how to find a Nash equilibrium and examines the externality imposed by an informed customer on the others.

Finally, the supermarket game is also related to and partially motivated by the theory of mean field games in the context of dynamical games [12], [13]. The mean field game approach studies a weakly coupled, N player game by letting $N \to \infty$. However, we caution that in the supermarket game, we
consider an infinite sequence of customers instead of finitely many customers, which is different from an N player game.

E. Notation and Outline

Let \mathcal{X} denote a separable and complete metric space, $\mathcal{M}(\mathcal{X})$ and $\mathcal{P}(\mathcal{X})$ be the space of measures and space of probability measures on \mathcal{X}, respectively. In this paper, \mathcal{X} will be \mathcal{L}, \mathbb{N}, $\mathbb{D}(\mathbb{R}_+,\mathbb{N})$, or the space of probability measures on these spaces. Let $\mathcal{L}(X)$ denote the law of a random variable X on \mathcal{X} and δ_x denote a point probability measure at $x \in \mathcal{X}$. Weak convergence of probability measures is denoted by \Rightarrow.

Define on $\mathcal{M}(\mathcal{X})$ natural duality brackets with $L^\infty(\mathcal{X})$ as: for $\phi \in L^\infty(\mathcal{X})$ and $\mu \in \mathcal{M}(\mathcal{X})$, $\langle \phi, \mu \rangle = \int \phi d\mu$. Without ambiguity, brackets are also used to denote the quadratic covariation of continuous time martingales: let M_1, M_2 be two continuous time martingales, then $\langle M_1, M_2 \rangle$ is the standard quadratic covariation process. Define the total variation norm on $\mathcal{M}(\mathcal{X})$ as $\|\mu\|_{TV} = \sup \{\langle f, \mu \rangle : \|f\|_\infty \leq 1\}$. Let $\|\mu_1 - \mu_2\|_{TV}$ be the corresponding total variation distance. For $\mu_1, \mu_2 \in \mathcal{P}(\mathcal{L})$, use $\mu_1 \leq_{st} \mu_2$ to denote that μ_1 is first-order stochastically dominated by μ_2, i.e., $\sum_{j=l}^{L_{\max}} \mu_1(j) \leq \sum_{j=l}^{L_{\max}} \mu_2(j), \forall l \in \mathcal{L}$. For $x \in \mathbb{R}$, let $\lfloor x \rfloor$ denote the maximum integer no larger than x.

The organization of this paper is as follows. We start with the mean field analysis in Section II. The supermarket game with finite N is considered in Section III. Section IV ends the paper with concluding remarks. Miscellaneous details and proofs are in the Appendix.

II. SUPERMARKET GAME IN A MEAN FIELD MODEL

A. Mean Field Model

In this subsection, we derive an expression for the expected total cost incurred by a customer in a mean field model, by assuming that queue lengths (including customers in service) are independent and identically distributed.

Suppose all the customers except customer i use the mixed strategy μ_{-i}, and let $r_t(k)$ denote the fraction of queues with at least k customers at time t in the mean field model. Then, the mean field equation is given by

$$\frac{dr_t(k)}{dt} = \sum_{l=1}^{L_{\max}} \lambda_{l-1} (r_t^l(k-1) - r_t^l(k)) - (r_t(k) - r_t(k+1)), \quad (3)$$

which is rigorously derived in Section III. For now, let us provide some intuition for each of the drift terms in (3):
The term \(\lambda u_{-i}(r_{t}^{l}(k-1) - r_{t}^{l}(k)) \) corresponds to the arrivals of customers sampling \(l \) queues. Because queue lengths are i.i.d, \(r_{t}^{l}(k-1) \) is the probability that the minimum queue length of \(l \) uniformly sampled queues is greater than or equal to \(k - 1 \). Thus, \((r_{t}^{l}(k-1) - r_{t}^{l}(k)) \) is the probability that the minimum queue length of \(l \) uniformly sampled queues is \(k - 1 \), which is the same as the probability that a customer who samples \(l \) queues joins a queue with \(k - 1 \) customers. Note that \(r_{t}(k) \) is increased if a customer joins a queue with \(k - 1 \) customers. Therefore, \(\sum_{l=1}^{r_{\text{max}}} \lambda u_{-i}(l) \left(r_{t}^{l}(k-1) - r_{t}^{l}(k) \right) \) is the aggregate drift for \(r_{t}(k) \) corresponding to arrivals.

The term \((r_{t}(k) - r_{t}(k+1)) \) corresponds to departures of customers at queues with exactly \(k \) customers.

Since we are interested in the stationary regime, set \(\frac{dr_{t}(k)}{dt} = 0 \) to yield equations for the equilibrium distribution denoted by \(r_{\mu_{-i}}(k), k \geq 0 \). For \(k \geq 1 \),

\[
\lambda \mathbb{E}_{\mu_{-i}} \left[r_{\mu_{-i}}^{L}(k-1) - r_{\mu_{-i}}^{L}(k) \right] = r_{\mu_{-i}}(k) - r_{\mu_{-i}}(k+1),
\]

where the random variable \(L \) is distributed as \(\mu_{-i} \). By summing the above equation for \(k_{0} \leq k < +\infty \) using telescoping sums and changing \(k_{0} \) to \(k \), it follows that

\[
r_{\mu_{-i}}(0) = 1, r_{\mu_{-i}}(k) = \lambda u_{\mu_{-i}}(r_{\mu_{-i}}(k-1)), \tag{4}
\]

where \(u_{\mu_{-i}}(x) := \mathbb{E}_{\mu_{-i}}[x^{L}] = \sum_{l=1}^{r_{\text{max}}} x^{l} \mu_{-i}(l) \).

Because queues are independent in the mean field model,

\[
\mathbb{E}[W(L_{i}, \mu_{-i})] = 1 + \mathbb{E}[N(L_{i})] = 1 + \sum_{k=1}^{\infty} \mathbb{P}[N(L_{i}) \geq k] = \sum_{k=0}^{\infty} r_{\mu_{-i}}^{L_{i}}(k),
\]

where \(N(L_{i}) \) is the length of the shortest queue among the \(L_{i} \) sampled queues. Therefore,

\[
C(L_{i}, \mu_{-i}) = c \sum_{k=0}^{\infty} x_{\mu_{-i}}^{L_{i}}(k) + c_{2} L_{i} \tag{5}
\]

Since \(g(L) = x^{L} \) is convex in \(L \in \mathbb{R} \) for \(x \geq 0 \) and strictly convex for \(0 < x < 1 \), it follows that \(\mathbb{E}[W(L, \mu_{-i})] \) and \(C(L, \mu_{-i}) \) are strictly convex in \(L \in \mathbb{R} \).

Next, we prove several key lemmas which are useful in the sequel.

Lemma 1. The best response set \(BR(\mu_{-i}) \) consists of probability measures concentrated on an integer or two consecutive integers.

Proof: Let \(\mu_{i} \in BR(\mu_{-i}) \). Suppose there exists \(L_{1} < L_{2} < L_{3} \in \mathcal{L} \) such that \(\mu_{i}(L_{1}) > 0 \) and \(\mu_{i}(L_{3}) > 0 \). Then, by the definition of BR,

\[
C(L_{1}, \mu_{-i}) = C(L_{3}, \mu_{-i}) \leq C(L_{2}, \mu_{-i}),
\]
which contradicts the fact that $C(L, \mu_{-i})$ is strictly convex in L and thus the conclusion follows.

Remark 1. Lemma 1 implies that a probability measure $\mu \in \text{BR}(\mu_{-i})$ can be identified with a unique real number $L \in [1, L_{\max}]$. A number $L \in [1, L_{\max}]$ with $L = \lfloor L \rfloor + p$ for some $0 \leq p < 1$ is identified with the probability measure with mass $1 - p$ at $\lfloor L \rfloor$ and p at $\lfloor L \rfloor + 1$. Thus, we use real numbers to refer to probability measures in $\text{BR}(\mu_{-i})$.

The next lemma translates the stochastic dominance relations between strategies into the stochastic dominance relations between mean field equilibrium distributions.

Lemma 2. Fix any $\mu_1, \mu_2 \in \mathcal{P}(\mathcal{L})$ such that $\mu_1 \leq_{st} \mu_2$. Then, for all $k \in \mathbb{N}$, $r_{\mu_1}(k) \geq r_{\mu_2}(k)$. Furthermore, if $\mu_1 <_{st} \mu_2$, then for all $k \geq 2$, $r_{\mu_1}(k) > r_{\mu_2}(k)$. Also, it follows that for all $k \in \mathbb{N}$ and all $\mu \in \mathcal{P}(\mathcal{L})$, $r_{\mu}(k) \leq \lambda^k$ and $C(L, \mu)$ is bounded independently of L and μ.

Proof: Since $\mu_1 \leq_{st} \mu_2$, it follows that for all $x \in [0, 1]$, $u_{\mu_1}(x) \geq u_{\mu_2}(x)$. We prove the lemma by induction. If $k = 0$, then $r_{\mu_1}(0) = r_{\mu_2}(0) = 1$ and $r_{\mu_1}(0) \geq r_{\mu_2}(0)$ trivially holds. If $r_{\mu_1}(k) \geq r_{\mu_2}(k-1)$, then

$$r_{\mu_1}(k) = \lambda u_{\mu_1}([r_{\mu_1}(k-1)]) \geq \lambda u_{\mu_1}([r_{\mu_2}(k-1)])$$

$$\geq \lambda u_{\mu_2}([r_{\mu_2}(k-1)]) = r_{\mu_2}(k).$$

Therefore, for all $k \in \mathbb{N}$, $r_{\mu_1}(k) \geq r_{\mu_2}(k)$. Moreover, if $\mu_1 <_{st} \mu_2$, it follows that for all $x \in (0, 1)$, $u_{\mu_1}(x) > u_{\mu_2}(x)$. Thus, for all $k \geq 2$, $r_{\mu_1}(k) > r_{\mu_2}(k)$.

Let $\mu_1 = \delta_1$ be a point measure at singleton 1. Then, $r_{\mu_1}(k) = \lambda^k$. Because for any $\mu \in \mathcal{P}(\mathcal{L})$, $\delta_1 \leq_{st} \mu$, $r_{\mu}(k) \leq \lambda^k$ and $C(L, \mu) \leq c/(1 - \lambda) + c_L L_{\max}$. ■

The next lemma states that $C(\mu_i, \mu_{-i})$ is a continuous function.

Lemma 3. $C(\mu_i, \mu_{-i})$ is jointly continuous with respect to μ_i and μ_{-i}.

Proof: See the proof in Appendix A. ■

B. Existence and Uniqueness of Nash Equilibrium

In this subsection, we show the existence of a mixed strategy Nash equilibrium. It is easy to see that if there exists μ^* with $\mu^* \in \text{BR}(\mu^*)$, i.e., μ^* is a fixed point of the best response correspondence, then μ^* is a mixed strategy Nash equilibrium. Thus, it suffices to show the existence of such a fixed point. The Kakutani fixed point theorem is used to prove it.
Theorem 1. The supermarket game has a mixed strategy Nash equilibrium in the mean field model.

Proof: See the proof in Appendix B. ■

The uniqueness of mixed strategy Nash equilibrium is proved next in case $\lambda^2 \leq 1/2$. Some definitions and lemmas are introduced first.

