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ABSTRACT tures for recognizing human actions and exhibit discrimina

This paper proposes an approach to searching human beh&Y€ capability in previous work [4, 5, 6]. But estimation of
iors in videos using spatial-temporal words which are learn®Ptical flow or motion may be noisy due to the fundamental
from unlabelled data with various human behaviors througfitrdles of aperture and singularities probleets|3]. Laptev

unsupervised learning. Both the query and the searchedwide?"d Lindeberg [7]'s approach, which detects a sparse set of

are represented by codewords frequencies, which captere tiP2ce-time corner points to characterize the action, caly pa

intrinsic information of motion and appearance of human be@v0id these problems. But the performance may degrade due

haviors. This representation further enables us to make ud@ 9¢clusions and misdetections of these interests pdiiits [
of integral histograms to accelerate the searching praeedu ~NOther attempt is to measure the "behavioral similarity” b

The performance also benefits from our feature representati INténsity/gradient on pixel level or on space-time patafele
that, through a MAX-like operation, may simulate the corti-[3: 2: 8]. This method requires no foreground/background

cal equivalent of the machine-vision “window of analysi’[ segmentation as needed in [6] and no motion segmentation.

Examples of challenging sequences with complex behaviord @S0 tolerates appearance variance in scale, orientatiw
including tennis and ballet, are shown. movement to some extent. Our approach, using space-time

patches as well, shares these advantages.

This paper also uses patch-based feature that is the his-
togram of responses of a bank of 3D Gabor filters, followed
by a MAX-like operation [1]. This feature is locally invari-

1. INTRODUCTION ant to a range of scales and positions. Then spatial-terhpora

words (i.e., “bag-of-words” model) is used to represent the

Searching similar human behaviors in large video database guery video and each sliding window in the searched video.
on internet has wide applications such as video surve#anc And the human behavior similarity is naturally measured by
sports video analysis, and content-based video retriéMal. the discrepancy of codewords frequencies. “Bag-of-words”
intuitive idea to solve this problem is to “correlate” a shor model was initially used in the text retrieval community for
query video against the searched video sequences; the vidgaalyzing documents [9] and then it achieved significant suc
locations with high behavioral similarities are selected®  cess in object and natural scene categorization [10, 11k He
matched positions. However, measuring similarity of naitur the codewords dictionary is obtained by unsupervised earn
human behaviors in video clips has proven to be very Cha|'mg from a dataset with various human behaviors.
lenging for computers. One difficulty is that the same action  The contributions of this work are as follows: 1) Spatial-
performed by two different people or even by the same persogmporal words are proposed for video representation,twhic
but at different time, are subject to large appearancet@nia ot only captures the intrinsic information of motion and ap
due to different movement, scale, clothirgc. Hence the pearance of human behaviors, but also speeds up the scanning
searching based on unconstrained motion estimation or Optﬂhrough integral histograms. 2) The proposed patch-based
cal flow is highly unreliable. Although patch-based apptoac feature is locally invariant to a range of scales and pasitio

can alleviate this difficulty to some extent [2, 3], the co@u  \yhile maintains selectivity to some extent.
tional costis very high due to “correlation” in the 3B(y, t))

space. Another challenge is that, with moving cameras, non-
stationary background, and moving target, few vision algo- 2. FEATURE REPRESENTATION
rithms could identify and localize such motions well.
A lot of previous work has been presented to address thesaur patch-based feature is inspired by the standard model
problems. Motion and trajectories are commonly used fea(HMAX) of object recognition in primate cortex proposed by

