IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 2, FEBRUARY 2004 149

Fusion of Static and Dynamic Body
Biometrics for Gait Recognition
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Abstract—Vision-based human identification at a distance
has recently gained growing interest from computer vision re-
searchers. This paper describes a human recognition algorithm by
combining static and dynamic body biometrics. For each sequence
involving a walker, temporal pose changes of the segmented
moving silhouettes are represented as an associated sequence of
complex vector configurations and are then analyzed using the
Procrustes shape analysis method to obtain a compact appearance
representation, called static information of body. In addition,
a model-based approach is presented under a Condensation
framework to track the walker and to further recover joint-angle
trajectories of lower limbs, called dynamic information of gait.
Both static and dynamic cues obtained from walking video may
be independently used for recognition using the nearest exemplar
classifier. They are fused on the decision level using different
combinations of rules to improve the performance of both identifi-
cation and verification. Experimental results of a dataset including
20 subjects demonstrate the feasibility of the proposed algorithm.

Index Terms—Biometrics, gait recognition, joint-angle trajec-
tory, Procrustes shape analysis, tracking.

I. INTRODUCTION

DENTIFYING people automatically and accurately is an

important task in a full range of visual surveillance and mon-
itoring applications. In controlled environments such as airports,
banks, and car parks, it is desirable to quickly detect threats.
Recent events such as the September 11th attack have brought
biometrics (especially noncontact human identification at a dis-
tance) to the frontline of attention.

A. Motivation of Gait Recognition

Gait is a newly emergent biometric feature which offers the
ability of identifying people at a distance. Gait can be advanta-
geous in some aspects over other forms of biometric features in
the following ways.

1) Gait seems to be unique. That each person seems to have
a distinctive way of walking is easily understood from a
biomechanics viewpoint [11]. Human walking is a com-
plex action of locomotion involving synchronized inte-
grated movements of body parts, joints, and the interac-
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tion among them [11]. It is the distinguishable variations
among the properties of body structures, weights of limbs,
and actions of different subjects that may provide a unique
cue for identity recognition.

2) Gait is unobtrusive. Most biometric features usually re-
quire physical touch or proximal sensing, while using gait
would avoid such problems since it does not require the
user’s interaction. Also, gait can be easily extracted from
great distances secretly, which naturally advances the ac-
ceptance of the users.

3) Gait can be used for recognition at a distance. The es-
tablished biometric features such as face and fingerprint
are limited in such a capability because they usually re-
quire sensing the cooperative users at close ranges. How-
ever, at a distance, these biometric features are hardly ap-
plicable. Fortunately, gait is still visible in this case. So,
from the surveillance point of view, gait is a very attrac-
tive modality for recognition at a distance.

As stated above, gait has many advantages, especially unob-
trusive identification at a distance, making it very attractive. Gait
recognition, as a combination of human motion analysis [5] and
biometrics, aims essentially to discriminate people by the way
they walk. An ongoing research project, the Human Identifi-
cation at a Distance (Human ID) program!' [24] sponsored by
DARPA, aims to develop a full range of multimodal surveillance
technologies for detecting, classifying, and identifying humans
from a great distance to enhance protection from terrorist at-
tacks. Its focus is on dynamic face recognition and recognition
from body dynamics including gait.

B. Related Work

Interest in automatic gait recognition in the computer vision
community only began recently, but considerable efforts
have already been made [2], [4], [11], [12], [14]-[16], [23],
[26]-[28]. These methods can be roughly divided into two
major categories, namely model-based methods and mo-
tion-based methods.

Model-based approaches [2], [4], [14], [26] usually model the
human body structure or motion and extract image features to
map them into the model components. For instance, Johnson
and Bobick [4] used activity-specific static body parameters for
gait recognition without directly analyzing gait dynamics. Yam
et al. [14] first used running to recognize people as well as
walking and explored the relationship between walking and run-
ning that was expressed as a mapping based on phase modula-
tion. Cunado et al. [26] used thigh joint trajectories as features.
The advantages of model-based approaches are that they offer
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Fig. 1. Overview of the proposed algorithm.

the ability to derive gait signatures directly from model parame-
ters. The disadvantage is that the computational cost is high due
to the complex matching and searching.

Motion-based approaches [11], [12], [15], [16], [23], [27],
[28] generally characterize the whole motion pattern of the
human body by a compact representation regardless of the
underlying structure. For example, BenAbdelkader et al. [11]
proposed an eigengait method using image self-similarity plots,
Collins et al. [12] established a method based on template
matching of body silhouettes in key frames during a walk cycle
for human identification, and Phillips et al. [15] described
a baseline algorithm based on spatial-temporal silhouette
correlation for the gait identification problem. In comparison,
motion-based approaches are of lower computational com-
plexity and simpler implementation.

These early results further confirm that gait has a rich poten-
tial for human identification. Compared with other widely used
biometric features such as face and fingerprint, gait recognition
is still in its infancy. Vision-based gait recognition will thus offer
us an interesting research topic.