For customer i, her *marginal value of sampling* at an integer L_i with all the others adopting μ_{-i}, is defined as

$$V(L_i, \mu_{-i}) := \mathbb{E}[W(L_i, \mu_{-i})] - \mathbb{E}[W(L_i + 1, \mu_{-i})].$$

Intuitively, $V(L_i, \mu_{-i})$ characterizes the reduction of expected waiting time when customer i increases the number of sampled queues from L_i to $L_i + 1$. For ease of notation, define $V(0, \mu_i) = \infty$ and $V(L_{\max}, \mu_i) = 0$. Since $\mathbb{E}[W(L_i, \mu_{-i})]$ is strictly convex in $L \in \mathbb{R}$, $V(L_i, \mu_{-i})$ is strictly decreasing in L_i. The following lemma characterizes the best response using $V(L_i, \mu_{-i})$.

Lemma 4. Fix any $\mu_{-i} \in \mathcal{P}(\mathcal{L})$ and any integer $L_i \in \mathcal{L}$. Then $L_i \in BR(\mu_{-i})$ if and only if

$$V(L_i, \mu_{-i}) \leq c_s/c \leq V(L_i - 1, \mu_{-i}).$$

(6)

Furthermore, fix any non-integer $L_i \in [1, L_{\max}]$. Then $L_i \in BR(\mu_{-i})$ if and only if

$$V([L_i], \mu_{-i}) = c_s/c.$$

(7)

Proof: See the proof in Appendix C. ■

The next lemma proves a global monotonicity property of $V(L_i, \mu_{-i})$ in case $\lambda^2 \leq 1/2$, which is useful for showing the uniqueness of Nash equilibrium in that case.

Lemma 5. Assume $\lambda^2 \leq 1/2$ and fix any $\mu_{-i}, \tilde{\mu}_{-i} \in \mathcal{P}(\mathcal{L})$ such that $\mu_{-i} <_{st} \tilde{\mu}_{-i}$. Then $V(L_i, \mu_{-i}) > V(L_i, \tilde{\mu}_{-i})$ for $1 \leq L_i \leq L_{\max} - 1$. Furthermore, let $L_i \in BR(\mu_{-i})$ and $\tilde{L}_i \in BR(\tilde{\mu}_{-i})$, then $\tilde{L}_i \leq L_i$.

Proof: See the proof in Appendix B. ■
Proof: See the proof in Appendix D.

Remark 2. The key ingredient in the proof of Lemma 5 is to show that \(r_{\mu_{-i}}(2) \leq L_i/(L_i + 1) \), which is true for any \(L_i \) and \(\mu_{-i} \), if \(\lambda^2 \leq 1/2 \). The same argument is used in the next subsection.

Lemma 5 implies that for \(\lambda^2 \leq 1/2 \), a customer tends to sample fewer queues when all the other customers sample more queues. This is an instance of avoid the crowd behavior [10], leading to uniqueness of the Nash equilibrium.

Theorem 2. If \(\lambda^2 \leq 1/2 \), the supermarket game has a unique Nash equilibrium in the mean field model.

Proof: A Nash equilibrium exists by Theorem 1. Let \(L^*, \bar{L}^* \in [1, L_{\text{max}}] \) denote two possible Nash equilibria; we show that \(L^* = \bar{L}^* \).

Without loss of generality, suppose \(L^* < \bar{L}^* \); by Lemma 5, \(L^* \geq \bar{L}^* \), which is a contradiction and concludes the proof.

However, the marginal value of sampling \(V(L_i, L_{-i}) \) is not always increasing in \(L_{-i} \in [1, L_{\text{max}}] \) (\(L_{-i} \) refers to a probability distribution here) for all \(\lambda < 1 \). By numerical results, we find that when \(\lambda = 0.99 \) and \(L_i = 5 \), \(V(L_i, L_{-i}) \) is increasing with \(L_{-i} \) for \(11 \leq L_{-i} \leq 16 \), as shown in Fig. 1. This implies that sometimes a customer tends to sample more queues when all the others sample more queues. This follow the crowd behavior can lead to multiple Nash equilibria. Such a scenario is described in the next subsection.

C. Computation of Nash Equilibrium and Local Monotonicity Condition

In this subsection, we show how to find a Nash equilibrium and establish the uniqueness of Nash equilibrium if a local monotonicity condition is satisfied. Then, a specific example where multiple Nash equilibria exist is constructed.

The following lemma determines a Nash equilibrium using the marginal value of sampling.

Lemma 6. Suppose \(L^* \) is determined by the following procedure:

(a) If \(V(L_{\text{max}} - 1, L_{\text{max}}) \geq \frac{c}{c} \), set \(L^* = L_{\text{max}} \). Otherwise
(b) Let \(\hat{L} := \min\{L \in \mathcal{L} : V(L, L + 1) < \frac{c}{c}\} \),

 (b1) if \(V(\hat{L}, \hat{L}) \leq \frac{c}{c} \), set \(L^* = \hat{L} \).

 (b2) if \(V(\hat{L}, \hat{L}) > \frac{c}{c} \), set \(L^* = \hat{L} + q^* \), where \(0 < q^* < 1 \) is the solution of \(V(\hat{L}, \hat{L} + q^*) = \frac{c}{c} \).

Then, \(L^* \) is a Nash equilibrium for the supermarket game in the mean field model.

Proof: See the proof in Appendix E.
Next, we introduce a local monotonicity condition and show the uniqueness of Nash equilibrium for all values of c and c_s if and only if the local monotonicity condition is satisfied.

Definition 1. Given $0 < \lambda < 1$ and any integer $L_{\text{max}} \geq 1$, the local monotonicity condition is satisfied for $(\lambda, L_{\text{max}})$ if $V(L, L+q)$ is strictly decreasing over $0 \leq q \leq 1$ for each integer L with $1 \leq L \leq L_{\text{max}} - 1$.

Theorem 3. Given $0 < \lambda < 1$ and any integer $L_{\text{max}} \geq 1$, the supermarket game in the mean field model has a unique Nash equilibrium for all values of c and c_s, if and only if the local monotonicity condition is satisfied for $(\lambda, L_{\text{max}})$.

Proof: See the proof in Appendix F.

The following numerical results, depicted in Fig. 2, show that when $\lambda = 0.99$, $V(L, L+q)$ is indeed strictly decreasing with respect to $0 \leq q \leq 1$ for $L = 1, \ldots, 9$. For $L \geq 10$,

$$r_{L+q}(2) \leq r_L(2) \leq r_{10}(2) = 0.99^{(10^2-1)/(10^2-1)} \leq 10/11 \leq L/(L+1),$$

which implies that $V(L, L+q)$ is strictly decreasing over $0 \leq q \leq 1$, in view of the proof for Lemma 5. Therefore, for $\lambda = 0.99$ and any integer $L_{\text{max}} \geq 1$, there exists a unique Nash equilibrium for all
values of c and c_s. However, when $\lambda = 0.999$ and $L_{\text{max}} = 25$, $V(L, L + q)$ is strictly increasing in q for $L = 18, \ldots, 24$. Therefore, multiple Nash equilibria exist if $c_s/c = 0.0148$, as depicted in Fig. 3. We see that $L = 19, \ldots, 24$ are pure strategy Nash equilibria and mixed strategy Nash equilibria exist between each two consecutive pure strategy Nash equilibria.

D. Special Case: Two Choices

In this subsection, we consider a simple special case where all the customers only have two choices, 1 or 2.

Fixing a customer i, if $L_{\sim i} = 1 + q$, i.e., all the other customers choose one queue to sample with probability $1 - q$ and two queues with probability q, then the stationary distribution in the mean field model can be derived as

$$r_q(0) = 1, r_q(k) = \lambda u_q(r_q(k - 1)), k \geq 1,$$

where $u_q(x) = x^2q + x(1 - q)$. Note that this stationary distribution has also been derived in Section 4.4.1 of [14].

Figure 2. For $\lambda = 0.99$, the marginal value of sampling $V(L, L + q)$ with increasing q from 0 to 1 and varying L.

Then, the total expected cost of customer i choosing $1 + p$ is given by

$$C(1 + p, 1 + q) = (1 - p)(c \sum_{k=0}^{\infty} r_q(k) + c_s) + p(c \sum_{k=0}^{\infty} r_q^2(k) + 2c_s).$$

The marginal value of sampling of customer i at 1 is given by

$$V(1, 1 + q) = \sum_{k=0}^{\infty} r_q(k)(1 - r_q(k)).$$

It follows that the best response under $L_{-i} = 1 + q$ is given by

$$\text{BR}(1 + q) = \begin{cases}
1 & \text{if } c_s/c > V(1, 1 + q), \\
2 & \text{if } c_s/c < V(1, 1 + q), \\
[1, 2] & \text{if } c_s/c = V(1, 1 + q).
\end{cases} \tag{8}$$

By numerical results depicted in Fig. 4, we find that $V(1, 1 + q)$ is strictly decreasing in q for a sequence of λ up to 0.999. This is strong numerical evidence that the local monotonicity condition is satisfied for all $\lambda < 1$. Therefore, by Theorem 3 and Lemma 4, we conjecture that: (i) if $V(1, 1) \leq c_s/c$, then $L^* = 1$ is the unique Nash equilibrium; (ii) if $V(1, 2) \geq c_s/c$, then $L^* = 2$ is the unique Nash equilibrium; (iii) otherwise, there exists a $p^* \in (0, 1)$ such that $V(1, 1 + p^*) = c_s/c$, and thus $L^* = 1 + p^*$ is the unique mixed strategy Nash equilibrium.
Figure 4. The natural logarithm of $V(1, 1 + q)$ with increasing q from 0 to 1, for varying arrival rate λ.

E. Externality and Social Optimum

The action of sampling more queues by some customers has an effect on the waiting time of others. This effect is called the *externality* associated with the action and the externality is positive if the action reduces the mean waiting time of the other customers. In this subsection, the externality in the mean field model is analyzed. It is not clear whether the externality is positive at first sight. On one hand, choosing a large number of queues to sample helps a customer find a less loaded queue and hence reduces future arrivals’ opportunity. On the other hand, it also leads to a well balanced system and reduces the average waiting time.

The following corollary of Lemma 2 implies that the action of sampling more queues by some customers has a positive externality on the other customers in the mean field model. To see it, suppose in system 1, all the customers adopt a strategy μ_1; while in system 2, a fraction $0 < p \leq 1$ of them samples more queues, i.e., adopts a new strategy μ_3 with $\mu_1 <_{st} \mu_3$ and all the others still adopt the strategy μ_1. For system 2, it is equivalent to assume that all the customers adopt a strategy μ_2 with $\mu_2 = p\mu_3 + (1 - p)\mu_1$. It follows that $\mu_1 <_{st} \mu_2$. By Corollary 1, system 2 has smaller mean waiting time.
Corollary 1. If $\mu_1, \mu_2 \in \mathcal{P}(L)$ with $\mu_1 \lesssim \mu_2$, then for all $L \in L$, $\mathbb{E}[W(L, \mu_1)] \leq \mathbb{E}[W(L, \mu_2)]$.

Proof: Because $\mu_1 \lesssim \mu_2$, by Lemma 2, $r_{\mu_1}(k) > r_{\mu_2}(k), \forall k \geq 2$. Hence, the conclusion follows by invoking the definition of $\mathbb{E}[W(L, \mu)]$.

Remark 3. However, it is unknown whether the action of sampling more queues by some customers has a positive externality for finite N case. See Section III-C.

