Pattern Recognition 43 (2010) 113-127

journal homepage: www.elsevier.com/locate/pr

Contents lists available at ScienceDirect

Pattern Recognition

Incremental spectral clustering by efficiently updating the eigen-system

Huazhong Ning®*, Wei XuP, Yun Chi®, Yihong Gong®, Thomas S. Huang?

3ECE Department, University of Illinois at Urbana-Champaign, USA

YNEC Laboratories America, Inc., USA

ARTICLE INFO

ABSTRACT

Article history:

Received 20 November 2008

Received in revised form 31 May 2009
Accepted 5 June 2009

Keywords:

Incremental clustering
Spectral clustering
Incidence vector/matrix
Graph

Web-blogs

In recent years, the spectral clustering method has gained attentions because of its superior performance.
To the best of our knowledge, the existing spectral clustering algorithms cannot incrementally update the
clustering results given a small change of the data set. However, the capability of incrementally updating
is essential to some applications such as websphere or blogsphere. Unlike the traditional stream data,
these applications require incremental algorithms to handle not only insertion/deletion of data points but
also similarity changes between existing points. In this paper, we extend the standard spectral clustering
to such evolving data, by introducing the incidence vector/matrix to represent two kinds of dynamics
in the same framework and by incrementally updating the eigen-system. Our incremental algorithm,
initialized by a standard spectral clustering, continuously and efficiently updates the eigenvalue system
and generates instant cluster labels, as the data set is evolving. The algorithm is applied to a blog data
set. Compared with recomputation of the solution by the standard spectral clustering, it achieves similar
accuracy but with much lower computational cost. It can discover not only the stable blog communities
but also the evolution of the individual multi-topic blogs. The core technique of incrementally updating
the eigenvalue system is a general algorithm and has a wide range of applications—as well as incremental
spectral clustering—where dynamic graphs are involved. This demonstrates the wide applicability of our

incremental algorithm.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Spectral clustering is notable both for its theoretical basis of graph
theory and for its practical success. It recently has many applications
in data clustering, image segmentation, web ranking analysis, and di-
mension reduction. Spectral clustering can handle very complex and
unknown cluster shapes in which cases the commonly used meth-
ods such as K-means and learning a mixture model using EM may
fail. It relies on analyzing the eigen-structure of an affinity matrix,
rather than on estimating an explicit model of the data distribution
[1,2]. In other words, the top eigenvectors of the graph Laplacian can
unfold the data manifold to form meaningful clusters [3].

However, nearly all existing spectral approaches are off-line al-
gorithms, and hence they cannot be directly applied to dynamic data
set. Therefore, to handle evolving data set, e.g., web data, there is a
need to develop efficient algorithms for inductive spectral clustering
to avoid expensive recomputation of the solution from the scratch.

* Corresponding author. Tel.: +12174176820.
E-mail addresses: hning2@ifp.uiuc.edu, hning2@uiuc.edu (H. Ning)
URL: http://www.ifp.uiuc.edu/~hning2.

0031-3203/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2009.06.001

An intuitive approach is fixing the graph on the training data and
assigning new test points to their corresponding clusters by the near-
est neighbor in the training data [3]. However, the error will accu-
mulate quickly when more test points that are close to the cluster
boundaries are added. In this paper, we extend the spectral clus-
tering to handle evolving data by incrementally updating the eigen-
value system, which achieves more accurate results while requires
low computational cost.

There exist incremental clustering algorithms [4-6] that are de-
signed to handle only insertion of new data points. However, data
sets, such as web pages and blogs, require the incremental algo-
rithms to handle not only insertion/deletion of nodes but also sim-
ilarity changes between existing nodes. Fig. 1 gives a toy example
where a graph evolves from (a) to (b), with a similarity change of
0.5 added to the edge CD and a new node G connected to node F. In
Fig. 1(a), the graph should be cut at the edge CD; while in Fig. 1(b)
the cut edge is DE due to the similarity change on edge CD.

We handle the two kinds of dynamics in the same framework by
representing them with the incidence vector/matrix [7]. The Laplacian
matrix can be decomposed into the production of two incidence
matrixes. A similarity change can be regarded as an incidence vector
appended to the original incidence matrix. And an insertion/deletion
of a data point is decomposed into a sequence of similarity changes.

http://www.sciencedirect.com/science/journal/pr
http://www.elsevier.com/locate/pr
mailto:hning2@ifp.uiuc.edu
mailto:hning2@uiuc.edu
http://www.ifp.uiuc.edu/~hning2

114 H. Ning et al. / Pattern Recognition 43 (2010) 113-127

a
5 E
0.8
07 04 \09
0.1
---4p F
‘ C
b
B E.
/
07 /0.4 0.9
D F
A C s G 55

Fig. 1. A toy example of evolving data. (a) Before evolution. (b) After evolution. The
dash lines are the cut edges.

Each newly added incidence vector (similarity change) may induce
increment to the Laplacian and degree matrixes, and we approximate
the corresponding increments of the eigenvalues and eigenvectors
by omitting the influence of the data points outside the spatial neigh-
borhood of the updating data points. In this way, the eigen-system
and the cluster labels are incrementally updated as data points are
inserted/deleted or similarity changes occur.

This approach is useful to the applications where the similarity
matrix is sparse and where both the data points and their similarities
are dynamically updated. An example is the community discovery
of the web-blogs. The key observation is that a link reference from
an entry of a source blog to an entry of a destination blog serves as
an endorsement of the similarity between the two blogs. A graph
can be constructed based on the similarities between the web-blogs,
and communities (clusters) can be discovered by spectral clustering.
However, web-blogs are evolving, and new blogs and new links
are added or removed every day. Therefore, the standard spectral
clustering cannot be used to online monitor the web-blogs because
of the huge number of blogs and, in turn, of the high computational
cost. For sparse similarity matrix, Lanczos method [8] may save much
cost to solve the eigenvalue problem. But it is still impractical to
recompute the solution from the scratch at each time instance the
data set is updated, especially when the web-blogs are huge. On the
contrary, our approach applied to the web-blog data achieves similar
accuracy but with much lower computational cost, compared with
recomputation by the standard spectral clustering.