C. Overview of the Approach

For obtaining optimal performance, an automatic person
identification system should incorporate as many informative
cues as available. There are many properties of gait that might
serve as recognition features. We categorize them as static
features and dynamic features. The former usually reflect
geometry-based measurements such as body height and build,
while the latter mean joint-angle trajectories of main limbs. In-
tuitively, recognizing people by gait depends greatly on how the
static silhouette shape changes over time. Thus, most previous
work on gait recognition mainly adopted low-level information
such as silhouette [11], [12], [15], [16]. Due to the difficulties
of automatic parameter recovery from video, few methods
except [14] and [26] used higher level information, e.g.,
temporal features of joint angles reflecting the gait dynamics
sufficiently. Based on the idea that body biometrics includes
both the appearance of the human body and the dynamics of
gait motion measured during walking [16], here we attempt
to fuse the two completely different sources of information
available from the walking video for personal recognition.

The proposed method is schematically shown in Fig. 1. For
each image sequence, background subtraction is used to ex-

tract moving silhouettes of the walker. Temporal pose changes
of these silhouettes are represented as an associated sequence
of complex vector configurations in a common coordinate and
are then analyzed using the Procrustes shape analysis method
to obtain an eigenshape for reflecting the body appearance, i.e.,
static information. Also, a model-based approach under a Con-
densation framework together with human body model, motion
model, and constraints is presented to track the walker in image
sequences. From the tracking results, we can easily calculate
joint-angle trajectories of the main lower limbs, i.e., dynamics
of gait. Both static and dynamic information may be indepen-
dently used for recognition using the nearest exemplar pattern
classifier. They are also combined effectively on a decision level
to improve recognition performance. This method is in essence
a combination of model-based and motion-based approaches.
It not only analyzes the spatio-temporal motion pattern of gait
dynamics but also derives a compact statistical appearance de-
scription of gait as a continuum. Thus, it implicitly captures both
structural (appearances) and transitional (dynamics) character-
istics of gait.

The remainder of this paper is organized as follows.
Sections II and III describe static and dynamic feature extrac-
tion, respectively. Pattern classifiers and combination rules
are presented in Section IV. Section V provides experimental
results prior to conclusions in Section VI.

II. STATIC FEATURE EXTRACTION
A. Silhouette Extraction and Representation

To segment the walking figure from the background image, a
change-detection procedure [23] is adopted to extract a single-
connectivity moving region in each frame. An important cue in
determining underlying motion of a walking figure is his or her
temporal changes of silhouette shape. For the sake of reducing
redundancy, here we only need to analyze spatial contours. The
extraction and representation process of the silhouette is illus-
trated in Fig. 2. The silhouette’s boundary can be obtained using
a border-following algorithm based on connectivity. Then, we
may compute its shape centroid (., y.). Let the centroid be the
origin of a two-dimensional (2-D) shape space. We can unwrap
the boundary as a set of pixel points (z;, y; ) along the outer con-
tour counterclockwise in a complex coordinate. That is, each
shape can be described as a vector consisting of complex num-
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Fig. 2. Tllustration of silhouette shape representation. (a) Moving sillhouette.
(b) Boundary unwrapping.

bers with N, boundary elements z = [z1, 22, ..., 2, ... zn5] 7,

where z; = x; + 7%y;. Each gait sequence will be accordingly
transformed into a sequence of such 2-D shape configurations.

B. Procrustes Shape Analysis

We need one method that allows us to compare a set of static
pose shapes in gait pattern and is robust to the changes of po-
sition, scale, and slight rotation. A mathematically elegant way
for aligning point sets is the Procrustes shape analysis [1].

The following gives a summary almost taken from [1] for self-
containedness. Procrustes shape analysis is intended to cope
with 2-D shapes. A shape in 2-D space can be described by
a vector of k& complex numbers, z = [z1, 29, ..., 2|7, called
a configuration. For two shapes, z; and zs, if their configura-
tions are equal through a combination of translation, scaling,
and rotation [1]

z1 = aly —|—ﬂZ27Oé7ﬂ ecC
_ i/8 ey
{ B =|Bleit

where a1y, translates 2z, and |3| and /f scale and rotate 22,
we may consider that they are the same shape. To center shapes,
the centered configuration is defined as u = [u1, us, ..., uz]T,
U = 2 — 2, 2 = Zle zi/k. The full Procrustes distance
between two configurations #; and u2 can be defined by

)

uz) =1 ©))

dr(u1, T E—
lJwa || [Juz]]

where the superscript * represents the complex conjugation
transpose. Given a set of n shapes, we can find their mean
that minimizes the objective function [1]

min

o, B3

> e — a1k = Biu*. (©)
j=1
To find u, we compute the following matrix:

— (uju;)

The Procrustes mean shape w is the dominant eigenvector of
S, i.e., the eigenvector that corresponds to the greatest eigen-
value of S, [1].

C. Static Signature Acquisition

Our approach uses these single shape representations from a
gait sequence to find their mean shape as a static signature that
can implicitly represent the appearance of the body structure.
The following summarizes the major steps in determining the
Procrustes mean shape for a sequence of shapes from n frames
in a gait sequence.