Next, we analyze the social optimum, i.e, the minimum of total cost of all the customers. Suppose all the customers use the mixed strategy μ; the expected total cost per unit time $C_{\text{sum}}(\mu)$ is given by

$$C_{\text{sum}}(\mu) = \lambda C(\mu, \mu) = \lambda \sum_{L=1}^{L_{\text{max}}} \mu(L) C(L, \mu) = \lambda \sum_{L=1}^{L_{\text{max}}} \mu(L) \left(\sum_{k=0}^{\infty} r_{\mu}^L(k) + c_s L \right).$$

Therefore, a minimizer of the following minimization problem:

$$\min_{\mu \in \mathcal{P}(L)} \sum_{L=1}^{L_{\text{max}}} \mu(L) \left(\sum_{k=0}^{\infty} r_{\mu}^L(k) + c_s L \right),$$

is a social optimum.

Lemma 7. The social optimum μ_{soc}^* is a probability measure concentrated on either an integer or two consecutive integers.

Proof: See the proof in Appendix G.

Theorem 4. No Nash equilibrium μ^* can strictly stochastically dominate the social optima μ_{soc}^* in the mean field model.

Proof: The total cost can be decomposed into two terms as

$$\sum_{L=1}^{L_{\text{max}}} \mu(L) C(L, \mu) = \sum_{L=1}^{L_{\text{max}}} \mu(L) C(L, \mu^*) + \sum_{L=1}^{L_{\text{max}}} \mu(L) \left(C(L, \mu) - C(L, \mu^*) \right).$$

Suppose the Nash equilibrium $\mu^* \gtrsim \mu_{\text{soc}}^*$, then by the positive externality result, we have

$$C(L, \mu_{\text{soc}}) - C(L, \mu^*) > 0.$$

Also, by definition of μ^*,

$$\sum_{L=1}^{L_{\text{max}}} \mu_{\text{soc}}(L) C(L, \mu^*) \geq \sum_{L=1}^{L_{\text{max}}} \mu(L) C(L, \mu^*).$$

Therefore,

$$\sum_{L=1}^{L_{\text{max}}} \mu_{\text{soc}}(L) C(L, \mu_{\text{soc}}) > \sum_{L=1}^{L_{\text{max}}} \mu^*(L) C(L, \mu^*),$$
which is a contradiction to the definition of μ_{soc}. $
$

Remark 4. Since Nash equilibrium L^* and social optimum μ_{soc} can be identified with real numbers in $[1, L_{max}]$, the above lemma further implies that $L^* \leq L_{soc}$, i.e., no Nash equilibrium can be above the social optimum.

F. Heterogeneous Waiting Cost

In this subsection, the heterogeneous waiting cost is considered. In particular, assume that there is a nondegenerate continuous probability density function for waiting cost c, i.e., $\int_0^{c_{max}} f(c) dc = 1$.

Fix a customer i, let $L_i(\cdot)$ denote a function from $[0, c_{max}]$ to L. We call $L_i(\cdot)$ the strategy of customer i. In particular, if customer i has a waiting cost c, then she chooses $L_i(c)$ queues to sample uniformly at random. Now suppose all the other customers use $L_{-i}(\cdot)$, the expected total cost for customer i is given by

$$C(L_i, L_{-i}) = cE[W(L_i(c), L_{-i})] + c_s L_i(c). \quad (9)$$

The goal of customer i is to minimize the expected total cost by choosing the optimal $L_i(\cdot)$. Define the best response correspondence as $BR(L_{-i}(\cdot)) := \arg \min_{L_i(\cdot)} C(L_i, L_{-i})$.

If $L_i(\cdot) \in BR(L_{-i}(\cdot))$, then $L_i(\cdot)$ must be a nondecreasing step function with respect to c as depicted in Fig. 5, which is proved in the following lemma.

Lemma 8. Suppose $L_i(\cdot) \in BR(L_{-i}(\cdot))$, then $L_i(\cdot)$ is a nondecreasing step function in c.

Proof: Suppose $0 \leq c < \hat{c} \leq c_{max}$, since $L_i(\cdot) \in BR(L_{-i}(\cdot))$, we have

$$cE[W(L_i(c), L_{-i})] + c_s L_i(c) \leq cE[W(L_i(\hat{c}), L_{-i})] + c_s L_i(\hat{c}),$$

$$\hat{c}E[W(L_i(\hat{c}), L_{-i})] + c_s L_i(\hat{c}) \leq \hat{c}E[W(L_i(c), L_{-i})] + c_s L_i(c).$$

Adding the above two inequalities up, we get

$$(\hat{c} - c)(E[W(L_i(\hat{c}), L_{-i})] - E[W(L_i(c), L_{-i})]) \leq 0.$$

Therefore $E[W(L_i(\hat{c}), L_{-i})] \leq E[W(L_i(c), L_{-i})]$ and thus $L_i(\hat{c}) \geq L_i(c)$.

Define the strategy space S as the collection of all possible nondecreasing step functions from $[0, c_{max}]$ to L. By Lemma 8, it suffices to consider S for finding pure strategy Nash equilibrium. There is a bijective mapping between the strategy space S and probability space $P(L)$. In particular, suppose $L(\cdot) \in S$ is given, and let $0 = c_0 < c_1 < \cdots < c_{L_{max}} = c_{max}$ denote the jumping points. Then, define $\mu(l) = \int_{c_{l-1}}^{c_l} f(c) dc$. On the other hand, suppose $\mu \in P(L)$ is given, then the equation
The best response strategy \(L_i(\cdot) \in \text{BR}(L_{-i}(\cdot)) \) is a non-decreasing step function. The jumping points are denoted by \(0 = c_0 < c_1 < \cdots < c_{L_{\text{max}}} = c_{\text{max}} \).

\[
\mu(l) = \int_{c_{l-1}}^{c_l} f(c) dc
\]

is solved to get the unique jumping points \(0 = c_0 < c_1 < \cdots < c_{L_{\text{max}}} = c_{\text{max}} \).

Thus, \(L(\cdot) \) can be constructed as \(L(c) = l \) for \(c_{l-1} \leq c < c_l \). Define a metric on the strategy space \(S \) as \(d(L_1(\cdot), L_2(\cdot)) := ||\mu_{L_1} - \mu_{L_2}|| \). Also, Let \(F \) denote the bijective mapping from \(L(\cdot) \) to \(\mu_L \) and \(F^{-1} \) denote the inverse mapping. It is easy to see that \(F \) and \(F^{-1} \) are continuous.

Next, we show the existence of a pure strategy Nash equilibrium in the mean field model. First, let us derive the expression of \(\mathbb{E}[W(L_i, L_{-i})] \) in mean field equilibrium. Suppose all the customers except customer \(i \) use the strategy \(L_{-i}(\cdot) \). Due to the bijective mapping between the strategy space and probability space, it is equivalent to consider the case in which all the customers use the mixed strategy \(\mu_{L_{-i}} \). Therefore, the mean field equilibrium distribution satisfies \(r_{L_{-i}}(k) = r_{\mu_{L_{-i}}}(k) \), and the expected waiting time of customer \(i \) using strategy \(L_i(\cdot) \) is given by

\[
\mathbb{E}[W(L_i(c), L_{-i})] = \mathbb{E}[W(L_i(c), \mu_{L_{-i}})] = \sum_{k=0}^{\infty} r_{\mu_{L_{-i}}}(k).
\]

Lemma 9. The best response correspondence \(\text{BR}(L_{-i}) \) is a continuous function.

Proof: See the proof in Appendix H.

Define the best response from \(\mathcal{P}(L) \) to \(\mathcal{P}(L) \) as \(\overline{\text{BR}}(\mu_{-i}) := F(\text{BR}(F^{-1}(\mu_{-i}))) \). Then the existence of a pure strategy Nash equilibrium is equivalent to the existence of a fixed point of \(\overline{\text{BR}} \). The Brouwer fixed point theorem is used to prove it.
Figure 6. The expected waiting cost of customer i choosing L while the others choosing a fixed L_{-i}. In this example, $L_{\text{max}} = 5$ and c_1, \ldots, c_4 are the jumping points of $L_i(\cdot) \in \text{BR}(L_{-i}(\cdot))$.

(Brouwer’s Theorem) Every continuous function g from a convex compact subset of a Euclidean space to itself has a fixed point.

Theorem 5. The supermarket game with heterogeneous waiting cost has a pure strategy Nash equilibrium in the mean field model.

Proof: Note that BR is a continuous function because F, F^{-1}, and BR are continuous functions. Also, $\mathcal{P}(\mathcal{L})$ is a convex compact subset of an Euclidean space. Therefore, by Brouwer’s fixed point theorem, BR has a fixed point μ^* and thus $F^{-1}(\mu^*)$ is a pure strategy Nash equilibrium.

In the sequel, the stochastic ordering between two possible pure strategy Nash equilibria is analyzed. For customer i, her marginal value of sampling at an integer $L_i(c)$ with all the others adopting $L_{-i}(\cdot)$ is given by

$$V(L_i(c), L_{-i}(\cdot)) = V(L_i(c), \mu_{L_{-i}}) = \sum_{k=0}^{\infty} \left(r_{\mu_{L_{-i}}}^L(k) - r_{\mu_{L_{-i}}}^{L_i(c)+1}(k) \right).$$

The next lemma generalizes Lemma 5 and proves a global monotonicity result of $V(L_i(c), L_{-i}(\cdot))$.
Lemma 10. Assume $\lambda^2 \leq 1/2$ and fix any $L_{-i}(-)$, $\tilde{L}_{-i}(-) \in S$ such that $\mu_{L_{-i}} <_{st} \mu_{\tilde{L}_{-i}}$. Then $V(L_{i}(c), L_{-i}) > V(L_{i}(c), \tilde{L}_{-i})$ for all $1 \leq L_{i}(c) \leq L_{\max} - 1$. Furthermore, let $L_{i}(-) \in BR(L_{-i}(-))$ and $\tilde{L}_{i}(-) \in BR(\tilde{L}_{-i}(-))$, then $\mu_{L_{i}} \leq_{st} \mu_{\tilde{L}_{i}}$.

Proof: By Lemma 5, it follows that $V(L_{i}(c), L_{-i}) > V(L_{i}(c), \tilde{L}_{-i})$ for all $1 \leq L_{i}(c) \leq L_{\max} - 1$. Next, we show that $\mu_{L_{i}} \leq_{st} \mu_{\tilde{L}_{i}}$. Denote the jumping points of L_{i} and \tilde{L}_{i} by $0 = c_0 < c_1 < \cdots < c_{L_{\max}} = c_{\max}$ and $0 = \tilde{c}_0 < \tilde{c}_1 < \cdots < \tilde{c}_{L_{\max}} = \tilde{c}_{\max}$ respectively. It suffices to show that $c_j \leq \tilde{c}_j$ for $0 \leq j \leq L_{\max}$. Fig. 6 shows that for $1 \leq j \leq L_{\max} - 1$,

$$c_j = \frac{c_s}{V(j, L_{-i})}, \quad \tilde{c}_j = \frac{c_s}{V(j, \tilde{L}_{-i})},$$

which implies that $c_j \leq \tilde{c}_j$.

Corollary 2. Let $L^*_1(-)$ and $L^*_2(-)$ denote two possible distinct Nash equilibria for supermarket game with heterogeneous waiting cost in the mean field model. If $\lambda^2 \leq \frac{1}{2}$, then $\mu_{L^*_1}$ and $\mu_{L^*_2}$ cannot be stochastically ordered.

Proof: Suppose $\mu_{L^*_1} <_{st} \mu_{L^*_2}$. Then, by Lemma 10, $\mu_{L^*_1} \geq_{st} \mu_{L^*_2}$, which is a contradiction to assumption and concludes the proof.