It is worth to note that the core idea of our incremental clustering
is dynamic updating of the (generalized) eigenvalue system. Actually
it is a general algorithm that can also be applied to many other prob-
lems involving dynamic graphs. These problems require to solve the
(generalized) eigenvalue system at each time the graph is updated.
In Section 6, three related problems are stated and solved by this
algorithm. The first problem is to choose edges from a candidate set
to maximize the algebraic connectivity of a graph. Algebraic connec-
tivity is the second smallest eigenvalue of the graph Laplacian that
measures how well connected the graph is [9]. The second problem
is to find the most significant edge of a graph. The last problem is
related to linear embedding. These problems demonstrate the wide
applicability of our algorithm.

This paper is an extension of our previous work [10]. Our previ-
ous work presented a basic algorithm to efficiently update the (gen-
eralized) eigenvalue system given a small change of the data set. It
approximates the increments of eigenvalues and eigenvectors with
first order error. Based on our previous work, this paper gives a sec-
ond order approximation for the increments by alternately refining
the eigenvalues and eigenvectors, respectively. Then more experi-
ments are carried to show that the refinement algorithm achieves

significant improvement over our previous work. In this version, our
algorithm is also applied to some other related problems involving
dynamic graphs, which demonstrates the wide applicability of our
incremental algorithm. Besides these, discussions on the number of
clusters, more related work, and some other content are added in
this paper to complement the previous version. The contributions of
our work are summarized as follows:

1. We declare two kinds of dynamics existing in the evolving data:
similarity change and insertion/deletion of data points. And then
the incidence vector/matrix is introduced to represent the two
dynamics so that our incremental clustering can handle them in
the same framework.

2. Based on (but not limited to) normalized cut, the incremental
spectral clustering is formulated as the problem of dynamically
updating the eigen-system given a small similarity change. We
give a closed-form solution to the eigenvalue increment with
first order error and an approximate solution to the eigenvector
increment.

3. To improve the accuracy of the increments, we propose an itera-
tive algorithm that alternately refines the eigenvalues and eigen-
vectors. It approximates the increments with the second order
error.

4. Our algorithm is also applied to solve some other related prob-
lems involving dynamic graphs. This demonstrates the wide ap-
plicability of our algorithm.

5. We carry intensive experiments on the real blog data set. The in-
cremental approach can discover not only the stable blog commu-
nities but also the evolution of the individual multi-topic blogs,
while the computational cost is very low.

This paper is organized as follows. In the next section we focus
on related work. Section 3 describes the basic formulations. Section
4 presents the incremental algorithm for spectral clustering. Then
the algorithm is discussed in Section 5. And it is also applied to some
other related problems in Section 6. Section 7 gives the experimental
results. The paper is concluded in Section 8.

2. Related work

To the best of our knowledge, our approach is the first work
accomplishing the task of incremental spectral clustering that can
handle not only insertion/removal of data points but also similarity
changes. But there is still a large volume of literature related to our
work, including topics on spectral methods, stream data, incremental
PageRank, evolutionary clustering, and time series data.

The spectral method is where our work starts. Our work is
based on normalized cut [2] but can be extended, without major
modifications, to many other spectral methods involving solving
eigenvalue systems. Spectral clustering evolved from the theory of
spectral graph partitioning, an effective algorithm in high perfor-
mance computing [11]. Recently there is a huge volume of literature
on this topic. Ratio cut objective function [12,13] naturally cap-
tures both mincut and equipartition, the two traditional goals of
partitioning. This function leads to eigenvalue decomposition of
the Laplacian matrix. Shi and Malik [2] proposed a normalized cut
criterion that measures both the total dissimilarity between the dif-
ferent groups as well as the total similarity within the groups. The
criterion is equivalent to a generalized eigenvalue problem. Ding
et al. [14] presented a min-max cut and claimed that this criterion
always leads to a more balanced cut than the ratio cut and the
normalized cut. Unlike the above approaches, Ng et al. [1] proposed
a multi-way clustering method. The data points are mapped into a
new space spanned by the first k eigenvectors of the normalized
Laplacian. Clustering is then performed with traditional methods

H. Ning et al. / Pattern Recognition 43 (2010) 113-127 115

(like k-means) in this new space. A detailed comparison of different
spectral clustering methods is available in [15]. However, none of
the above spectral algorithms are designed to incrementally cluster
dynamic data. Valgren et al. [16] applied the spectral clustering to
the affinity matrix after each row/column is added and made it
possible to inspect the clusters as new data points are added. But it
cannot handle the case of similarity changes.

The data stream model is motivated by the emerging applications
of massive data sets such as customer click stream, retail transac-
tions, telephone records, multimedia data, and so on [5]. The data
arrive at very high rate that it is impossible to fit them in the mem-
ory or scan them for multiple times as conventional clustering does.
Hence it demands for efficient incremental or online methods that
cluster massive data by using limited memory and by one-pass scan-
ning. Most of such algorithms dynamically update the cluster cen-
ters [4], medoids [5], or a hierarchical tree [6] when new data points
are inserted, using limited memory. Recently there is a need to clus-
ter the data streams under multiple resolutions so that the user can
query the historic data at any time period (e.g., last month, last quar-
ter, last year) in an interactive fashion. Aggarwal et al. [17] presented
the CluStream framework to accomplish this task. CluStream includes
an online component that periodically computes and stores detailed
summary statistics and an off-line component which, based on only
the summary statistics, responds to a wide variety of inputs (time
horizon or number of clusters) and returns to the analyst a quick
understanding of the broad clusters. More results on data stream
can be found in [18-20]. However, these methods cannot be directly
applied to the scenario with similarity changes, like the evolving
web/blog data.