1) Select a set of k points from the boundary to represent a
2-D shape as a vector configuration z;. Here, we tackle
the point correspondence problem through interpolation
of boundary pixels so that the set is the same for each
image.

2) Set the centered configuration. When we represent the
silhouette shape, we use the shape centroid as the origin
of the 2-D shape space to move all shapes to a common
center, which can handle translational invariance. So, we
can directly setu; = 2z;, 5 = 1,2,...,n.

3) Compute the matrix Sy, using (4). Then, compute the
eigenvalues and the associated eigenvectors of Sy,.

4) Set the Procrustes mean shape # as the eigenvector that
corresponds to the maximum eigenvalue, and this mean
shape is used as the static signature.

For multiple mean shapes from multiple sequences of the
same subject, we may acquire an exemplar by averaging them as
a static template for that class so as to avoid selecting a random
reference sample. Fig. 3(a) shows plots of mean shapes of four
sequences of a subject and their exemplar, and Fig. 3(b) shows
plots of multiple exemplars from different subjects. From Fig. 3,
we can see that the intrasubject changes in eigenshapes are very
small, while the intersubject changes are very significant. Such
result implies that the mean shapes have considerable discrim-
inating power. More details on static feature extraction may be
found in [23].

III. DYNAMIC FEATURE EXTRACTION

For extracting dynamic features of gait motion, we present
a new model-based approach to tracking the walker under the
Condensation framework [9]. Here, we briefly review some pre-
vious work on human body models, motion models, and search
strategies in order to put our work in better context.

The geometric structure of human body can usually be rep-
resented as a stick figure, 2-D contour, or volumetric model
such as cylinder [7], truncated cone [8], [22], and super-quadrics



152 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 2, FEBRUARY 2004

0.12

—— Sequence 1
0.1 -~~~ Sequence 2
........ Sequence 3
= SeqQUENce 4

« Exemplar

Subject 16, 0 degree |

0.08H

0.06+
0.041
0.02f
o+
-0.02
-0.04}
-0.06

00808 006 004 002 0

002 004 006 0.08

(a)

0.12 T T T : :
Subject 5,8,14,16 and 20, 0 degree = Exemplar 1

0.1 €D | —— Exemplar2
| masmrese Exemplar 3
-~ Exemplar4 |
----- Exemplar5 |

—_—

0.08
0.06 -
0.04F
0.02-

-0.02
-0.04+

-0.06

0 . .
%08 006 004 002 0
()

Plots of: (a) mean shapes and (b) the exemplars.

002 004 0.06 0.08

Fig. 3.

[10]. Motion models of limbs and joints [6] are widely used in
tracking. They serve as prior knowledge to predict motion pa-
rameters, to interpret human dynamics, or to constrain the es-
timation of low-level image measurements. The representation
of a human body model in each frame is equivalent to a state
vector that indicates the current pose of the tracked person. Pose
estimation in a high-dimensional configuration space is intrinsi-
cally difficult, so search strategies are often carefully designed
to reduce the solution space. Generally, four main categories of
search strategies exist: kinematics, Taylor models, Kalman fil-
tering, and stochastic sampling [6]-[10], [21].

A. Human Body Model

Similar to [7], the human body model in this work is com-
posed of 14 rigid body parts, including upper and lower torso,
neck, two upper arms, two lower arms, two thighs, two lower
legs, two feet, and a head, each of which is represented by a
truncated cone except for the head, which is represented by a
sphere. Each is connected to another at the joints, the angles of
which are represented as Euler angles. The above human body
model in its general form has 48 degrees of freedom (DOFs).
Under the assumption that walking people are usually captured
laterally to obtain more apparent motion cues for gait recog-
nition, the state space can be reduced to a twelve-dimensional
(12-D) vector P = {z,y,61,02,...,010}, where (z,y) is the

global position of human body and 6#;, 7+ = 1 ~ 10, is the joint
angles of shoulders, elbows, hips, knees, and ankles.

B. Learning Motion Model and Constraints

As a highly constrained activity, human walking patterns are
symmetric, periodical, and of little variation in a wide range of
people. Thus, it is easy to learn a compact motion model for
human gait. The learning process proceeds in three steps. First,
the walking cycles in each training example must be rescaled
to the same length and aligned to the same phase. Second, the
walking cycles are segmented out from the normalized training
examples and represented as W; with 7 = 1...n. Lastly, mo-
tion model is described by Gaussian functions Gy, ; (s ¢, O'Z’t)
empirically for each joint k£ (k = 1...10) at any phase ¢ (t =
1...T) in the walking cycle. The learning and representation
of our motion model are compact, but they show great effec-
tiveness in estimation of the prior distribution of the initial pose
and prediction of the new pose.

We also derive motion constraints from the training data by
further exploring the dependency of the neighboring joints:
shoulder and elbow, thigh and knee, and knee and ankle. We
assume that the lower arm is driven by the upper arm, and the
elbow joint is accordingly determined by the shoulder joint.
Therefore, the motion constraint of the elbow joint can be
approximated by the conditional distribution p(6.|0s), where
6. and 6, are the joint angles of the elbow and the shoulder,
respectively. The motion constraints for the knee and ankle
joints are learned in the same way. We also derive intervals
of the valid value for each motion parameter by specifying its
maximal and minimal values. More details on learning motion
model and constraints can be found in [22].