Remark 5. We are unable to prove the uniqueness of pure strategy Nash equilibrium because stochastic dominance is not a total order, i.e., there exists μ_1 and μ_2 which cannot be stochastically ordered.

III. Supermarket Game for finite N

In this section, the supermarket game for finite N is considered. We first show that the mean field model is the right limit as $N \to \infty$, which further implies that a Nash equilibrium in the mean field model is an ϵ-Nash equilibrium in the finite N model. Then, the externality of sampling more queues by some customers in the finite N model is studied.

A. Propagation of Chaos

In this subsection, we rigorously prove the propagation of chaos and coupling result for the finite N model with all the customers using strategy $\mu \in P(L)$. Our proof techniques are essentially the same as [1] and [2]. The only difference is that we consider a slightly more general case where the customers’ choices are random instead of deterministic and fixed.

Denote by $Q^N_i(t)$ the length of queue i at time t. The process of $\{Q^N_i\}$ is Markov, and the empirical distribution $\nu^N = (1/N) \sum_{i=1}^{N} \delta_{Q^N_i}$ has samples in $P(D(R_+, N))$. Define the marginal process $\bar{Q}^N = \frac{1}{N} \sum_{i=1}^{N} \delta_{\bar{Q}^N_i}$.
The marginal process \bar{Q}^N has sample paths in $\mathbb{D}(\mathbb{R}_+, \mathcal{P}(\mathbb{N}))$. The fraction of queues of length at least k at time t can be written as $r^N_t(k) = \bar{Q}^N_t([k, \infty))$.

For $\Gamma \in \mathcal{P}(\mathcal{X})$, a sequence of random variables $(X_i)_{1 \leq i \leq N}$ on \mathcal{X}^N is Γ-chaotic if for any fixed integer $l \geq 1$, as $N \to \infty$,

$$\mathcal{L}(X_1, \ldots, X_l) \Rightarrow \Gamma^{\otimes l}.$$

A sequence of random variables $(X_i)_{1 \leq i \leq N}$ on \mathcal{X}^N is exchangeable if for any permutation $\pi : [1, \ldots, N] \to [1, \ldots, N]$,

$$\mathcal{L}(X_1, \ldots, X_N) = \mathcal{L}(X_{\pi(1)}, \ldots, X_{\pi(N)}).$$

The proof roadmap is summarized in Fig. 7. We first prove a chaoticity result on path space (Thm. 7), i.e., there exists a $\Gamma \in \mathcal{P}(\mathbb{D}(\mathbb{R}_+, \mathcal{P}(\mathbb{N})))$ such that $(Q^N_i)_{1 \leq i \leq N}$ is Γ-chaotic, if the initial condition $(Q^N_i(0))_{1 \leq i \leq N}$ is chaotic. Then, we show a chaoticity result in equilibrium (Thm. 10) by (i) taking the large N limit and proving that the solution of the mean field equation converges as $t \to \infty$ to a fixed point (Lemma 13); (ii) taking the large t limit and proving the finite N model is ergodic (Thm. 9); (iii) using the chaoticity result on path space (Thm. 7) to finish the proof. The coupling result proved in Theorem 8 is used to show the ergodicity result in Theorem 9. The chaoticity result on path space is proved using Proposition 2.2 in [15] and the nonlinear martingale problem approach. First, some useful definitions and preliminary lemmas are stated.
Let \((n)_k := n(n - 1) \cdots (n - k + 1)\) for integer \(n \geq k \geq 0\). Define the \(k\)-body empirical measure as

\[
ν^{k,N} = \frac{1}{(N)_k} \sum_{i_1, \ldots, i_k=1, \text{distinct}}^N δ_{Q_{i_1}^N,\ldots,Q_{i_k}^N}
\]

and the \(k\)-body empirical measure for queues other than \(i\)

\[
ν^{k,N}_i = \frac{1}{(N-1)_k} \sum_{i_1, \ldots, i_k=1, \text{distinct}, \neq i}^N δ_{Q_{i_1}^N,\ldots,Q_{i_k}^N}
\]

with their marginal process \(\bar{Q}^{k,N}_i\) and \(\bar{Q}^{k,N}_i\). The Lemma 3.1 in [1], restated in the following lemma, proves that the \(k\)-body empirical measure is close to \(k\)-product of the empirical measure \(ν^N\).

Lemma 11. We have \(\|ν^{k,N} - (ν^N)^{⊗k}\|_{TV} = O(1/N)\) and \(\|ν^{k,N}_i - (ν^N)^{⊗k}_i\|_{TV} = O(1/N)\).

For a bounded function \(ϕ\) on \(\mathbb{N}\), set \(ϕ^+(x) = ϕ(x + 1) - ϕ(x)\) and \(ϕ^-(x) = ϕ(x - 1) - ϕ(x)\). Let \(χ_L\) be a function as

\[
χ_L : (x_1, \ldots, x_L) ∈ \mathbb{N}^L \mapsto \frac{1_{x_1=\min\{x_1,\ldots,x_L\}}}{\sum_{i=1}^L 1_{x_i=\min\{x_1,\ldots,x_L\}}} ∈ \{0, 1/L, \ldots, 1/2, 1\}
\]

The next lemma gives a martingale process induced from Markov process \(\{Q_i^N\}\).

Lemma 12. We have a martingale process \(M^{ϕ,i,N}\) defined by

\[
M_t^{ϕ,i,N} = ϕ(Q_i^N(t)) - ϕ(Q_i^N(0)) - \int_0^{t \lambda_{\max}} \sum_{L=1}^{\lambda_{\max}} μ(L)\{λL(χ_L(Q_i^N(s), \cdot), Q_i^{L-1,N}(s))ϕ^+(Q_i^N(s)) \mathbb{1}_{Q_i^N(s)≥1} \mathbb{1}_{ϕ^-(X_i^N(s))} \}ds
\]

\[
= ϕ(Q_i^N(t)) - ϕ(Q_i^N(0)) - \int_0^{t \lambda_{\max}} \sum_{L=1}^{\lambda_{\max}} μ(L)\{λL(χ_L(Q_i^N(s), \cdot), (Q_i^N)^{⊗L-1})ϕ^+(Q_i^N(s)) \mathbb{1}_{Q_i^N(s)≥1} \mathbb{1}_{ϕ^-(X_i^N(s))} \}ds + ε^{ϕ,i,N}(t)
\]

(10)

and \(ε^{ϕ,i,N}(t) = t∥ϕ∥_∞O(1/N)\) uniformly. The quadratic covariations \(⟨M^{ϕ,i,N}, M^{ϕ,j,N}⟩\) are zero for \(i \neq j\) and \(E[E[⟨M^{ϕ,i,N}, M^{ϕ,i,N}⟩]] ≤ C∥ϕ∥_∞^2t^2\) for a constant \(C\) depending on \(t\).

Proof: The martingale statement is obtained from the Dynkin formula in stochastic analysis. The bound on \(ε^{ϕ,i,N}(t)\) follows from Lemma 11. Also, because there are no simultaneous jumps, the quadratic covariations \(⟨M^{ϕ,j,N}, M^{ϕ,j,N}⟩\) are 0 for \(i \neq j\). Lastly, by the definition of quadratic variation and \(M_t^{ϕ,i,N}\),

\[
E[⟨M^{ϕ,i,N}, M^{ϕ,i,N}⟩_t] = E[(M_t^{ϕ,i,N})^2] ≤ 3(2∥ϕ∥_∞^2 + ((λL_{\max} + 1)∥ϕ∥_∞t)^2) ≤ C∥ϕ∥_∞^2t^2.
\]
Next, we introduce the **nonlinear martingale problem** which is useful to prove the propagation of chaos result. We say a law $\Gamma \in \mathcal{P}(\mathbb{D}(\mathbb{R}_+, \mathbb{N}))$ solves the nonlinear martingale problem if for any bounded function ϕ on \mathbb{N},

$$M^\phi_t = \phi(Q_t) - \phi(Q_0) - \int_0^t \sum_{L=1}^{L_{\text{max}}} \mu(L) \{\lambda L \langle \chi_L(Q_s), \Gamma^\phi_s \rangle, \Gamma^\phi_{s+1} \} \phi^+(Q_s) + 1_{Q_s \geq 1} \phi^-(Q_s) \} ds \tag{11}$$

defines a Γ-martingale. It solves the martingale problem starting at γ if $\Gamma_0 = \gamma$.

By taking the expectation over two sides of (11) and using the result

$$L \langle \chi_L(x) \phi^+(x_1), \Gamma^\phi_s(dx) \rangle = \langle \phi^+(\min\{x\}), \Gamma^\phi_s(dx) \rangle,$$

we get the **nonlinear Kolmogorov equation**. We say a (deterministic) process $(\Gamma_t)_{t \geq 0} \in \mathbb{D}(\mathbb{R}_+, \mathcal{P}(\mathbb{N}))$ solves the nonlinear Kolmogorov equation if for any bounded function ϕ on \mathbb{N},

$$\langle \phi, \Gamma_t \rangle = \langle \phi, \Gamma_0 \rangle + \int_0^t \sum_{L=1}^{L_{\text{max}}} \mu(L) \{\lambda \langle \phi^+(\min\{x\}), \Gamma^\phi_s(dx) \rangle + 1_{\min\{x\} \geq 1} \phi^-(\Gamma_s) \} ds \tag{12}$$

and it solves the equation starting at γ if moreover $\Gamma_0 = \gamma$. Taking ϕ equal to $1_{[k, \infty)}$, and using the fact that

$$\langle \phi^+(\min\{x\}), \Gamma^\phi_s(dx) \rangle = \sum_{x \in \mathbb{N}} \phi^+(x) \left(\Gamma^L_s([x, \infty)) - \Gamma^L_s([x + 1, \infty)) \right),$$

we obtain the mean field equation for $r_t(k) = \Gamma_t([k, \infty))$ as

$$\frac{dr_t(k)}{dt} = \lambda \sum_{L=1}^{L_{\text{max}}} \mu(L) \left(r^L_t(k - 1) - r^L_t(k) \right) - (r_t(k) - r_t(k + 1)). \tag{13}$$

The following theorem, which is essentially the same as Theorem 3.3 in [1], proves that the nonlinear martingale problem has a unique solution.

Theorem 6. Let $\gamma \in \mathcal{P}(\mathbb{N})$. Then there is a unique solution Γ in $\mathcal{P}(\mathbb{D}(\mathbb{R}_+, \mathbb{N}))$ for the nonlinear martingale problem (11) starting at γ. Its marginal process $(\Gamma_t)_{t \geq 0}$ is the unique solution for the nonlinear Kolmogorov equation (12) starting at γ, and $r = (r_t)_{t \geq 0}$ defined by $r_t(k) = \Gamma_t([k, \infty))$ is the unique solution for the mean field equation (13) starting at r_0.

Proof: See the proof in Appendix I. \blacksquare

The following theorem proves a propagation of chaos result on the path space.