Recently, with the success of Google [21], incremental algorithms
on web data gain more and more attention, of which the PageR-
ank metric has gained enormous popularity. For example, Desikan
et al. [21] and Langville et al. [22] exploit the underlying principle
of the first order Markov model on which PageRank is based, to in-
crementally compute PageRank for the evolving Web graph. Unlike
these methods focusing on incremental PageRank, our incremental
algorithm efficiently clusters evolving data, like web/blog data, by
dynamically updating the eigenvalue system.

Another related research area on clustering data over time is
evolutionary clustering which was conceptualized and formulated by
Chakrabarti et al. [23] in 2006. Evolutionary clustering simultane-
ously optimizes two potentially conflicting criteria, i.e., the cluster-
ing should fit the current data as much as possible, while should
not deviate dramatically from the historic context. Chakrabarti et al.
[23] presented a generic framework for this problem. Chi et al. [24]
stepped further to evolutionary spectral clustering by incorporating
temporal smoothness. Our work differs from these methods in that,
the latter deals with the high level concept of clustering data over
time, while our work is more focusing on low level techniques to
trade-off accuracy and efficiency.

3. Basic formulations

First, all about the notations in this paper. Scripted letters, such
as & and 77, represent sets. Capital letters like W and L are ma-
trixes. Bold lower case letters indicate column vectors, e.g., q and u.
Other lower case letters are scalars. We use subscripts to index the
elements in vectors and matrixes unless specific declaration, for ex-
ample, g; is the i-th element of vector q and wy; is W(i,). The vector
norm | - || is the I, norm, i.e., |X|| = v¥X7X. The commonly used sim-
ilarity between two data points includes the inner product of the
feature vectors, w; :xiij, the diagonally scaled Gaussian similarity,
w;; = exp(—|X; — X;l|*/¢?), and the affinity matrixes of the graph.

Given a weighted graph G=G(&, 7", W) with node set 7~, edge set
& and similarity matrix W where wj; indicates the similarity between

node v; and v}, spectral clustering partitions the graph into two or
more disjoint subgraphs. Since our approach is based on, but not
limited to, the normalized cut [2], this algorithm is briefly reviewed
using the notation in the tutorial [11].

3.1. Normalized cut

In this paper, the similarity matrix W is assumed to be symmetric
with w;; =1 and 0 =wj; =1 when i#j. Denote the degree matrix as
D = diag{d,,d3, ..., dn} where

di:ZWij
J

is the degree of node v; and Laplacian matrix as L =D — W. Let the
similarity between the subgraphs .« and % be

(A, B)= > wj.
icod je#

The normalized cut aims to minimize the criterion function

s(.oZ, B) . s(.oZ, B)

]Ncut(t%- %) = d_ﬁ/ d,%"

where

dy= Z di, dg= Zdi'

ie.o/ ic#

After some manipulations, the criterion function can be rewritten as

T,
qT q , 1)
q'Dq
where q is the cluster indicator and satisfies
q'Dq=1, q'D1=0, (2)

and ideally

(Jdyd,d ifie,)
G=_/d,/d,d ificR

where d=3}";_,- d;. If q is relaxed to take real value, we can minimize
Eq. (1) by solving the generalized eigenvalue system

Lq = /Dq. (4)

Given a small change of the data set, a computationally wasteful
solution to obtain the new cluster labels is resolving the general-
ized eigenvalue system. In this paper, we presents a much more ef-
ficient algorithm that computes the increments of the eigenvalues
and eigenvectors based on the old results and dynamically updates
the generalized eigenvalue system.

3.2. Incidence vector/matrix

As we mentioned before, in many real applications both the data
points and their similarities are dynamic. Then a question arises:
How to represent the two kinds of dynamics in the same framework
and how to feed them into the eigenvalue system without violating
the original representation? We solve this problem by introducing
the incidence vector/matrix.

Definition 1. An incidence vector ry(w) is a column vector with only
two nonzero elements: i-th element equal to +/w and j-th element
—+/w, indicating data point i and j having a similarity w. The length
of the vector is equal to the number of considered data points.

116 H. Ning et al. / Pattern Recognition 43 (2010) 113-127

Definition 2. An incidence matrix R is a matrix whose columns are
incidence vectors.

An incidence vector can be rewritten as rj(w) = vwu;; where
u;; (adopted from [25]) is a column vector with only two nonzero
element: i-th element equal to 1 and j-th element —1. w can be
negative if /=1 is allowed. An incidence vector r;(w) represents
the similarity w between two data points i and j (or edge (i,j)),
and the incidence matrix is another representation of the similarity
matrix. The definition of incidence vector/matrix in this paper partly
differs from the traditional definition [7]. Firstly the incidence vector
in this paper is allowed to represent a portion of the similarity,
i.e, a similarity w; can be represented by two incidence vectors

r,-j(ngl)) and rij(wgf)) where wj; = wil ¢ W§J.2). Secondly, the incidence

1

matrix in this paper allows multiplé columns (incidence vectors) for
each edge of the graph, while in [7] each edge corresponds to one
and only one column. This difference is supported by Proposition
2and enables that a similarity change can be incorporated into the

incidence matrix by appending an incidence vector.

Proposition 1. IfL=D — W e R™" is a Laplacian matrix, then there
exists an incidence matrix R such that L=RRT [26]. In addition, R contains
all the incidence vectors rjj(wy), 1=1i<j=mn, that can be in any order.

Proof. Regardless of the order in which the incidence vectors stacked
in R, the product

RRT = Z rl](WU)I‘U(WU)T
1=i<j=n
= Z Wl]l.lyllg (5)
1=i<j=n
But,
1 - =1
u,-jug =) (6)
-1 1

Add all of the matrixes wijuijug, 1=i<j=ntogether, and it follows
that

T
Z Wijuijuij =L O

1=i<j=n

Proposition 2. Assume L=RR" where L is the graph Laplacian and R is
an incidence matrix. If data points i and j have a similarity change Aw;;
corresponding to the incidence vector rij(NAwij), the new graph Laplacian
L can be decomposed as L = RRT where R=[R, rii(Awy)].