Index Terms— Spatial-Temporal Words, Human Behav-
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Riesenhuber and Poggio [1]. This feature is a histogram ob-3. SEARCHING BY SPATIAL-TEMPORAL WORDS

tained by the following steps. Firstly the original video is

convolved with a bank of 3D Gabor filters. Then we pool overWith the extracted features, the spatial-temporal worddde
limited ranges in Gabor responses through a MAX-like operwords dictionary) are learnt from a collection of unlabélle
ation. Each Gabor orientation after pooling forms a bin ef th videos by unsupervised learning. The query video and each
feature histogram. Riesenhuber and Poggio [1] argued thatanning window are represented by the frequency of spatial
the MAX-like operation may represent the cortical equinale temporal words. Then the query video is “correlated” with th

of the machine-vision “window of analysis” through which to searched video at all scanning positions. The integrate his
scan and select input data. They also claimed that it is a keypgrams are used to speed up the correlation. Figure 1 shows

mechanism for object recognition in the cortex. The featurehe flowchart of our approach.

extraction is detailed as follows.
Firstly, the video frames are down-sampledf0) x 240
or smaller (while maintaining the aspect ratio) to save comp

tations. The down-sampled video is convolved with a bank o

3D Gabor filters. The Gabor filter is composed of two main

components, the sinusoidal carrier and the Gaussian gre/elo
It exhibits many common properties, such as spatial loaaliz
tion, orientation selectivity and spatial frequency clotes-
zation, to mammalian cortical cells. After a minor modifica-
tion of the generalv-Dimension Gabor filter, we have:

X2 Y? T2
X COS <i—jX> cos <i—irY) Q)
where

X 1 0 0
Y 0 cos(f) —sin(9)
T 0 sin(f) cos(f)

cos(w) 0 sin(w) x

X 0 1 0 y (2)
—sin(w) 0 cos(w) t

Herefd andw are used to selectively rotate the filter at par-
ticular orientations in 3D space. Bothandw take discrete
values[— 7,0, 7], so there ar@® orientations in total. Other
filter parameters (the filter size, the effective widttand the
wavelength\) are determined by considering the profiles of
V1 parafoveal simple cells [12], the setup for 2D static im-
ages in [13], and the computational cost. We chabseales
that is formed int® bands, so there arex 9 filters.

3.1. Learning Spatial-Temporal Words

ﬁ'he spatial-temporal words are leant from a collection 6f un
labelled videos. Firstly, the features (9-bin histogras
extracted from all patches in the original training videos a
cording to Section 2. These features are used to train a GMM
(Gaussian Mixture Model),

N
G(r) = Zaipi(ﬂf) 3)

whereq;'s are weights angh;’s are Gaussian components.
Itis natural to us€aypy, aspe, -+ ,anpn } to represent the
spatial-temporal words dictionary. Intuitively, each dos;p;
represents a dominant orientation response of 3D Gabasfilte
that is weighted by its prior probability; in the video collec-
tion. Note that two GMMs are trained corresponding to two
bands.

The selection of the number of Gaussian componéhts
is a trade-off between bias and variance. This paper uses
Bayesian Information Criterion (BIC) [14] to sele®st, where
the fitting of GMM model is carried out by maximization of
alog-likelihood,

BIC = —2-loglik+ (log M) - d 4)
whereloglik is the log-likelihood given the samples/ is
the number of samples amds the number of parameters. In
experiments we calculat8 /C with N varying from9 to 50
andN = 20 gives the maximunBIC.

Thenwe pool over limited ranges in Gabor responses through

a MAX-like operation. This operation takes max over grids
with size8 x 8 x 4 and step sizd x 4 x 2 in each scale and

3.2. Searching

then takes max over two scales of each band. After MAX-likeSearching is carried out by correlating the query videoragai

pooling, there ar@ bands and orientations per location and
the video size is down sampled lyx 4 x 2, and the feature
may tolerate large variances of scales and positions.