Theorem 7. Assume that $(\tilde{Q}^N_0)_{N \geq 1}$ converges in law to a $\tilde{\gamma}$ in $\mathcal{P}(\mathbb{N})$, or that $(r^N_0)_{N \geq 1}$ converges in law to r_0 with $r_0(k) = \gamma([k, \infty))$. Then $(\nu^N)_{N \geq 1}$ converges in probability to the unique solution Γ for the nonlinear martingale problem (11) starting at γ, and if $(Q^N_i(0))_{1 \leq i \leq N}$ is exchangeable
then \((Q_i^N)_{1 \leq i \leq N}\) is \(\Gamma\)-chaotic. Moreover, \((\bar{Q}^N)_{N \geq 1}\) converges in probability to \((\Gamma_t)_{t \geq 0}\) and \((r^N)_{N \geq 1}\) converges in probability to \((r_t)_{t \geq 0}\), for uniform convergence on bounded intervals over \(t\), where \(r_t(k) = \Gamma_t([k, \infty))\). Note that \((\Gamma_t)_{t \geq 0}\) is the unique solution for the Kolmogorov equation (12) starting at \(\gamma\), and \((r_t)_{t \geq 0}\) is the unique solution for the mean field equation (13) starting at \(r_0\).

Proof: See the proof in Appendix J.

The following lemma proves that in the mean field model, starting with any appropriate initial distribution, the solution of mean field equation (13) will converge to its fixed point.

Lemma 13. In the mean field model, starting with any initial distribution \(r_0(k)\) such that \(\sum_{k \geq 0} r_0(k) < \infty\), the solution of mean field equation (13) \(r_t(k)\) converges in \(t\) to a fixed point \(r(k)\) given by

\[
r(0) = 1, r(k) = \lambda u_{\mu}(r(k - 1)).
\] (14)

Proof: See the proof in Appendix K.

Let \(r^{(N,j)}_t(k)\) and \(Q^{(N,j)}_i(t)\) denote the fraction of queues with at least \(k\) customers and the number of customers at queue \(i\) respectively for system \(j\) at time \(t\). We can prove the following coupling result in the similar way as Turner did for the fixed number of sampling queues [2].

Theorem 8. Suppose all the customers adopt \(\mu_1\) in system 1 and \(\mu_2\) in system 2 with \(\mu_1 \leq_{st} \mu_2\). Then there is a coupling between the two systems such that for all \(t\) and \(x\),

\[
\sum_i [Q^{(N,2)}_i(t) - x]_+ \leq \sum_i [Q^{(N,1)}_i(t) - x]_+,
\]

where \([a]_+ = \max\{a, 0\}\). It follows that for any nondecreasing convex function \(h\) and for all \(t\),

\[
\sum_i h(Q^{(N,2)}_i(t)) \leq \sum_i h(Q^{(N,1)}_i(t)).
\]

Proof: A coupling between \(\mu_1\) and \(\mu_2\) can be constructed as follows. Let \(F_1\) and \(F_2\) be the cumulative distribution function for \(\mu_1\) and \(\mu_2\) respectively. Let \(U\) denote the uniform distribution over \([0, 1]\). Then it follows that \(F_1^{-1}(U)\) and \(F_2^{-1}(U)\) is distributed as \(\mu_1\) and \(\mu_2\) respectively. Also, \(F_1^{-1}(U) \leq F_2^{-1}(U)\).

Let us couple the two systems as follows. All arrival times and departure times are the same in both systems, except that departures that occur from an empty queue are lost. At the times of departure, we arrange the queues in each system in order of queue lengths, and let a departure occur from the corresponding queue in each system; for example, if it occurs from the longest queue in system 1, then let it also occur from the longest queue in system 2. At arrival times, the customer in system 1
samples $F_1^{-1}(U)$ queues; while the customer in system 2 first chooses the same set of queues chosen by system 1 and then samples additional $(F_2^{-1}(U) - F_1^{-1}(U))$ queues.

Using Theorem 4 in [2] and the fact that $F_1^{-1}(U) \leq F_2^{-1}(U)$, the conclusion follows.

The coupling result is used to show the ergodicity for Q_i^N, which is proved in the following theorem.

Theorem 9. For $N \geq 1$, $(Q_i^N)_{1 \leq i \leq N}$ is ergodic for $\lambda < 1$, and thus has a unique stationary distribution. Furthermore, in equilibrium $(Q_i^N)_{1 \leq i \leq N}$ is exchangeable.

Proof: The proof is the same as that in Theorem 4.2 in [1].

The following theorem proves the chaoticity in equilibrium.

Theorem 10. Let r_μ be defined as (14) and define $\gamma_\mu \in \mathcal{P}(\mathbb{N})$ as $\gamma_\mu(k) = r_\mu(k) - r_\mu(k+1)$. In equilibrium, $(Q_i^N)_{1 \leq i \leq N}$ is Γ-chaotic, where Γ is the unique solution for the nonlinear martingale problem (11) starting at γ_μ, and Q (the Markov process with measure Γ) is in equilibrium under Γ. Hence in equilibrium $(Q^N)_{N \geq 1}$ converges in probability to the constant process identically equaling to γ_μ for all t and $(r^N)_{N \geq 1}$ converges in probability to the constant process identically equaling to r_μ for all t, for uniform convergence on bounded intervals.

Proof: See the proof in Appendix L.

Remark 6. Let $Q_i^N(0)$ be the length of queue i in equilibrium. Theorem 10 implies that $(Q_i^N(0))_{1 \leq i \leq N}$ is γ_μ-chaotic. By the definition of chaoticity, it follows that the joint equilibrium distribution of any fixed number of queues converges to a product distribution, i.e., for any fixed integer $l \geq 1$, as $N \to \infty$,

$$\mathcal{L}(Q_1^N(0), \ldots, Q_l^N(0)) \Rightarrow \gamma_\mu^{\otimes l}.$$

B. ϵ-Nash Equilibrium for Finite N

In this subsection, the ϵ-Nash equilibrium for finite N queues is considered. For a fixed customer i, suppose she uses the mixed strategy μ_i, and all the other customers use μ_{-i}. Let $W(N)(\mu_i, \mu_{-i})$ and $C(N)(\mu_i, \mu_{-i})$ denote her waiting time and total average cost for N queues. Then, the expected waiting time can be derived as

$$\mathbb{E}[W(N)(L_i, \mu_{-i})] = \mathbb{E} \left[\min\{Q_1^N(1), \ldots, Q_i^N(L_i)\} \right] + 1,$$

where $Q_i^N(L_i)$ is the length of the ith sampled queue.

Next, the definition of ϵ-Nash equilibrium in the finite N model is introduced.
Definition 2. We call \(\mu^* \in \mathcal{P}(\mathcal{L})\) an \(\epsilon\)-Nash equilibrium in the finite \(N\) model, if for any \(\epsilon > 0\), with \(N\) sufficiently large,

\[
C^{(N)}(\mu^*, \mu^*) \leq C^{(N)}(\mu, \mu^*) + \epsilon, \quad \text{for all} \; \mu \in \mathcal{P}(\mathcal{L}).
\]

Theorem 11. Let \(\mu^*\) be a Nash equilibrium for the supermarket game in the mean field model, then \(\mu^*\) is an \(\epsilon\)-Nash equilibrium in the finite \(N\) model.

Proof: Let \(Z\) denote the random variable associated with the mean field equilibrium distribution \(r_{\mu^*}(k)\). By Theorem 10, we have that for any fixed \(L_i\), as \(N \to \infty\),

\[
\mathcal{L}(Q^{(N)}(1), \ldots, Q^{(N)}(L_i)) \Rightarrow \mathcal{L}(Z)^{\otimes L_i}.
\]

By the coupling result in Theorem 8,

\[
\mathbb{E}_{\mu^*} \left[\min \{Q^{(N)}(1), \ldots, Q^{(N)}(L_i)\} \right] \leq \mathbb{E}_{\mu^*}(Q^{(N)}(1)) \leq \mathbb{E}_{\delta_i}(Q^{(N)}(1)) = \frac{\lambda}{1 - \lambda},
\]

and hence \(W^{(N)}(L_i, \mu^*)\) is uniformly integrable. Therefore, for \(\forall \epsilon > 0\), there exists \(N_0 \in \mathbb{N}\) such that when \(N \geq N_0\),

\[
|\mathbb{E}[W^{(N)}(L_i, \mu^*)] - \mathbb{E}[W(L_i, \mu^*)]| \leq \frac{\epsilon}{2c},
\]

and thus

\[
|C^{(N)}(\mu, \mu^*) - C(\mu, \mu^*)| \leq \epsilon/2,
\]

where \(W(L_i, \mu^*)\) and \(C(\mu, \mu^*)\) are the waiting time and total average cost respectively in the mean field model. By definition of \(\mu^*\),

\[
C(\mu^*, \mu^*) \leq C(\mu, \mu^*), \quad \text{for all} \; \mu \in \mathcal{P}(\mathcal{L}).
\]

Then, it follows that

\[
C^{(N)}(\mu^*, \mu^*) \leq C^{(N)}(\mu, \mu^*) + \epsilon, \quad \text{for all} \; \mu \in \mathcal{P}(\mathcal{L}).
\]

Therefore, \(\mu^*\) is an \(\epsilon\)-Nash equilibrium in the finite \(N\) system. ■

C. Externality for finite \(N\)

In this subsection, we study the externality of sampling more queues by some customers in the finite \(N\) model.

Theorem 8 implies that the action of sampling more queues by some customers has a nonnegative externality on the other customers who only sample one queue. To see it, suppose all the customers
Furthermore, \(0\) in \([16]\). Thus, the externality is approximately for \(i = 1, 2\), it follows from Theorem 8 that \(E[W(1, \mu_1)] \geq E[W(1, \mu_2)]\).

However, it is unknown whether sampling more queues by some customers has a positive externality on the other customers who sample more than one queue, because we are not able to prove that \(E[W(L, \mu_1)] \geq E[W(L, \mu_2)]\) for \(L \geq 2\) simply by the coupling result. Consider a special case where \(\mu_1 = \delta_1, \mu_2 = \delta_2\) and \(N = 2\). For \(\mu_1 = \delta_1\), due to independence among queue 1 and 2, \(E[W(2, \mu_1)] = \frac{1}{1-\chi}\). However, for \(\mu_2 = \delta_2\), queue 1 and 2 are correlated and we have no explicit expression for \(E[W(2, \mu_2)]\). For the heavy traffic limit \(\lambda \to 1\), Kingman showed that \(E[W(2, \mu_2)] \approx \frac{1}{1-\chi}\) in Theorem 6 in [16]. Thus, the externality is approximately 0 in the heavy traffic limit for this special case.

IV. Conclusions

Our results indicate that the equilibrium picture for the supermarket game can be somewhat complicated, at least if \(0.5 < \lambda^2 < 1\). In particular, there may be multiple Nash equilibria, stemming from the fact that customers do not always have an “avoid the crowd” response as when \(\lambda^2 \leq 0.5\). However, this complication seems to occur only for \(\lambda\) close to one and \(L_{\text{max}}\) fairly large. Also, at least in the mean field model, the positive externality of increased sampling holds for the whole range \(\lambda < 1\).

APPENDIX

A. Proof of Lemma 3

First, let us show that \(C(\mu_i, \mu_{-i})\) is continuous in \(\mu_i\) for any fixed \(\mu_{-i}\). Let \(\|\mu_i^{(n)} - \mu_i\|_{TV} \to 0\) as \(n \to \infty\), then we have

\[
| C(\mu_i^{(n)}, \mu_{-i}) - C(\mu_i, \mu_{-i}) | = | \sum_{i=1}^{L_{\text{max}}} C(L_i, \mu_{-i}) \left(\mu_i^{(n)}(L_i) - \mu_i(L_i) \right) |
\]

\[
\leq K \sum_{i=1}^{L_{\text{max}}} | \mu_i^{(n)}(L_i) - \mu_i(L_i) | \to 0, \text{ as } n \to \infty,
\]

where (a) follows from the fact that \(C(L_i, \mu_{-i})\) is uniformly bounded, which is proved in Lemma 2. Furthermore, \(\mathcal{P}(\mathcal{L})\) is a compact set and thus \(C\) is uniformly continuous in \(\mu_i\) for any fixed \(\mu_{-i}\).