Proof. According to the fact that rj(w) = vwu;;,

RRT =RR" + Awjuul

=L+ Awiju,-jug. (7)
Considering L=D — W and Eq. (6), the increment of L induced by the
similarity change Awj; is exactly AW,-ju,-juiTj. So

z =L+ AWU“U“E = EET O

Firstly we consider a single similarity change. According to Propo-
sition 2, a similarity change Aw;; can be incorporated into the in-
cidence matrix R by appending the incidence vector r;(Aw;) to R.

Therefore, the increment of L with respect to Aw;; can be easily
deducted:

AL:Z—L:AWUu,juiTj. (8)
By observation, the increment of the degree matrix D is

AD = Aw;; diag{vy}, (9)

where vj; is a column vector with i-th and j-th elements equal to 1
and other elements equal to 0.

As to insertion/deletion of a data point, it can be decomposed
into a sequence of similarity changes (incidence vectors) appended
to the original incidence matrix. For instance, when a data point
i, which has similarities w;,, wj,, ..., wy;,, is added, it is equivalent
to a sequence of similarity changes of wy, ,wy,,...,w;; occurring
in any order, corresponding to a sequence of incidence vectors
rj, (Wi,), 1y, (Wi,), .. B3 (W,)-

4. Incremental spectral clustering

In Section 3.2, any updating of the dynamic data is equivalent
to a (or a sequence of) incidence vector(s) r;(Aw;;) appended to the
original incidence matrix R. Here we approximate the increments of
the eigenvalues and eigenvectors in the spectral clustering, induced
by the updating r;j(Awy;). The approximation is carried on, but not
limited to, the generalized eigenvalue system of the normalized cut,
Lq=/Dq [2].

4.1. Increment of eigenvalue A/

There is a closed-form solution to the eigenvalue increment of a
symmetric generalized eigenvalue system.

Proposition 3. Suppose AX = /BX is a generalized eigenvalue system
where both A ¢ RV and B € R™" are symmetric, then the perturba-
tion of / in terms of the perturbations of A and B is

T _
AL X (AAT AAB)x. (10)
x'Bx

Proof. Differentiate both sides of the generalized eigenvalue system
AX = /BX,

AAX + AAX = AJBX + AABX + /BAX. (11)
Left multiply both sides by x” and obtain
xTAAX + xTAAX = AIXTBx + /xT ABx + Ax"BAx. (12)
Since
x"A=)x"B
because A and B are symmetric, Eq. (12) can be rewritten as
xT AAx = AJXTBx + AxT ABx.
After a few manipulations, we obtain Eq. (10). [

Suppose the updating is the incidence vector r(Aw;)=,/Aw;u;;.
Substitute AL in Eq. (8), AD in Eq. (9), and q for AA, AB, and X in

Eq. (10), respectively, then AZ of the generalized eigenvalue system
Lq=ADq is

T(u,-jul.Tj - Adiag{vy})q

A= Ay D

H. Ning et al. / Pattern Recognition 43 (2010) 113-127

a x 1074

Aq

1t i

0 50 100 150 200 250 300 350
Data Points

400

117

b «xiw0?

6 F T T T T T T T |

4 | i

2 L i
o
<

0 AN A mﬁ(g A v 25

2| i

_4 L 1 1 1 1 1 1 1]

0 50 100 150 200 250 300 350 400
Data Points

Fig. 2. Aq induced by a similarity change of two points (marked blue). A red mark indicates that the point is directly adjacent to the two points; and a green mark means
a leaf in the graph. (a) Two points are in the same cluster. (b) Two points are in different clusters. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

But

q"ujulq= (g - ¢;)%, (13)
q' diag{vy)a =q; + g7, (14)
and

q'Dg=1

because of the normalization in Eq. (2), A4 can be expressed as

Al = Awi((ai - ;) — Aa} +a}). (15)

A/ can be further simplified if we assume that q is as ideal as in Eq.
3), two clusters have nearly the same degrees (d ., ~ dy in Section
3.1), and 4 <1 (it usually holds for the top smallest eigenvalues),

Aw;;
—ZZT”, i,j in the same cluster,

Al ~ (16)

AWij
d
From the approximation, increasing the similarity of two points in
the same cluster decreases the eigenvalue 4, and / increases if they
are in different clusters. In addition, the increase is much greater
in magnitude than the decrease because usually the top smallest
eigenvalues 1 <1.

i,j in different clusters.

4.2. Increment of eigenvector Aq

Generally the increment of a eigenvector Aq can be solved by
power iteration or Lanczos method [8]. These methods run very fast
on sparse matrixes, but it is still impractical for huge matrixes such
as web data (see discussions in Section 5). Fortunately, clustering
requires only discrete cluster labels and precise eigenvectors are not
necessary. Thus we adopt an approximate approach to fast compute
Aq so it can be applied to huge and evolving data, partly at the
expense of accuracy.

Substitute AL in Eq. (8), AD in Eq. (9), and q for AA, AB, and x
in Eq. (11), respectively, and after some manipulations, we obtain a
linear equation for Aq

KAq=h, (17)
where

K=L- /D, (18)
h=(A/D + JAD — AL)q. (19)

Since AL, AD, and A/ are known according to Egs. (8), (9) and (15),
Aq can be solved by
Aq=(K"K)"'K"h (20)
if KTK is nonsingular.

However, it is impractical to directly apply Eq. (17) or (20) to
solve Aq. Firstly, K and KTK are singular because Lq=/Dq, i.e., Kq=0.
Secondly, and more importantly, the size of K and K'K is huge for
large data sets, which means that solving Eq. (17) requires very high
computational cost, even higher than that of the Lanczos method [8].

Therefore, we adopt an approximate approach by fully exploiting
the properties of the application, and even partly at the expense of
the accuracy of Aq since only discrete cluster labels are needed. As
we know, a similarity change of two data points i and j has little
influence on the data points far from i and j. In other words, to
maintain the cluster structure of the graph, only i and j and a few
points close to them need to be considered. Fig. 2 gives two examples
of Aq induced by a similarity change on the data set of web-blogs
(see Section 7). Here the eigenvectors are solved by Lanczos method
[8] and Aq by Eq. (A.2) in Appendix A. In Fig. 2, points i and j are
marked blue, a red mark indicates that the point is directly adjacent
to i or j, and a green mark means a leaf in the graph. It shows that
most of the spikes are either adjacent to i or j or leaves. The issue of
leaves will be discussed in Section 5.