After MAX-like pooling, the query video and each sliding
window are further divided intd x 4 x 3 patches with step x

the searched video at all sliding windows. We extract fesgur
from each patch in the sliding window (or query video) fol-
lowing Section 2. Then each feature is fed into the GMM
model that outputs the spatial temporal wofds p1, aspa,

- ,anpn }. All such outputs in the sliding window (or query

1x 1. For each patch, the responses with the same orientatiomgleo) are added up together, which gives the frequencies of
are summed up so that they form two 9-bin histograms. Thithe codewords. These frequencies are normalized to one so
histogram pair is the final patch-based feature. that the similarity between the query video and the sliding



Video Feature Unsupervised Spatial-temporal
) collection representation learning words
Learning
Searching
Query . Feature Codewords
video representation frequency
Spatial-temporal Correlation
words
_l ;
Searched Feature Codewords
video representation frequency
Fig. 1. Framework. The flowchart of our approach.
window is naturally measured by KL divergence [15]: of 104 x 124 pixels. Figure 2 (a) shows a few frame sam-
(@) ples. The query video is searched in a longer video playing
KL(fllg) = /f(:c)log mdaz (5)  tennis 800 frames 0f228 x 146 pixels). We build integral

histograms of codewords frequencies for the searched video
/flog fdx — /flog gdx (6) and total codewords frequencies for the query video. Then
the similarity between the query video and all sliding win-
where f and ¢ are normalized frequencies of query videodows are computed. Figure 2 (b) shows some searched tennis
and sliding window respectively. To make the measure symstrokes marked by rectangles. Figure 2 (c) draw the similar-
metric, we take the symmetric KL divergencé(f,g) = ity surfaces corresponding to frames in (b), whereyiow
KL(f|lg) + KL(g||f). The final similarity is the negative indicates high similarity antluethe low similarity. In corre-
sum of KL divergences of two bands. We select the locationtation, the query clip and the sliding window are alignedat t
where the similarities are greater than a predefined thiésho top-left corner instead of the center, so the peaks of the sim
but the duplicate candidates are consolidated using tlyhnei larity surfaces do not exactly align with the people in Fegr
borhood suppression algorithm from [16]. and 3.
Correlation at all positions is usually very time-consugin
However, computation of the codewords for each patch can
be carried out beforehand. The computational cost can be
further reduced by representing the codewords frequeities  Figure 3 shows the results of searching turn actions in a
the form of integral histograms [17] so that a codeword fre-pallet footage downloaded from the web (“Birmingham Royal
quency of each sliding window can be obtained by ofly Ballet”). It contains400 frames 0f192 x 144 pixels. The

“add/subtract” operations. query video is a single turn @b frames with resolutioB6 x
122. Some sample frames are shown in Figure 3 (a). Figure 3
4. EXPERIMENTAL RESULTS (b) and (c) show some searched ballet turns and the corre-

sponding similarity surfaces, respectively. Column 3 and 8

Our feature representation and the searching using spatiare marked as occurrences while the corresponding similar-
temporal words has wide applications ranging from sportsty surfaces have no salient peaks. This is because they are
video analysis, surveillance, to internet video searchitig  not the first frames of the candidate video segments and the
search a short query video, which represents the human bpeaks may quickly collapse after the first frame. This exampl
havior of interest, in longer videos and return the occuween is very challenging because 1) Both the query and searched
of the similar behaviors. The method requires no backgroundideos contain fast moving parts; 2) the female dancer in the
/ foreground segmentation and tolerates a range of scales, psearched video wears skirt, which is different to the query
sitions and motion variations. Two experimental results arvideo; 3) the variation in scale relative to the templataigé,
shown below: one is searching tennis strokes and the otherwghile our method detects most of the turns of two dancers.
searching ballet turns. Shechtman and Irani [3] have tested their method on thisvide

Figure 2 shows the results of searching strokes in tennigsing the same query video. Careful comparison shows that
videos. The short query video is a tennis strok8 bframes  both approaches achieve similar performance.
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Fig. 2. Tennis. (a) Query video of a stoke. (b) shows some searched resultseamnched strokes are marked by rectangles. (c)
are the similarity surfaces corresponding to the frameb)in (
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Fig. 3. Ballet. (a) Query video of a single turn. (b) shows some searchedtsemd searched turns are marked by rectangles.
(c) are the similarity surfaces corresponding to the fraimégls).
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strate the effectiveness of our approach.
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