Second, we show that \(C\) is continuous in \(\mu_{-i}\) for any fixed \(\mu_i\). It suffices to show that \(E[W(L, \mu_{-i})]\) is continuous in \(\mu_{-i}\). Let \(\|\mu_{-i}^{(n)} - \mu_{-i}\|_{TV} \to 0\) as \(n \to \infty\). First, note that the mean field equilibrium distribution \(r_{\mu_{-i}}(k)\) is continuous in \(\mu_{-i}\) for each \(k\). Second, by Lemma 2, \(r_{\mu}(k) \leq \lambda^k, \forall k, \forall \mu \in \mathcal{P}(\mathcal{L}).\)
Therefore, for \(\forall \epsilon > 0 \), by choosing sufficiently large \(K \),
\[
| \mathbb{E}[W(L, \mu_{-i}^{(n)})] - \sum_{k=0}^{K} r_{\mu_{-i}^{(n)}}(k) | \leq \frac{\epsilon}{3}
\]
\[
| \mathbb{E}[W(L, \mu_{-i})] - \sum_{k=0}^{K} r_{\mu_{-i}}(k) | \leq \frac{\epsilon}{3}.
\]
Also, since \(r_{\mu_{-i}}(k) \) is continuous in \(\mu_{-i} \) for each \(k \), by choosing sufficiently large \(N_0 \), it follows that when \(n \geq N_0 \),
\[
| \sum_{k=0}^{K} r_{\mu_{-i}^{(n)}}(k) - \sum_{k=0}^{K} r_{\mu_{-i}}(k) | \leq \frac{\epsilon}{3}.
\]
Therefore,
\[
| \mathbb{E}[W(L, \mu_{-i}^{(n)})] - \mathbb{E}[W(L, \mu_{-i})] | \leq \epsilon.
\]
Furthermore, \(\mathcal{P}(\mathcal{L}) \) is a compact set and thus \(C \) is uniformly continuous in \(\mu_{-i} \) for any fixed \(\mu_i \).

Lastly, let us show that \(C(\mu_i, \mu_{-i}) \) is jointly continuous with respect to \(\mu_i \) and \(\mu_{-i} \). Let \((\mu_i^{(n)}, \mu_{-i}^{(n)}) \to (\mu_i, \mu_{-i}) \) in total variation distance as \(n \to \infty \), then
\[
| C(\mu_i^{(n)}, \mu_{-i}^{(n)}) - C(\mu_i, \mu_{-i}) | \\
\leq | C(\mu_i^{(n)}, \mu_{-i}^{(n)}) - C(\mu_i, \mu_{-i}) | + | C(\mu_i, \mu_{-i}) - C(\mu_i, \mu_{-i}) | \\
= \sum_{L_i=1}^{L_{\text{max}}} C(L_i, \mu_{-i}^{(n)}) \left(\mu_i^{(n)}(L_i) - \mu_i(L_i) \right) | + | C(\mu_i, \mu_{-i}) - C(\mu_i, \mu_{-i}) | \\
\leq K \sum_{L_i=1}^{L_{\text{max}}} | \mu_i^{(n)}(L_i) - \mu_i(L_i) | + | C(\mu_i, \mu_{-i}) - C(\mu_i, \mu_{-i}) | \\
\to 0, \text{ as } n \to \infty,
\]
which concludes the proof.

B. Proof of Theorem 1

Since \(\mu_i^{(n)} \in \text{BR}(\mu_{-i}^{(n)}) \), for all \(\hat{\mu}_i \in \mathcal{P}(\mathcal{L}) \),
\[
C(\hat{\mu}_i, \mu_{-i}^{(n)}) \geq C(\mu_i^{(n)}, \mu_{-i}^{(n)}).
\]
(15)

By the continuity of \(C \) proved in Lemma 3,
\[
\lim_{n \to \infty} C(\hat{\mu}_i, \mu_{-i}^{(n)}) = C(\hat{\mu}_i, \mu_{-i}),
\]
\[
\lim_{n \to \infty} C(\mu_i^{(n)}, \mu_{-i}^{(n)}) = C(\mu_i, \mu_{-i}).
\]
Therefore, for all $\tilde{\mu}_i \in \mathcal{P}(\mathcal{L})$, $C(\tilde{\mu}_i, \mu_{-i}) \geq C(\mu_i, \mu_{-i})$ and thus $\mu_i \in BR(\mu_{-i})$. Then, by the Kakutani’s Theorem, there must exist a μ^* as a fixed point of BR and thus μ^* is a mixed strategy Nash equilibrium. Furthermore, by Lemma 1, μ^* can be identified with a real number $L^* \in [1, L_{\text{max}}]$.

C. Proof of Lemma 4

The first half of the lemma is proved first. For any integer $L_i \in \mathcal{L}$ such that $L_i \in BR(\mu_{-i})$, $C(L_i, \mu_{-i}) \leq C(L_i - 1, \mu_{-i})$ and $C(L_i, \mu_{-i}) \leq C(L_i + 1, \mu_{-i})$. Thus equation (6) easily follows by invoking the definition of $C(L_i, \mu_{-i})$.

Now suppose equation (6) holds. Since $V(L_i, \mu_{-i})$ is strictly decreasing in L_i,

$$V(L, \mu_{-i}) \begin{cases} \geq c_s/c & \text{if } L < L_i, \\ \leq c_s/c & \text{if } L > L_i, \end{cases}$$

which implies that for all $L \in \mathcal{L}$, $C(L_i, \mu_{-i}) \leq C(L, \mu_{-i})$ and thus $L_i \in BR(\mu_{-i})$.

The second half of the lemma is proved next. For any non-integer $L_i \in [1, L_{\text{max}}]$ such that $L_i \in BR(\mu_{-i})$, $\lfloor L_i \rfloor \in BR(\mu_{-i})$ and $\lfloor L_i \rfloor + 1 \in BR(\mu_{-i})$. It follows from equation (6) that

$$V(\lfloor L_i \rfloor, \mu_{-i}) \leq c_s/c \leq V(\lfloor L_i \rfloor + 1, \mu_{-i}),$$

(16)

which implies equation (7).

Now suppose equation (7) holds. Since $V(L_i, \mu_{-i})$ is strictly decreasing in L_i,

$$V(\lfloor L_i \rfloor, \mu_{-i}) = c_s/c < V(\lfloor L_i \rfloor - 1, \mu_{-i}),$$

(17)

which implies that $\lfloor L_i \rfloor \in BR(\mu_{-i})$. Similarly, we can show that $\lfloor L_i \rfloor + 1 \in BR(\mu_{-i})$. Therefore, $L_i \in BR(\mu_{-i})$.

D. Proof of Lemma 5

We first show that $V(L_i, \mu_{-i}) > V(L_i, \tilde{\mu}_{-i})$ for all $1 \leq L_i \leq L_{\text{max}} - 1$, i.e.,

$$\sum_{k=0}^{\infty} (r_{\mu_{-i}}^{L_i}(k) - r_{\mu_{-i}}^{L_i+1}(k)) > \sum_{k=0}^{\infty} (r_{\tilde{\mu}_{-i}}^{L_i}(k) - r_{\tilde{\mu}_{-i}}^{L_i+1}(k)).$$

We prove a stronger conclusion, that is, for $k \geq 2$,

$$r_{\mu_{-i}}^{L_i}(k) - r_{\mu_{-i}}^{L_i+1}(k) > r_{\tilde{\mu}_{-i}}^{L_i}(k) - r_{\tilde{\mu}_{-i}}^{L_i+1}(k).$$

By Lemma 2, for $k \geq 2$,

$$r_{\tilde{\mu}_{-i}}(k) < r_{\mu_{-i}}(k) \leq \lambda^k \leq \frac{1}{2}.$$
Define function \(g(x) = x^{L_i} - x^{L_i+1} \). It is easy to calculate that \(g'(x) = x^{L_i-1}(L_i - (L_i + 1)x) \). It follows that for \(x < \frac{1}{2} \), \(g'(x) > 0 \). Therefore, \(g(r_{\mu_{-i}}(k)) > g(r_{\mu_{-i}}(k)), \forall k \geq 2 \).

Next, we show that \(\tilde{L}_i \leq L_i \).

Case 1 (\(\tilde{L}_i \) is an integer): Since \(\tilde{L}_i \in \text{BR}(\bar{\mu}_i) \), it follows from Lemma 4 that
\[
V(\tilde{L}_i - 1, \mu_{-i}) > V(\tilde{L}_i - 1, \bar{\mu}_{-i}) \geq c_s/c,
\]
which implies that \(\lfloor L_i \rfloor > \tilde{L}_i - 1 \) again by Lemma 4 and thus \(L_i \geq \tilde{L}_i \).

Case 2 (\(\tilde{L}_i \) is a non-integer): From Lemma 4,
\[
V(\lfloor \tilde{L}_i \rfloor, \mu_{-i}) > V(\lfloor \tilde{L}_i \rfloor, \bar{\mu}_{-i}) = c_s/c.
\]
By Lemma 4, it follows that: (i) if \(L_i \) is a non-integer, then \(\lfloor L_i \rfloor > \lfloor \tilde{L}_i \rfloor \); (ii) if \(L_i \) is an integer, then \(L_i > \lfloor \tilde{L}_i \rfloor \). Therefore, \(L_i > \tilde{L}_i \).

E. Proof of Lemma 6

For case (a), \(V(L_{\text{max}} - 1, L_{\text{max}}) \geq \frac{c_s}{c} \). By Lemma 4, it follows that \(L_{\text{max}} \in \text{BR}(L_{\text{max}}) \) and thus \(L_{\text{max}} \) is a Nash equilibrium.

As for case (b), note that \(\hat{L} \) is well defined, because \(V(L_{\text{max}} - 1, L_{\text{max}}) < \frac{c_s}{c} \). In the case (b1), \(V(\hat{L}, \hat{L}) \leq \frac{c_s}{c} \) and by the definition of \(\hat{L} \), \(V(\hat{L} - 1, \hat{L}) \geq \frac{c_s}{c} \). Therefore, by Lemma 4, \(\hat{L} \in \text{BR}(\hat{L}) \).

In the case (b2), \(V(\hat{L}, \hat{L}) > \frac{c_s}{c} \) and by the definition of \(\hat{L} \), \(V(\hat{L}, \hat{L} + 1) < \frac{c_s}{c} \). Since \(V(L_{i-1}, L_{i-1}) \) is continuous in \(L_{-i} \in \mathbb{R} \), it follows that there exists a \(q^* \) with \(0 < q^* < 1 \) such that \(V(\hat{L}, \hat{L} + q^*) = \frac{c_s}{c} \). Therefore, by Lemma 4, \(\hat{L} + q^* \in \text{BR}(\hat{L} + q^*) \) and thus \(\hat{L} + q^* \) is a Nash equilibrium.