Given a similarity change r;j(Awy), let A" = {klwy > T or wj, > T}
be the spatial neighborhood of both i and j, where 7 is a predefined
threshold which can take O for sparse data set. In accordance with
the above observations, we assume Aqy =0 if k¢ ./"; and eliminate
them from Agq, and accordingly the corresponding columns in K are
also eliminated. After elimination of the elements (of both Aq and
K) that are not in the spatial neighborhood /", the left elements
form Aq;; and Ky Thus we obtain

ij

Agy= (K" K.y,)‘11(5,/.Uh. (21)

N

Since the number of the columns of K i is very small compared
with the size of the data set, the computational cost of the above
equation is very low.

4.3. Iterative refinement of AL and Aq

Eq. (10) or (15) is the first order approximation of the eigenvalue
increment and ignores the second order error. But in some cases the

118 H. Ning et al. / Pattern Recognition 43 (2010) 113-127

second order error is not neglectable, so here we give a more accu-
rate approximation of the eigenvalue increment by considering the
second and third order error and by using the existing eigenvector
increment. And, in turn, the eigenvector increment can be further re-
fined by using the more accurate eigenvalue increment. Alternately
repeating this procedure, we come up with an iterative algorithm to
refine AA and Aq.

Proposition 4. Suppose AX = /BX is a generalized eigenvalue system
where both A ¢ R™" and B ¢ R™" are symmetric, then the second or-
der approximation of the perturbation A/ in terms of the perturbations
of Aand B is

_ XT(AA - JAB)(x + AX)

Ad= xT(B+ AB)(x + Ax) (22)

Proof. Differentiate both sides of the generalized eigenvalue system
Ax = ABx and keep the second and third order error items,

AAX + AAX + AAAX = AABX 4+ AABX + ABAX + AAABX + AABAX
+ AABAX + AAABAX. (23)

Left multiply both sides by x” and obtain

XTAAX + XTAAX + XT AAAX = AJXTBx+/XT ABX + X" BAX+A X" ABx
+ JXTABAX + AJX"BAX + AJXT ABAX.
(24)
Since
x'A=/x"B

because A and B are symmetric, X’AAx and /x”BAXx can be cancelled
from both sides of Eq. (24),

xTAAX + XTAAAX = AJXTBx + X" ABX + AAxT ABx
+ IXTABAX + AJXTBAX + AJXT ABAX.

After a few manipulations, we obtain Eq. (22). O

Suppose the similarity change is the incidence vector r;(Aw;) =
Awjuy;. Substitute AL in Eq. (8), AD in Eq. (9), and q for AA, AB,
and x in Eq. (22), respectively, then A/ of the generalized eigenvalue
system Lq = ADq is
q' (uyuj — Adiagivy))(q + Aq)

Ad = Aw;; : .
! q7(D + Aw;; diag{v;;})(q + Aq)

Like the deduction of Eq. (15), the second order approximation of
A/ can be expressed as

a+b

A= Awy— 20
PEAIT e

where

a=(q;i—q) - Ma? +q?),
b =(q; — q;)(Aq; — Aqgj) — A(qiAq; + gjAg;),
c=Awy(q} + 7).
d= Y qdiAqy,
ke Ay
e = Aw;i(qiAqg; + gjAqg;).

Here Zke.,,VU qid;Ag; is an approximation of q' DAq with the assump-
tion that the impact of the similarity change Awj is within the

Fig. 3. A graph example with 10 nodes labelled from A to J. The similarity associated
with each edge is also marked on the graph.

spatial neighborhood ./";;. e can be ignored since e <1 and e <c, so
A/ is simplified as

a+b
AA:AWUm. (25)

However, the second order approximation of A in Eq. (25) depends
on the eigenvector increment Aq in Eq. (21), and Aq also depends
on A/ Fortunately we can initialize A4 by Eq. (15) and then refine
AZ and Aq alternately. The iterative refinement algorithm is sum-
marized in Algorithm 1.

Algorithm 1. Iterative refinement of A4 and Aq.

1:Set Aq=0.

2: Compute A/A by Eq. (25), using the existing Aq.

3: Compute Aq by Eq. (21), using the existing A/.

4: Repeat steps 2 and 3 until A4 and Aq have no significant change
or for at most n iterations.

However, the convergence property of Algorithm 1 is still un-
known. Large experiments show that the approximation error of
both eigenvalues and eigenvectors basically decrease when the iter-
ation times n =< 2. Here we use a simple example to illustrate it. Fig. 3
is a small graph and its second smallest eigenvalue is A and the asso-
ciated eigenvector is q. Remove one edge in the graph and compute
the new eigenvalue and eigenvector by three methods: SVD decom-
position, Algorithm 1 with one iteration, and with two iterations.
The results are denoted as A°, %, ', q!, /2, q2, respectively. And 1°
and q° serve as ground truth. Fig. 4 shows the approximation error
of the second smallest eigenvalue and the associated eigenvector
after removing only one edge (see the ticks on the x-axis). Fig. 4(a)
gives the eigenvalue error without approximation MO — /|, after one
iteration [A° — A1}, and after two iterations |A° — /2|, respectively.
Fig. 4(b) gives the eigenvector error without approximation
Eqir(q°, q), after one iteration Eg4;(q°,q'), and after two iterations
Ed,-f(qo,qz), respectively. Basically the error is decreasing from no
approximation to two iterations with a few exceptions. The er-
ror between two eigenvectors Egi(-,-) is computed by Eq. (A.1) in
Appendix A.

Summarize Sections 4.1-4.3, and the incremental spectral clus-
tering is briefed in Algorithm 2.

Algorithm 2. Incremental spectral clustering.