C. Tracking

Tracking is equivalent to relating the image data to the pose
vector. Since the articulated human body model is naturally for-
mulated as a tree-like structure, a hierarchical estimation, i.e.,
locating the global position and tracking each limb separately,
is suitable here.

Given the above considerations, we first predict the global po-
sition from the centroid of the detected moving human and then
refine it by searching the neighborhood of the predicted posi-
tion. Each limb is tracked under the Condensation framework
[9] that uses learned dynamical model, together with visual ob-
servations, to propagate the random sample set. The rule of the
state density propagation over time is [9]

p ($t|$t—1)p (xt—l |Zt—1) dzs_q
Q)

where x; are the motion parameters at time ¢, Z; =
(21,22,...,2¢) is the image sequence up to ¢, and k; is a
normalization constant independent of x;. According to this
rule, the posterior distribution of p(x:|Z;) can be derived
from the posterior at the previous time step p(z:—1|Zt—1)
and three other components: the prior distribution p(z,), i.e.,
initialization, the dynamical model p(z|zi—1) to predict the
motion parameters x; by drifting and diffusing z;_1, and the

p(l‘t|Zt) = k‘tp(zt|$t)/

Ti—1
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Fig. 4. Measuring the: (a) boundary and (b) region matching errors.

observation density p(z¢|z;) computed from a pose evaluation
function (PEF).

Initialization is concerned with the initial pose of a subject
in capturing human motion. Unlike other related work, we use
spatio-temporal information of the first NV frames to automati-
cally accomplish this process. Due to space limitation, only the
dynamic model and the PEF are detailed as follows. Further de-
tails may be found in [22].

The dynamic model usually needs to be designed carefully
to improve the efficiency of factored sampling. Here, the mo-
tion model is integrated into the dynamic model. With the as-
sumption that the Gaussian distributions at different phases in
the motion model are independent, at time instant ¢ the 7th mo-
tion parameter 0; ; satisfies the dynamic model

p(0i¢l0is—1) =G (Oéui,t + Buip—1 +v8i—1, A

X <(a0i,t)2 + (ﬂai,t—1)2)>

where G is a Gaussian distribution, o + 3 4+ v = 1 makes the
drifting of §; ; not only from the tracking history 6; ;_; but also
from the motion model, and ) is a scalar that is often set to 1.
This dynamic model is generally sufficient for all motion param-
eters, but motion constraints can further concentrate the samples
for motion parameters of elbow, knee, and ankle joints. For in-
stance, after the shoulder joint 6, ; is sampled, sample positions
generated from p(. ;|05 +) for the elbow joint §. ; also contain
much useful information. Therefore, a mixed-state Condensa-
tion [21] can be included in the factored sampling scheme with
a probability g to generate samples from the dynamic model and
with a probability 1 — g to generate samples from the conditional
distribution p(fc +|0s+), i.e., 0.+ satisfies

p (He,tlae,tfly Hs,t)

= qG <aue,t + ﬂue,tfl

+ 01, A <(an,t)2 + (,Bffi,tl)2>>
+ (1 - Q)p (‘96,t|95,t)

where «, 3, v, and \ are defined as given above.

Fig. 5.

Part of the tracking results.

The PEF reveals the observation density p(z:|z:) of an
image z; given that the human model has the posture z; at time
t. In general, boundary information improves the localization,
whereas region information stabilizes the tracking. Therefore,
we combine them in the PEF by computing the boundary and
region matching errors simultaneously to achieve both accuracy
and robustness.

Fig. 4 shows the procedure of computing the boundary and
region matching errors. The boundary matching error Ej is the
average distance from the model projection to the boundary of
the image that is similar to the Chamfer distance [8]. In com-
puting the region matching error F,., the region of the projected
human model that is fitted into the image data is divided into
two parts: P is the region overlapping with the image data and
Ps stands for the rest. Then the matching error is defined by
E, = |P|/(|P1| + | P2]), where |P;], (i = 1,2) is the area, i.e.,
the number of pixels inside the corresponding region. Fj and
FE,. are combined into the PEF that is modeled in terms of a ra-
dial term p;(s,0) = ve=s/" [10] as follows:

PEF(P) _ ve—(ﬂXEb+(1—ﬂ)XEr)/0'2 (6)

where « is a scalar to adjust the weights of £} and F,. and P
is the body pose. Here the tracking results of two sequences are
shown in Fig. 5. Due to space constraints, only the human areas
clipped from the original images are given here.

D. Dynamic Signature Acquisition

The tracking results enables us to measure joint-angle trajec-
tories. Fig. 6 shows the temporal changes of the angles of four
joints: left and right hips, left and right knees from a walking in-
stance, where the smoothed curves are the results after median
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filtering. It is the variation in these joint signals that we wish to
consider as dynamic information of body biometrics, i.e., gait
dynamics, for recognition.