F. Proof of Theorem 3

(Proof that the local monotonicity condition is sufficient) Let \(L^* \in [1, L_{\text{max}}] \) denote any Nash equilibrium, and define \(\hat{L} := \min\{L \in L : V(L, L + 1) < c_s/c\} \). By definition, \(V(L_{\text{max}}, L_{\text{max}} + 1) = 0 \) and thus \(\hat{L} \) is well defined. Also, it follows that
\[
V(L, L + 1) > V(L + 1, L + 1) > V(L + 1, L + 2), \text{ for } 1 \leq L \leq L_{\text{max}} - 2,
\]
where the first inequality follows from the fact that \(V(L_i, \mu_{-i}) \) is strictly decreasing in \(L_i \) , and the second inequality follows from the monotonicity assumption of \(V(L, L+q) \) in \(q \). Therefore, \(V(L, L+1) \) is strictly decreasing in \(L \).

Next, the following three different cases of \(\hat{L} \) are considered:
Case 1 ($L_\star = L_{\text{max}}$): By the definition of L_\star, it follows that $V(L, L + 1) \geq c_s/c$ for all $1 \leq L \leq L_{\text{max}} - 1$. Hence,

$$V(L, L) > V(L, L + 1) \geq c_s/c, \text{ for } 1 \leq L \leq L_{\text{max}} - 1.$$ \hspace{1cm} (18)

Therefore, by Lemma 4, L_\star cannot be an integer less than L_{max}. Now if L_\star is a non-integer less than L_{max}, then $\lfloor L_\star \rfloor \leq L_{\text{max}} - 1$. Thus, it follows from (18) that

$$V(\lfloor L_\star \rfloor, L_\star) > V(\lfloor L_\star \rfloor, \lfloor L_\star \rfloor + 1) \geq c_s/c.$$ \hspace{1cm} (19)

On the other hand, by the definition of L_\star and Lemma 4, $V(\lfloor L_\star \rfloor, L_\star) = c_s/c$, which is a contradiction to (19). Therefore, L_\star must be L_{max}.

Case 2 ($\hat{L} \leq L_{\text{max}} - 1$): Since $V(L, L + 1)$ is strictly decreasing in L, by the definition of \hat{L}, $V(L_{\text{max}} - 1, L_{\text{max}}) < c_s/c$. Therefore, by Lemma 4, L_\star cannot be L_{max}.

Case 2(a): If L_\star is an integer less than L_{max}, then

$$V(L_\star, L_\star) \leq c_s/c \leq V(L_\star - 1, L_\star).$$

By monotonicity assumption, it follows that

$$V(L, L + 1) \geq V(L_\star - 1, L_\star) \geq c_s/c \text{ for } L \leq L_\star - 1, \quad V(L_\star, L_\star + 1) < V(L_\star, L_\star) \leq c_s/c.$$

Therefore, $L_\star - 1 < \hat{L} \leq L_\star$ and thus $L_\star = \hat{L}$.

Case 2(b): If L_\star is a non-integer, then $V(\lfloor L_\star \rfloor, L_\star) = c_s/c$. By monotonicity assumption,

$$V(\lfloor L_\star \rfloor, \lfloor L_\star \rfloor + 1) < V(\lfloor L_\star \rfloor, L_\star) = \frac{c_s}{c}.$$ \hspace{1cm} (20)

Also, for $L < \lfloor L_\star \rfloor - 1$,

$$V(L, L + 1) > V(\lfloor L_\star \rfloor - 1, \lfloor L_\star \rfloor) > V(\lfloor L_\star \rfloor, \lfloor L_\star \rfloor) > V(\lfloor L_\star \rfloor, L_\star) = c_s/c.$$

Therefore, $\lfloor L_\star \rfloor - 1 < \hat{L} \leq \lfloor L_\star \rfloor$ and thus $\lfloor L_\star \rfloor = \hat{L}$. Furthermore, since $V(\lfloor L_\star \rfloor, \lfloor L_\star \rfloor + 1) < c_s/c < V(\lfloor L_\star \rfloor, \lfloor L_\star \rfloor)$, by monotonicity assumption, there is a unique q_\star with $0 < q_\star < 1$ such that $V(L, \hat{L} + q_\star) = \frac{c_s}{c}$ and thus $L_\star = \hat{L} + q_\star$.

(Proof that the local monotonicity condition is necessary) Suppose the local monotonicity condition is not satisfied. It is well known that a continuous, injective (i.e. one-to-one) function g on an interval $[a, b]$ is either strictly monotone increasing or strictly monotone decreasing, so there are two cases to consider.

Case 1: There exists a L with $1 \leq L \leq L_{\text{max}}$ such that $V(L, L + q)$ is strictly increasing for $0 \leq q \leq 1$. Because $V(L - 1, L) > V(L, L)$, c and c_s can be selected to satisfy

$$V(L, L) \leq c_s/c = V(L, L + q_0) \leq V(L - 1, L).$$
for some $0 < q_0 < 1$. From Lemma 4, it follows that L is a pure strategy Nash equilibrium and $L + q_0$ is a mixed strategy Nash equilibrium. Therefore, the supermarket game has at least two Nash equilibria.

Case 2: There exists a L with $1 \leq L \leq L_{\text{max}}$ such that $V(L, L + q_2) = V(L, L + q_3)$ with $0 \leq q_2 < q_3 \leq 1$. Then, if c and c_s are selected so that $\frac{c_s}{c} = V(L, L + q_2) = V(L, L + q_3)$, both $L + q_2$ and $L + q_3$ are Nash equilibria.

Therefore, in either case, there are at least two Nash equilibria and thus the local monotonicity condition is necessary.

G. Proof of Lemma 7

Suppose $\mu \in \mathcal{P}(\mathcal{L})$ such that there exists $L_1 < L_2 < L_3$ with $\mu(L_1) > 0$ and $\mu(L_3) > 0$. Choose $0 < \alpha, \beta \leq \mu(L_1)$ such that $\alpha L_1 + \beta L_3 = (\alpha + \beta)L_2$. Then, we construct a new mixed strategy $\tilde{\mu}$ as

$$
\tilde{\mu}(L_1) = \mu(L_1) - \alpha, \tilde{\mu}(L_3) = \mu(L_3) - \beta, \tilde{\mu}(L_2) = \mu(L_2) + \alpha + \beta,
$$

and $\tilde{\mu}(L) = \mu(L)$ for $L \neq L_1, L_2, L_3$. By the definition of $u_\mu(x)$ and convexity,

$$
u_\mu(x) - u_\tilde{\mu}(x) = \alpha x^{L_1} + \beta x^{L_3} - (\alpha + \beta) x^{L_2} > 0.\n$$

Therefore, $r_\tilde{\mu}(k) < r_\mu(k), k \geq 2$. It follows then

$$
C_{\text{sum}}(\tilde{\mu}) < \lambda \sum_{L=1}^{L_{\text{max}}} \tilde{\mu}(L) \left(\sum_{k=0}^{\infty} r_\mu^L(k) + c_s L \right) < C_{\text{sum}}(\mu),
$$

where the second inequality follows from the strict convexity of $\mathbb{E}[W(L, \mu)]$ in L. Therefore, $\mu \neq \mu_\text{soc}^*$.

H. Proof of Lemma 9

First, we show the continuity of $\mathbb{E}[W(L_{i}(c), L_{-i})]$ in $L_{-i}(\cdot)$. Suppose $L_{-i}^{(n)} \rightarrow L_{-i}$ as $n \rightarrow \infty$. By the definition of metric, we have $\mu_{L_{-i}^{(n)}} \rightarrow \mu_{L_{-i}}$. Since $\mathbb{E}[W(L_{i}(c), L_{-i})] = \mathbb{E}[W(L_{i}(c), \mu_{L_{-i}})]$, by the continuity of $\mathbb{E}[W(L_{i}(c), \mu_{L_{-i}})]$ with respect to $\mu_{L_{-i}}$, we conclude that $\mathbb{E}[W(L_{i}(c), L_{-i})]$ is continuous in $L_{-i}(\cdot)$.

Next, we show that the correspondence $\text{BR}(L_{-i})$ is in fact a function. Let $L_i \in \text{BR}(L_{-i})$ and $0 = c_0 < c_1 < \cdots < c_{L_{\text{max}}} = c_{\text{max}}$ denote the jumping points of L_i. It follows from Fig. 6 that for $j = 1, \ldots, L_{\text{max}} - 1$, c_j is uniquely determined by

$$
c_j = \frac{c_s}{\mathbb{E}[W(j, L_{-i})] - \mathbb{E}[W(j + 1, L_{-i})]}.
$$

Therefore, L_i is unique and $\text{BR}(L_{-i})$ is a function from \mathcal{S} to \mathcal{S}.
Finally, we show the continuity of $BR(L_{-i})$. Suppose $L_{-i}^{(n)} \to L_{-i}$, $L_i^{(n)} = BR(L_{-i}^{(n)})$, and $L_i = BR(L_{-i})$, we prove that $L_i^{(n)} \to L_i$. Denote the jumping points of $L_i^{(n)}$ and L_i by $0 = c_0^{(n)} < c_1^{(n)} < \cdots < c_{L_{\max}}^{(n)} = c_{\max}$ and $0 = c_0 < c_1 < \cdots < c_{L_{\max}} = c_{\max}$ respectively. It suffices to show that $c_j^{(n)} \to c_j$, for $j = 0, \ldots, L_{\max}$. From Fig. 6, we can see that for $j = 1, \ldots, L_{\max} - 1$,
\[
c_{j}^{(n)} = \frac{c_s}{\mathbb{E}[W(j, L_{-i}^{(n)})] - \mathbb{E}[W(j + 1, L_{-i}^{(n)})]}.
\]
By the continuity of $\mathbb{E}[W(L, L_{-i})]$ with respect to $L_{-i}()$,
\[
c_j^{(n)} \to c_j, \text{ for } 1 \leq j \leq L_{\max} - 1,
\]
which further implies that $\mu_{L_i^{(n)}} \to \mu_{L_i}$ and concludes the proof.

I. Proof of Theorem 6

Define the jumping measure as
\[
J(\xi, x, dy) = \lambda \sum_{L=1}^{L_{\max}} \mu(L)L \langle \chi_L(x, \cdot), \xi^{\otimes L-1} \rangle \delta_{x+1}(dy) + 1_{x\geq 1} \delta_{x-1}(dy).
\]
It follows that $\|J(\xi, x)\|_{TV} \leq \lambda L_{\max} + 1$. Also,
\[
\|J(\xi, x) - J(\eta, x)\|_{TV} = \lambda \sum_{L=1}^{L_{\max}} \mu(L) \| L \langle \chi_L(x, \cdot), \xi^{\otimes L-1} - \eta^{\otimes L-1} \rangle \|_{TV} \leq \lambda L_{\max} \| \xi^{\otimes L-1} - \eta^{\otimes L-1} \|_{TV},
\]
\[
\|\xi^{\otimes L-1} - \eta^{\otimes L-1}\|_{TV} \leq \lambda (L_{\max} - 1) \| \xi - \eta\|_{TV}.
\]
Therefore, $\|J(\xi, x) - J(\eta, x)\|_{TV} \leq \lambda L_{\max} (L_{\max} - 1) \| \xi - \eta\|_{TV}$, which concludes the proof using Proposition 2.3 in [1].