1: Suppose at time t, the data set grows large enough and the sim-
ilarity matrix W, degree matrix D, and Laplacian matrix L are
available.

2: Solve Eq. (4) as standard spectral clustering does for eigenvectors
with the smallest eigenvalues. This solution and the matrixes (D
and L) serve as the initialization.

H. Ning et al. / Pattern Recognition 43 (2010) 113-127 119

W)

0.03

0.025

0.02

0.015

0.01 k

Approximation Error of Eigenvalue

0.005

0 L L

—e— A=A

| pe— T I H
—o— | 7¥°—7\2|

AB BC BD CD AE

DE DF EF FG GH GI HI FJ GJ U

The Removed Edge

b
—o— Eg(q°
02 U air(a4, Q)
Egir(a® a')
—— Egi(a°, a%)
0.15

©
=

0.05

Approximation Error of Eigenvector

0 L

m

AB BC BD CD AE

DE DF EF FG GH GI HI FJ GJ U

The Removed Edge

Fig. 4. Approximation error of the second smallest eigenvalue and the associated eigenvector after removing only one edge (see the ticks on the x-axis). (a) Eigenvalue error
without approximation \/lo — /|, after one iteration \/lo —2'|, and after two iterations |)v0 - /lz|. (b) Eigenvector error without approximation Eg4(q°,q), after one iteration

E4r(q° q'), and after two iterations Eq(q°,q?).

3: From then on, when a similarity change occurs, use Algorithm 1
to update the eigenvalues and eigenvectors and Eqgs. (8) and (9)
to update D and L.

4: If a data point is added or deleted, it is decomposed into a se-
quence of similarity changes and step 3 is repeatedly conducted.

5: After T similarity changes occur, re-initialize the spectral cluster-
ing by repeating from step 2, so as to avoid large accumulated
errors.

5. Discussions on the incremental algorithm

Firstly, the time complexity is discussed. The generalized eigen-
value system can be transformed into a standard eigenvalue prob-
lem of D*l/zLD’l/zq:/lq, and solving a standard eigenvalue problem
takes O(n3) operations [2], where n is the number of data points.
When n is as large as in the Web applications, this is impractical.
Fortunately, Lanczos method [8] can greatly reduce the computa-
tional cost if the similarity matrix W is sparse. And Web application
is such an example. The time complexity of the Lanczos algorithm

is 0(n%2) if the special properties of W is fully exploited [2]. This is
also the running time of the baseline system in Section 7.
However, the computational cost is still very high if the data
set is large and undergoes frequent evolution as the web-blogs be.
In this case, it is hard for a standard spectral clustering to update
the cluster labels immediately after the data set is updated. On the
contrary, our incremental approach may success. It needs constant
running time to compute A and O(Nzn) + O(N3) +O(Nn) + O(Nz) to
compute Aq, where N is the average size of the spatial neighborhood
of a node, O(N2n) is needed to compute A =K,EUKN". in Eq. (21), O(N3)

for inversion of A, O(Nn) for b=KJh, and O(NZ) for A=1b. In the Web
applications, N is usually constant and small, so the running time of
the incremental approach is O(n). The N can be adjusted by tuning
the threshold 7, so the time complexity is tunable to some extent at
the expense of accuracy.

Secondly, the influence of the leaves on the eigenvectors need
to be explained. Suppose that node i is a leaf that is connected to
node j and j is only connected to node k and i, i.e,i—j—k—---.

120 H. Ning et al. / Pattern Recognition 43 (2010) 113-127

As discussed in Appendix B, g;, gj, Ag; and Aq; may be spikes (see
Fig. 2). However, their influence on other nodes may decay greatly
because they have only one edge (j, k) connected the other part of
the graph. Furthermore, since the leaves usually do not lie on the
boundaries between the clusters, i.e., they are usually not supporting
vectors, they should be trivial in graph partitioning. Therefore, we
ignore their influence in Eq. (21).

In our discussions so far, we have assumed that the number of
clusters is manually set and does not change with time. However, it
is very likely some old clusters disappear and some new ones show
up over a period. How to monitor such live/death information could
be interesting to many applications on evolving data. This can be
decomposed into two sub-problems: determination of the number
of clusters and tracking of the clusters. The latter is not a focus of
this paper. The interested readers are referred to [27]. Automatic de-
termination of the number of clusters is an important and tough re-
search problem in clustering. In spectral clustering, a tricky approach
is to search for a drastic drop (where gradient is greater than a pre-
defined threshold) in the magnitude of the eigenvalues [28]. Zelnik-
Manor et al. [29] proposed an alternative approach with higher
accuracy which relies on analyzing the structure of the eigenvectors.
But this approach requires more computational cost. This paper uses
the first approach to select and monitor the number of clusters.

It is worth to mention a technical problem that some similarity
changes may change the size of the matrixes W, D, and L because
these similarity changes involve insertion/deletion of data points.
Fortunately, this can be handled in our framework. When a similarity
change induces insertion of a new data point, the matrixes W, D, and
L are expanded by padding one row and one column of zeros, and
then the eigenvalues and eigenvectors are updated in the regular
way. When a similarity change induces deletion of an old data point,
first update the eigenvalues and eigenvectors, and then remove the
corresponding row and column from the matrixes W, D, and L.

Finally, it is important to point out the limitations of our incre-
mental approach and their possible solutions. (1) The error is ac-
cumulating though growing slowly. This is also a critical problem
in many other incremental algorithms. We use re-initialization to
avoid a collapse. (2) When the data set grows larger or evolves more
frequently, e.g., if all the blogs on the internet are considered, the
0(n) complexity probably makes our incremental algorithm fail. One
possible O(1) solution is to propagate the influence of a similarity
change to its spatial neighborhood. And then the eigenvector is up-
dated according to the received influence. This is part of our future
work.

6. Relation to other problems

The essential idea of our incremental clustering algorithm is the
dynamic updating of the (generalized) eigenvalue system given a
small change of the graph. This idea can also be applied to many other
related problems involving graph evolution. Three related problems
are described as follows.