Differences in body structure and dynamics naturally cause
joint-angle trajectories to vary in both magnitude and time. So
here we normalize them similar to [2] for recognition. Here,
we select only one walking cycle from each sequence. Variance
normalization by subtracting the mean of each signal and then
by dividing by the estimated standard deviation is performed
to reduce the effect of noise. Dynamic time warping (DTW) is
then applied to temporally align the signals to a fixed reference
phase. Fig. 7 shows the results of time-normalized signals of
thigh rotation, from which we find that there are little variations
among sequences from the same subject, whereas there are ap-
parent variations among different subjects. We choose four nor-
malized signals from the left and right hips and knees to form
a dynamic feature vector. Similarly, we also use multiple vec-
tors from the same subject to obtain the exemplar by averaging
them, which is regarded as a dynamic template for that class.

IV. CLASSIFIERS AND FUSION RULES

Gait recognition is a traditional pattern classification problem
which can be solved by measuring similarities among gait
sequences. Here we try the nearest neighbor classifier with
class exemplar (ENN). It classifies a sequence as the class of
its nearest-neighbor exemplar. There is no doubt that a more
sophisticated classifier could be employed, but the interest here
is to evaluate the genuine discriminatory ability of the extracted
features.

To measure similarity, we make use of the Procrustes mean
shape distance defined in (2) for static features and the Eu-
clidean distance for dynamic features, respectively. The smaller
the distance measures are, the more similar the two gaits are.

The main reasons for combining classifiers are efficiency and
accuracy. A variety of fusion approaches for biometric recogni-
tion are available, a few of which are mentioned here [17]-[20].
For example, Hong and Jain [18] integrated face and fingerprint

Left Thigh Rotation After Time Normalization and Alignment

—_

Angle (deg)

---- Sequence 4

100
Gait Cydle (%)

Thigh Rotation from Four Different Subjects

Angle (deg)

Gait Cycle (cyo)

Fig. 7. Time-normalized signals of joint angles.

for personal recognition, and a theoretical framework was de-
veloped in [19] for combining independent classifiers.

Having obtained the score for each modality given the obser-
vations, one generally cannot directly combine these scores in
a statistically meaningful way because these scores are usually
not direct estimates of the posterior, but rather measures of the
distance between the test examples and the reference example
[3]. These scores, with quite different ranges and distributions,
must be transformed to be comparable before fusion (the logistic
function e(*+%) /(1 4 e(2+07)) is used in this paper).

In this paper, we investigate the following approaches to
classifier combination. First, the rank-summation-based and
score-summation-based approaches described in [20] are used.
The following gives their introductions, which are almost taken
from [20]. Rank-based strategies are a generalization of simple
voting methods. It is to compute the sum of the rank for every
class in the combination set. The class with the lowest rank
sum will be the first choice. Let r(n, R;) be the rank of the



WANG et al.: FUSION OF STATIC AND DYNAMIC BODY BIOMETRICS FOR GAIT RECOGNITION 155

Empirical Probability Distribution Using Static Features
1 : ; : .

\

0.8 .
206/ 1
2 | i
[\\] |
2 | i
[e]

a 0.4 .
|

0.2 1 1

0 — | I i L 1
0 0.01 0.02 0.03 0.04 0.05
Score

Empirical Probability Distribution Using Dynamic Features
1 (1 : T T 3

0.8 1

Probability
o
e

e
~
!

0.2+ 1

2000 3000 4000 5000 6000
Score

1%00

Fig. 8. Modeling the probability distributions of scores.

class with name n in the ranking R;; this rule is defined as
arg min,, (nk, Zle r(ng, R;)
are directly comparable, the simplest way to combine classifiers
using the score is to compute the sum of the score functions.
Let s(n, S;) be the score of the class with name n in the S;;
this rule is defined as arg min, (nk, Y1 5(nx, S;) [20], ie.,
the class with the lowest score sum will be the final choice.

Following the theoretical framework presented in [19], we
also compare the max, min, mean, and product rules for the
combination classifier. Let the input feature to the jth classifier
(j = 1,...,R) be z; and the winning label be I. These rules
are given as follows according to [3]:

[20]. If the score functions

1) The product rule: | = arg maxy, Hle p(wi/xj).

2) The mean rule (sum): [ = arg maxy, Zle plwi/xj).
3) The max rule: | = arg maxy max; p(wi/z;).

4) The min rule: [ = arg maxy, min; p(wg/z;).

In order to justify the above rules statistically, a monotonic
transformation function over scores S needs to be applied to
reflect the posterior probability. We used the similar approach
proposed in [3]. That is, we may estimate a probability distribu-
tion over the scores assigned to the correct labels by a mapping
function 7" from scores to the empirical distribution and treat
T(S) as the estimate of the posterior (see Fig. 8).

V. EXPERIMENTS
A. Data Acquisition

We collected 80 sequences from 20 different subjects and four
sequences per subject for our experiments. Each sequence in-
cludes a walking figure, and the walker moves laterally with re-
spect to the image plane at normal cadence in the field of view
without occlusion. All image sequences are captured by a sta-
tionary digital camera at a rate of 25 frames per second.