J. Proof of Theorem 7

It is proved using a method developed by Sznitman [15] with three essential steps: prove that
1) $(\mathcal{L}(\nu^N))_{N \geq 1}$ is tight in $\mathcal{P}(\mathcal{P}(\mathbb{R}_+, \mathbb{N})).$
2) the non-linear martingale problem (11) is satisfied by any probability measure in the support of any accumulation point of $(\mathcal{L}(\nu^N))_{N \geq 1}.$
3) the non-linear martingale problem (11) has a unique solution Γ starting at any γ in $\mathcal{P}([\mathbb{N}].$
Once these three steps are done, Step 2 and Step 3 imply that the only accumulation point of $(\mathcal{L}(\nu^N))_{N \geq 1}$ is δ_Γ, and Step 1 implies that $(\mathcal{L}(\nu^N))_{N \geq 1}$ weakly converges to δ_Γ. Then, by Proposition 2.2 in [15], the conclusions follows. The individual steps are proved as follows.
Step 1. It is equivalent to prove that \((\mathcal{L}(Q_1^N))_{N \geq 1}\) is tight in \(\mathcal{P}(\mathcal{D}(\mathbb{R}_+, \mathbb{N}))\), see Proposition 2.2 in [15]. The jumps of \(Q_1^N\) are included in those of a Poisson process \(A^N\) of rate \(\lambda L_{\text{max}} + 1\), and their size is bounded by 1, so the modulus of continuity in \(\mathcal{D}(\mathbb{R}_+, \mathbb{N})\) of \(Q_1^N\) is less than that of \(A^N\). The law of \(A^N\) does not depend on \(N \geq 1\), and since \((Q_0^N)_{N \geq 1}\) converges and hence is tight, the basic tightness criterion in Ethier and Kurtz [17] holds.

Step 2. Let \(\Pi^N\) be the law of \(\nu^N\) and \(\Pi^\infty \in \mathcal{P}(\mathcal{P}(\mathcal{D}(\mathbb{R}_+, \mathbb{N})))\) be an accumulation point. Take \(0 \leq s_1 < \cdots < s_k \leq s < t\) and a bounded function \(g\) on \(\mathbb{N}^k\), and then

\[
G : R \in \mathcal{P}(\mathcal{D}(\mathbb{R}_+, \mathbb{N})) \mapsto \langle (\phi(Q_t) - \phi(Q_s)) - \int_s^t \sum_{L=1}^{L_{\text{max}}} \mu(L)\lambda L \langle \chi_L(\mathbb{Q}_u, \cdot), R^{\otimes L-1}_u \rangle \phi^+(Q_u) + 1_{Q_u \geq 1} \phi^-(Q_u) \rangle \rangle \mathbb{G}(Q_{s_1}, \ldots, Q_{s_k}), R
\]

is \(\Pi^\infty\)-a.s. continuous. Set \(g^{i,N} = g(Q_{s_1}, \ldots, Q_{s_k})\) and \(Y_{s,t} = Y_t - Y_s\) for a process \(Y\). It follows that

\[
\langle G^2, \Pi^N \rangle
\]

\[
= \mathbb{E} \left[G^2(\nu^N) \right] = \mathbb{E} \left[\left(\frac{1}{N} \sum_{i=1}^{N} (M^{\phi,i,N}_{s,t} - \epsilon^{\phi,i,N}_{s,t}) g^{i,N} \right)^2 \right]
\]

\[
= \frac{1}{N} \mathbb{E} \left[\left(\left(M^{\phi,1,N}_{s,t} - \epsilon^{\phi,1,N}_{s,t} \right) g^{1,N} \right)^2 \right] + \frac{N-1}{N} \mathbb{E} \left[\left(M^{\phi,1,N}_{s,t} - \epsilon^{\phi,1,N}_{s,t} \right) \left(M^{\phi,2,N}_{s,t} - \epsilon^{\phi,2,N}_{s,t} \right) g^{1,N} g^{2,N} \right]
\]

\[
= \frac{1}{N} \mathbb{E} \left[\langle M^{\phi,1,N}, M^{\phi,1,N} \rangle_{s,t} \right] \|g\|_\infty^2 + \frac{N-1}{N} \mathbb{E} \left[\langle M^{\phi,1,N}, M^{\phi,2,N} \rangle_{s,t} \right] \|g\|_\infty^2 + O(\frac{1}{N})
\]

and then Lemma 12 implies that \(\langle G^2, \Pi^N \rangle = O(1/N)\). The Fatou lemma implies that \(\langle G^2, \Pi^\infty \rangle \leq \lim_{N \to \infty} \langle G^2, \Pi^N \rangle = 0\) and thus \(G(R) = 0\), \(\Pi^\infty\)-a.s. Since this holds for arbitrary bounded \(g\) and \(0 \leq s_1 < \cdots < s_k \leq s < t\), we conclude that \(R\) solves the nonlinear martingale problem (11), \(\Pi^\infty\)-a.s.

Step 3. This result is proved in Theorem 6.

K. Proof of Lemma 13

First, note that increasing \(r_0(k)\) only increases all \(r_t(k)\), because \(dr_t(k)/dt\) is non-decreasing in \(r_t(j)\) for \(j \neq k\) [18]. Therefore, it suffices to show the conclusion for the following two cases: \(r_0(k) \geq r(k), \forall k\) and \(r_0(k) \leq r(k), \forall k\).

Second, define \(v_t^k(k) = \sum_{j \geq k} r_t(j)\) and \(v_t(k) = v_t^\infty(k)\). We show that for the above two cases, \(v_t(k)\) is uniformly bounded over all \(t\) and \(k\). If \(r_0(k) \leq r(k), \forall k\), since \(r(k)\) is a fixed point, \(r_t(k) \geq r(k)\) for all \(t\). Therefore,

\[
v_t(k) \leq v_t(1) \leq \sum_{j \geq 1} r(j) \leq \sum_{j \geq 1} \lambda^j = \frac{\lambda}{1 - \lambda},
\]
If \(r_0(k) \geq r(k), \forall k \), then \(r_t(k) \geq r(k) \) for all \(t \). From the mean field equation (13),

\[
\frac{dv_t^K(1)}{dt} = \lambda - \lambda \sum_{L=1}^{L_{\text{max}}} \mu(L)r_t^K(L) - (r_t(1) - r_t(K + 1)) \leq \lambda.
\]

It follows that \(v_t^K(1) \leq \lambda t \) and thus \(v_t(1) \leq \lambda t \), which further implies that \(\lim_{K \to \infty} r_t(K) = 0 \). Therefore, taking limit \(K \to \infty \) over both sides of the above equation gives

\[
\frac{dv_t(1)}{dt} = \lambda - r_t(1) = r(1) - r_t(1) \leq 0.
\]

Thus, \(v_t(k) \leq v_t(1) \leq v_0(1) \).

Finally, in order to show that \(\lim_{t \to \infty} r_t(k) = r(k) \), it suffices to show

\[-\infty < \int_0^\infty (r_t(k) - r(k)) < \infty,\]

because under the above two cases, the sign of \((r_t(k) - r(k))\) does not change in \(t \). We prove the second inequality by induction and the first inequality can be proved in the same way. The first inequality trivially holds for \(k = 0 \) since \(r_t(0) = r(0) = 1 \). Now suppose it holds for \(k - 1 \). From mean field equation (13) and definition of \(r(k) \),

\[
\frac{dv_t(k)}{dt} = \lambda \sum_{L=1}^{L_{\text{max}}} \mu(L)r_t(k-1) - r_t(k) = \lambda \sum_{L=1}^{L_{\text{max}}} \mu(L) (r_t(k-1) - r^L(k-1)) - (r_t(k) - r(k)).
\]

By integrating it, it follows that

\[
v_t(k) = v_0(k) + \int_0^t \left[\lambda \sum_{L=1}^{L_{\text{max}}} \mu(L) (r^L_s(k-1) - r^L(k-1)) - (r_s(k) - r(k)) \right] ds.
\]

By induction, \(\int_0^\infty (r_t(k-1) - r(k-1))dt < \infty \). Therefore,

\[
\int_0^t \left[\sum_{L=1}^{L_{\text{max}}} \mu(L) (r^L_s(k-1) - r^L(k-1)) \right] ds \leq L_{\text{max}} \int_0^\infty (r_t(k-1) - r(k-1))dt < \infty.
\]

By assumption, \(v_0(k) \) is bounded and we just proved that \(v_t(k) \) is uniformly bounded in \(t \). Thus, \(\int_0^\infty (r_t(k) - r(k))dt < \infty \) and the conclusion follows.

L. Proof of Theorem 10

Let \(\mathcal{L}_{st} \in \mathcal{P}(\mathcal{D}(\mathbb{R}_+, \mathbb{N})) \) denote the stationary measure on the path space of the finite \(N \) model.

Step 1. Prove that \((\mathcal{L}_{st}(Q^N_0))_{N \geq 1}\) is tight. It is equivalent to prove that \((\mathcal{L}_{st}(Q^N_1(0)))_{N \geq 1}\) is tight. Let system 0 be the finite \(N \) model with all the customers sampling one queue; while system 1 be the finite \(N \) model with all the customers using strategy \(\mu \). The system 0 is an i.i.d. system. If both
systems are started at the same initial value, with law being the stationary distribution of system 0. Then, by the coupling result in Theorem 8,

$$E[Q^{N,1}(t)] = \frac{1}{N} E\left[\sum_{i=1}^{N} Q^{N,1}_i(t)\right] \leq \frac{1}{N} E\left[\sum_{i=1}^{N} Q^{N,0}_i(t)\right] = \frac{\lambda}{1 - \lambda}.$$

Since $\lambda < 1$, by the ergodicity result in Theorem 9 and Fatou lemma,

$$E_{st}[Q^N_1(0)] \leq \liminf_{t \to \infty} E[Q^{N,1}(t)] \leq \frac{\lambda}{1 - \lambda},$$

which implies that for all $N \geq 1$, $L_{st}(Q^N_1(0)) \leq \lambda(1 - \lambda)$ and hence $L_{st}(Q^N_1(0))_{N \geq 1}$ is tight.

Step 2. Prove that $L_{st}(\widetilde{Q}^N_0)$ weakly converges to $\delta_{\gamma\mu}$. Let Π^∞_0 be an accumulation point of $L_{st}(\widetilde{Q}^N_0)$. Suppose the finite N model starts with the stationary distribution. Let Π^N denote the law of ν^N and Π^∞ denote an accumulation point of Π^N. Then, we can prove exactly as for Theorem 7 that Π^N is tight, and that any law R in the support of Π^∞ satisfies the non-linear martingale problem. In particular, $(R_t)_{t \geq 0}$ solves the nonlinear Kolmogorov equation. Since the initial distribution is the stationary distribution, $\Pi^N_0 = \Pi^N_1$. Taking the limit along the subsequence, it follows that $\Pi^\infty_0 = \Pi^\infty_1$.

Take $\epsilon > 0$ and an open neighborhood V of $\gamma\mu$. For $j \in \mathbb{N}$, let \mathcal{P}_j be the set of all η in $\mathcal{P}(\mathbb{N})$ such that the solution for the Kolmogorov equation (12) starting at η is in V for all times $t \geq j$. By Lemma 13, $\mathcal{P}(\mathbb{N}) = \bigcup_j \mathcal{P}_j$ and since $\mathcal{P}_j \subset \mathcal{P}_{j+1}$, there is k such that $\Pi^\infty_0(\mathcal{P}_k) > 1 - \epsilon$. It follows that

$$\Pi^\infty_0(V) = \Pi^\infty_k(V) = \Pi^\infty(\{R_k \in V\}) \geq \Pi^\infty(\{R_0 \in \mathcal{P}_k\}) = \Pi^\infty_0(\mathcal{P}_k) > 1 - \epsilon.$$

Therefore, $\Pi^\infty_0 = \delta_{\gamma\mu}$.

Step 3. Since \widetilde{Q}^N_0 converges in law to $\gamma\mu$, by Theorem 7, the conclusions follow.

References