6.1. Algebraic connectivity

The algebraic connectivity of a graph G is the second smallest
eigenvalue (denoted as /) of its Laplacian matrix L (Note that here
/o is the eigenvalue of Lq= Aq but not Lq= ADq) and is a measure of
how well connected the graph is [9]. It has direct connection to the
number of connected components: A, > 0 if and only if the graph
is connected [9]. It also reveals the sparsity of cuts in the graph: a
graph with large A, cannot have sparse cuts and conversely a small
/o means sparse cuts [30]. The algebraic connectivity has also been
used as an important parameter in many system problems, especially

as a measure of stability and robustness of the networked dynamic
systems [31].

A well-known problem with algebraic connectivity is adding
edges from a set of candidate edges to a graph so as to maximize its
algebraic connectivity. The problem can be formulated as follows
[30]. Given a base graph Gpgse = (7", &pgse, W), a set of m candidate
edges &gng 0N 7, Epgse N Ecang = ¥, its corresponding similarity
matrix Weg,g, and a number k,0 =k <m, choose at most k edges
from &¢4q to G so as to maximize the algebraic connectivity. That
is to solve the optimization problem

maximize Ay(L(Epgse U &)
subject to |&| =k,
éc éacandv (26)

This problem is combinational and can be solved by exhaustive
search over all (') subsets of &g, i.e., by computing A, for ()
Laplacian matrices. However, this is impractical for large m and k.
Here we come up with a greedy search solution. As discussed in Sec-
tion 4, adding an edge e;; € &nq (equivalent to a similarity change
wj;) induces increments on eigenvalues and eigenvectors. But in this
case, the degree matrix D is ignored, and the eigenvalue system
Lq = Aq is considered. And the increment of the second smallest
eigenvalue and the associated eigenvector can be approximated in a
similar way as Eqs. (15) and (21)

A =wi(g; — g)°, (27)
Aqji = (K" K.) 'Kl (28)

where q'q=1,K=L— /I and h=(AAl - AL)q.

The greedy search solution picks one edge at a time, each time
selecting the edge that induces the largest increment of the second
smallest eigenvalue AA,. The solution is described in Algorithm 3
step by step.

Algorithm 3. Maximizing algebraic connectivity.

1: Find Ay(L) and the associated eigenvector q (in unit length) of the
Laplacian L of the base graph.

2: From the remaining candidate edges, select the edge (i,j) with
the largest A4, and add to the graph.

3: Update 4; and q by Egs. (27) and (28).

4: Repeat from step 2 until k edges are added.

This solution is similar to that in [30] in the aspect of greedy
search. But the latter requires to recompute the eigenvector corre-
sponding to A,(L) each time adding an edge. While our solution in-
crementally updates the eigenvector so it requires much lower com-
putational cost.

6.2. The most significant edge

A similar problem is finding the most significant edge e; in a graph
G=(7",&,W). The most significant edge has the greatest impact on
the graph structure. It has wide applications in computer network,
highway layout, city planning, and so on. Removing the most signif-
icant edge e results in heavy traffic in the computer network or on
the highway. es can be defined via the second smallest eigenvalue
of the generalized eigenvalue system Lq = ADq,

es = argmin /(& — e), (29)
e

where & —e means removing edge e from edge set &. A basic solution
is to find the maximum decrement of A, after removing one edge.
With Eq. (15) or Algorithm 1, this can be done in time complexity
0O(m) where m is the number of edges. We apply this method to the

H. Ning et al. / Pattern Recognition 43 (2010) 113-127 121

A2-3)

AL =

_20 - 1 Il Il Il Il

AB BC

BD CD AE DE DF

EF FG GH Gl HI FJ GJ IJ

The Removed Edge

Fig. 5. The decrements of 4, after removing one and only one edge in the graph in Fig. 3.

graph in Fig. 3 and obtain the decrements of /1, illustrated in Fig. 5.
It shows that EF is the most significant edge and FJ is the second.

6.3. Linear embedding

The problem of embedding a graph G=(7", &, W) into a real line
is defined as: find a real vector Xx={x1, X2, ..., Xn} with zero mean and
unit variance for n nodes ¥"={vq, vy, ..., v}, such that the sum of the
weighted square distances between adjacent nodes is minimized,
i.e,, the linear embedding problem is

> wylxi— X))

1=ij=n

maximize

subject to 17x =0,
x'x=1. (30)

The objective function in Eq. (30) has a matrix formulation xTLx.
It is minimized at the stationary point of the Lagrangian: x"Lx —
A(IX|l — 1) where 4 is the Lagrangian multiplier. In other words, the
Lagrangian has zero gradient at the optimal solution: 2Lx — 2Ax = 0.
So the optimal value is the second smallest eigenvalue /,(L), and the
optimal solution is the associated eigenvector. A challenging problem
in linear embedding is: given a set of m candidate edges & 4;,q ON 7,
choose k <m edges from & 4,q and add to the graph, such that the
objective function in Eq. (30) leads to smallest increase. Algorithm
3 can also be applied to this problem, except that the edge with the
smallest AJ; is chosen at step 2.

7. Experiments

Our algorithm is designed to handle the sparse (or nearly sparse)
data sets with two kinds of dynamics in the same framework.
Web-blogs are such kind of data. Recently, web-blogs have become
a prominent media on the internet that enable the users (bloggers)
to publish, update, and access the personalized content. Bloggers
frequently interact with each other by trackback, adding comments
to, or by referring to the entries in other blogs. The reference links,
comments, and trackback grow continuously, new blogs may be
created, and old blogs may be deleted. Therefore web-blogs are
evolving with the time. Simultaneously, the virtual blog communi-
ties may emerge through the bloggers’ interactions and evolve as
the web-blogs updating.