B. Experimental Results

For each image sequence, we first extract static features in
the manner described in Section II. In addition, we perform
the model-based tracking and recover dynamic features in the
manner described in Section III. It should be noted that certain
scenarios, such as self-occlusion of body parts, shadow under
the feet, and the arm and the torso having the same color, and low
quality of the image sequences bring challenges to our tracking
method. For a small portion of failed tracking images, we man-
ually obtain the motion parameters, as the focus of this paper is
not on tracking per se but on gait recognition using the tracking
data as dynamic features.

Due to the small number of examples, we hope to compute
an unbiased estimate of the true recognition rate using a
leave-one-out cross-validation method. That is, we first leave
one example out, train on the remainder, and then classify or
verify the omitted element according to its differences with
respect to the remaining examples.

First, we use static and dynamic features separately for recog-
nition. In the identification mode, the classifier determines to
which class a given measurement belongs. One useful measure
of classification performance is cumulative match characteris-
tics (CMC) [13] which is first introduced in the FETET protocol
for the evaluations of face recognition algorithms. It indicates
the probability that the correct match is included in the top n
matches. Here, we use it to report the results of identification. For
completeness, we also use the receiver operating characteristic
(ROC) curves to report verification results. In the verification
mode, the classifier is asked to verify whether a new measure-
ment really belongs to certain claimed class. ROC curves give
plots of various pairs of false acceptance rate (FAR) and false
rejection rate (FRR) under different decision threshold values
for the acceptance. Fig. 9(a) and (b) respectively shows per-
formance of identification (for ranks up to 20) and verification
using a single modality. It should be mentioned that the correct
classification rate (CRR) is equivalent to p(q) (i.e., rank = 1).

Based on the combination rules described in Section 1V, we
examine the results after fusing both static features and dynamic
features. Fig. 10(a) and (b) shows the results of identification
and verification using rank-summation-based and score-sum-
mation-based combination rules, respectively, and Fig. 11(a)
and (b) gives the fusion results using the product, sum, max,
and min combination rules, respectively. For comparison, we
also plot the results using a single modality in Figs. 10 and 11.

C. Analysis and Discussions

From Fig. 9, we can see that there is indeed identity infor-
mation in both the static and dynamic features derived from
the walking video that can be explored for the recognition task.
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Fig. 9. Results using a single modality. (a) Identification. (b) Verification.

The results using dynamic information are somewhat better than
those using static information. This is likely due to the fact that
the dynamics reflect more essential information of gait motion.
As we know, Tanawongsuwan and Bobick [2] also used dynam-
ical features (joint trajectories) for gait recognition, but their
work is different from ours. They used a motion capture system
to obtain motion data, while in our work the motion parame-
ters were recovered automatically using visual techniques. Also,
they achieved a recognition rsate of 73% on a database including
18 subjects while our recognition rate is 87.5% for a database
of 20 subjects.

Figs. 10 and 11 demonstrate the improved performance of
both identification and verification for the fusion step than that
using any single modality. A summary of CCRs and equal error
rates (EERs) is given in Table I for clarity. Another observation
from the comparative results is that the score-summation-based
rule outperforms other combinations schemes as a whole. Of the
last four statistical combination rules, the sum rule is the best
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for identification, which has also been shown in [19] using the
sensitivity analysis to demonstrate that the sum rule is the most
resilient to estimation errors. However, the product rule is best
for verification. It is believed that there will be better results if
there are sufficient data to model the probability distributions of
scores for the two pattern classifiers more precisely. In all, these
studies highlight the importance of a careful choice of the whole
combination strategy.

Although the results are very encouraging, more experiments
on a larger and more realistic database still need to be further in-
vestigated in future work in order to be more conclusive. Accord-
ingly, much remains to be done, which we outline as follows:

1) Establishing a larger and more realistic database. Unlike
face recognition, now gait recognition lacks of a common
evaluation dataset. The researchers often established
their own gait databases and then reported a recognition
rate. Directly using these reported rates for comparison
seems to mean nothing. We have compared some recent
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Fig. 11. Results using the product, sum, max, and min combination rules.
(a) Identification. (b) Verification.

TABLE 1
SUMMARY OF CCRs AND EERS

CCR (rank=1) CCR (rank=3) EER
Static features 83.75% 92.50% 10.0%
Dynamic features 87.50% 97.50% 8.42%
Rank-summation 87.50% 100% 3.75%
Score-summation 97.50% 100% 3.75%
Product 92.50% 97.50% 3.54%
Sum 96.25% 100% 5.00%

Max 95.00% 100% 4.70%

Min 91.25% 97.50% 5.00%

algorithms using static features on our dataset [23]. But
this comparison should be considered with reservation.
Therefore, we have a strong will that a common dataset
will be established so that everyone can make a reasonable
comparison with other work.

2) Developing more robust segmentation algorithms and to
improve three-dimensional tracking, which is very critical
to accurately and automatically extract gait features.

3) Designing more sophisticated classifiers and combination
rules.

4) Using a dynamic silhouette description as in [25] in future
work to obtain a better description of spatio-temporal sil-
houette changes in a gait pattern than using static silhou-
ette description here.

5) Further analyzing the correlation of two types of features.
As a general rule, the higher the correlation, the lower the
recognition rate after fusion. Our two features respectively
reveal the two categories of parameters of body biomet-
rics. Since the static parameters of the body are basically
un-correlated with the dynamic ones, the silhouette fea-
tures should be un-correlated with the trajectories to some
extent. Also, probably this is the main reason why the fu-
sion performs well in our experiments. Nevertheless, thor-
ough and deep analysis of the correlation is still needed in
future work.

VI. CONCLUSION

We have proposed an efficient algorithm based on the fusion
of static and dynamic body biometrics for personal recognition.
A statistical approach based on the Procrustes shape analysis
method is used to obtain a compact representation of the ap-
pearance of body shape from the spatio-temporal pattern of the
walking action. A model-based approach is employed to track
the walker in monocular sequences and to recover joint-angle
trajectories of lower limbs that reflect the dynamics of gait mo-
tion. Both static and dynamic cues of body biometrics may be
independently used for recognition. Also, they have been ef-
fectively combined on the decision level for improving perfor-
mance. Experimental results have demonstrated the feasibility
of the proposed algorithm.

ACKNOWLEDGMENT

The authors would like to express their thanks to Dr. Nixon
(University of Southampton, U.K.) for providing data and to the
anonymous reviewers for their constructive comments.

REFERENCES

[1] J. Boyd, “Video phase-locked loops in gait recognition,” in Proc. Int.
Conf. Computer Vision, vol. 1, 2001, pp. 696-703.

[2] R. Tanawongsuwan and A. Bobick, “Gait recognition from time-nor-
malized joint-angle trajectories in the walking plane,” in Proc. Int. Conf.
Computer Vision and Pattern Recognition, 2001.

[3] G. Shakhnarovich, L. Lee, and T. Darrell, “On probabilistic combination
of face and gait cues for identification,” in Proc. Int. Conf. Automatic
Face and Gesture Recognition, 2002, pp. 176-181.

[4] A. Bobick and A. Johnson, “Gait recognition using static activity-spe-
cific parameters,” in Proc. Int. Conf. Computer Vision and Pattern
Recognition, 2001.

[5] L. Wang, W. Hu, and T. Tan, “Recent developments in human motion
analysis,” Patt. Recognit., vol. 36, no. 3, pp. 585-601, 2003.

[6] T.Zhao, T. Wang, and H. Shum, “Learning a highly structured motion
model for 3D human tracking,” in Proc. Asian Conf. Computer Vision,
vol. I, 2002, pp. 144-149.

[7]1 S. Wachter and H. Nagel, “Tracking persons in monocular image
sequences,” Comput. Vis. Image Understanding, vol. 74, no. 3, pp.
174-192, 1999.



158

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 2, FEBRUARY 2004

Q. Delamarre and O. Faugeras, “3D articulated models and multi-view
tracking with physical forces,” Comput. Vis. Image Understanding, vol.
81, pp. 328-357, 2001.

M. Isard and A. Blake, “Condensation—Conditional density propaga-
tion for visual tracking,” Int. J. Comput. Vis., vol. 29, no. 1, pp. 5-28,
1998.

C. Sminchisescu and B. Triggs, “Covariance scaled sampling for monoc-
ular 3D body tracking,” in Proc. Int. Conf. Computer Vision and Pattern
Recognition, 2001.

C. BenAbdelkader, R. Culter, H. Nanda, and L. Davis, “EigenGait:
motion-based recognition of people using image self-similarity,” in
Proc. Int. Conf. Audio- and Video-Based Person Authentication, 2001,
pp. 284-294.

R. Collins, R. Gross, and J. Shi, “Silhouette-based human identification
from body shape and gait,” in Proc. Int. Conf. Automatic Face and Ges-
ture Recognition, 2002, pp. 366-371.

J. Phillips, H. Moon, S. Rizvi, and P. Rause, “The FERET evaluation
methodology for face recognition algorithms,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 22, pp. 1090-1104, Oct. 2000.

C. Yam, M. Nixon, and J. Carter, “On the relationship of human walking
and running: automatic person identification by gait,” in Proc. Int. Conf.
Pattern Recognition, vol. 1, 2002, pp. 287-290.

P. Phillips, S. Sarkar, I. Robledo, P. Grother, and K. Bowyer, “The gait
identification challenge problem: Data sets and baseline algorithm,” in
Proc. Int. Conf. Pattern Recognition, vol. 1, 2002, pp. 385-388.

L. Lee and W. Grimson, “Gait analysis for recognition and classifica-
tion,” in Proc. Int. Conf. Automatic Face and Gesture Recognition, 2002,
pp. 155-162.

R. Brunelli and D. Falavigna, “Person identification using multiple
cues,” IEEE Trans. Pattern Anal. Machine Intell., vol. 17, pp. 955-966,
Oct. 1995.

L. Hong and A. Jain, “Integrating faces and fingerprints for personal
identification,” IEEE Trans. Pattern Anal. Machine Intell., vol. 20, pp.
1295-1307, Dec. 1998.

J. Kittler, M. Hatef, R. Duin, and J. Matas, “On combining classifiers,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 20, pp. 226-239, 1998.
B. Achermann and H. Bunke, “Combination of Classifiers on the De-
cision Level for Face Recognition,” University of Bern, IAM-96-002,
1996.

M. Isard and A. Blake, “A mixed-state condensation tracker with auto-
matic modal switching,” in Proc. Int. Conf. Computer Vision, 1998, pp.
107-112.

H. Ning, L. Wang, W. Hu, and T. Tan, “Articulated model based people
tracking using motion models,” in Proc. Int. Conf. Multi-Modal Inter-

face, 2002, pp. 383-388.

L. Wang, T. Tan, W. Hu, and H. Ning, “Automatic gait recognition based
on statistical shape analysis,” IEEE Trans. Image Processing, vol. 12, pp.
1120-1131, Sept. 2003.

L. Wang, H. Ning, T. Tan, and W. Hu, “Fusion of static and dynamic
body biometrics for gait recognition,” in Proc. Int. Conf. Computer Vi-
sion, vol. I, Oct. 2003, pp. 1449-1454.

A. Baumberg and D. Hogg, “Generating spatiotemporal models from
examples,” in Proc. Brit. Machine Vision Conf., 1995, pp. 413-422.

D. Cunado, M. Nixon, and J. Carter, “Automatic extraction and de-
scription of human gait models for recognition purposes,” Comput/ Vis.
Image Understanding, vol. 90, no. 1, pp. 1-41, 2003.

S. A. Niyogi and E. H. Adelson, “Analyzing and recognizing walking
figures in XYT,” in Proc. IEEE Computer Soc. Conf. Computer Vision
and Pattern Recognition, 1994, pp. 469-474.

J. Little and J. Boyd, “Recognizing people by their gait: the shape of
motion,” Videre: J. Comput. Vis. Res., vol. 1, no. 2, pp. 2-32, 1998.

Liang Wang received the B.Sc. degree in electrical engineering and the M.Sc.
degree in video processing and multimedia communication from Anhui Uni-
versity, Hefei, China, in 1997 and 2000, respectively, and is currently working
toward the Ph.D. degree in pattern recognition and intelligent systems at the
National Laboratory of Pattern Recognition, Institute of Automation, Chinese
Academy of Sciences, Beijing, China.

He has published more than 10 papers in international journals and confer-
ences. His current research interests include computer vision, pattern recogni-
tion, digital image processing and analysis, multimedia, and visual surveillance.

Huazhong Ning received the B.Sc. degree in computer science from the Uni-
versity of Science and Technology of China, Hefei, in 2000 and the M..S. degree
from the National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, China.

He has published several papers in national journals and international con-
ferences. His main research interests include computer vision, human computer
interaction, image processing, pattern recognition, and graphics.

Tieniu Tan (M’92-SM’97-F’03) received the B.Sc. degree in electronic engi-
neering from Xi’an Jiaotong University, Xi’an, China, in 1984 and the M.Sc.,
DIC, and Ph.D. degrees in electronic engineering from Imperial College of
Science, Technology and Medicine, London, U.K., in 1986, 1986, and 1989,
respectively.

He joined the Computational Vision Group, Department of Computer Sci-
ence, The University of Reading, Reading, U.K., in October 1989, where he
was a Research Fellow, Senior Research Fellow, and Lecturer, respectively. In
January 1998, he returned to China to join the National Laboratory of Pattern
Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing,
China. He is currently a Professor and Director of the National Laboratory of
Pattern Recognition as well as President of the Institute of Automation. He has
published widely on image processing, computer vision, and pattern recogni-
tion. His current research interests include speech and image processing, ma-
chine and computer vision, pattern recognition, multimedia, and robotics.

Dr. Tan was an elected member of the Executive Committee of the British Ma-
chine Vision Association and Society for Pattern Recognition (1996-1997) and
is a founding co-chair of the IEEE International Workshop on Visual Surveil-
lance. He serves as a referee for many major national and international journals
and conferences. He is an Associate Editor of Pattern Recognition and IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE and is the
Asia Editor of Image and Vision Computing.

Weiming Hu received the Ph.D. degree from Zhejiang University, Hangzhou,
China.

He was a Post-Doctoral Research Fellow with the Institute of Computer Sci-
ence and Technology, Founder Research and Design Center, Peking University,
Peking, China, from April 1998 to March 2000. In April 2000, he joined the
National Laboratory of Pattern Recognition, Institute of Automation, Chinese
Academy of Sciences, Beijing, China, as an Associate Professor. He has pub-
lished more than 40 papers in major national journals and international confer-
ence proceedings. His current research interests include visual surveillance and
monitoring of dynamic scenes, recognition and filtering of Internet objection-
able images, neural networks, and computer vision.