There is a volume of literature on the research of virtual com-
munity [32,33]. Rheingold [32] defined virtual comminity as “social
aggregations that emerge from the Net when enough people carry on

those public discussions long enough, with sufficient human feeling, to
form webs of personal relationship in cyberspace”. It should involve
long-term and meaningful conversations in cyberspace, which sug-
gests sustained membership [33]. In other words, many factors, such
as time decaying, direction of reference, awareness of trackback, and
so on, should be considered when measuring the relationship be-
tween two blogs. To save our approach from being overwhelmed by
the details of blogs, we simply measure the similarity between two
blogs i and j by

wii = e VP, (31)

where any interaction between i and j serves as an endorsement
to the similarity, l; measures the number of interactions or links,
and f§ controls the marginal effect of the endorsement when more
interactions occur. When further interactions occur, the similarity
increases more slowly and finally approaches 1. We aim to discover
the blog communities and their evolution through the incremental
spectral clustering.

7.1. Data description

The blog data were collected by the NEC laboratories American,
using a blog crawler. Starting from some seed blogs, the crawler con-
tinuously crawls their RSS feeds and then the corresponding entries
[33]. The blog entries are analyzed, and the hyperlinks embedded in
the content are extracted. Some “hot” blogs become new seed blogs
when they meet some criteria.

The data were crawled from July 10th 2005 to April 30th 2006,
for 42 consecutive weeks. We use the subset written in English that
consists of 406 blogs and totally 75,614 links. The self-reference
links are removed since they do not contribute to the interactions
in the communities. And 14,510 links remain effective, averagely 30
effective links for each blog. Fig. 6 shows the number of remaining
links created in each week.

7.2. Comparison with the baseline

We use the standard normalized cut [2] as a baseline that is im-
plemented using the Lanczos method [8]. We start from the 23th
week and the similarity matrix W, degree matrix D, and Laplacian
matrix L are built on the links of the previous 22 weeks (10,604 links
in total). Then Algorithm 2 is applied to the data set, and the clus-
ters are continuously updated as more links are added from Week
23 to 42 (3906 links in total). Each time the eigenvalues and eigen-
vectors are refined for one or two iterations. The cluster number is

H. Ning et al. / Pattern Recognition 43 (2010) 113-127

20

25 30 35 40

Week

Fig. 6. The number of effective links in each week in NEC Blog Data.

122
T T
700
600
o 500
4
c
5
%5 400 |
@
Q
E 300 |+
=]
P4
200 |
100
0
0 5 10 15
a
0.09 T T T T T T
—— Baseline
- = One iteration
- - - Two iterations -
< 0.085 S
% -
g La”
g 008
(%]
ke]
c
8 0.075
(%]
©
£
0.07
0065 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500

The Added Links

4000

Relatvie Error of A

0.06

One iteration 71
- - - Two iterations

0.05

0.04

0.03 |

0.02 |

0.01 | e L
L T Mo~ :

_l__“-J
P ! ! ! ! ! !

500 1000 1500 2000 2500 3000 3500
The Added Links

4000

Fig. 7. (a) The changing of the second smallest eigenvalue by the standard normalized cut, our incremental approach after one iteration, and after two iterations. (b) The
relative error of the eigenvalue / by the incremental approach with one or two iterations.

chosen as 3 after close inspection of the initial eigenvalues. To make
comparison, the baseline—standard normalized cut—recomputes the
generalized eigenvalue system at each time instance when a link is
added (L and D are updated by Egs. (8) and (9)).

Firstly the approximation error of the eigenvalues is examined.
Fig. 7(a) shows the changing of the second smallest eigenvalue
generated by the baseline, our incremental approach after one iter-
ation, and after two iterations. Basically the eigenvalue is increasing
when more links are added. This is consistent with the property of
algebraic connectivity, i.e., the more links are added, the more con-
nected the graph is. The local decrements on the curve are due to
that the generalized eigenvalue system, instead of Lq = Aq, is used
in this case. In the view of normalized cut, adding some links may
contribute to better graph partitioning and hence decrease the sec-
ond smallest eigenvalue (also see Eq. (16)). The first iteration of our
incremental approach often overestimates the eigenvalue and the
second underestimates but with much smaller error. This can be ex-
plained by Egs. (15) and (25). In Eq. (25) b and d are very small com-
pared with a and ¢, and c is always nonnegative when adding links.
Therefore ignoring c in the first iteration results in overestimation.
Fig. 7(b) shows the relative approximation error of the second

smallest eigenvalue by our incremental approach. The eigenvalue
computed by the baseline serves as “true measurement”, and the
relative error is defined by |4; — 4p|/|/,| where 4; and 4, are eigen-
values by incremental approach and baseline, respectively. The rel-
ative error is 3.0% and 0.59% on average for one and two iterations,
respectively. The relative error accumulates quickly and reaches
maximum 5.70% for one iteration refinement. It accumulates very
slowly if it iterates one more time at the expense of double time cost.

We use Eqgs. (A.2) and (A.3) in Appendix A to compute the error
Eif(Qinc, Qpas) and difference dif(qinc, qpqs) between the two sets of
eigenvectors generated by the incremental approach (q;,.) and by
the baseline (qy,s), respectively, after each link is added. Fig. 8 shows
the differences of the eigenvectors with the second smallest eigen-
value (the smallest is 0), right after Week 27, 32, 37, and 42. The
points marked green are leaves which cover almost all of the salient
spikes. Fig. 9 shows the error Egj of the corresponding eigenvectors.
The error is accumulating to about 0.11 as more links are added, and
averagely equal to about 0.036. Considering that the eigenvectors
are normalized to one before the errors are computed, these errors
are actually very small. Note that, at the beginning, the two-iteration
refinement achieves a performance very similar to that by one

H. Ning et al. / Pattern Recognition 43 (2010) 113-127

123

a b
T T T T T T T 0.02 T T T T T T T
0.01 E
0
0
g 001 | | ooy
g g
2 2
& -0.02 1 & -0.04 |
5 5
-0.03 | E —0.06 |]
—0.04 } i
0.0 -0.08 E
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Data Points Data Points
C d
0.02 E 0.02 |
0
0 |
-0.02 E (
R 004 | { % 002}]
e o
Ly Ly
g 006 1 £ -o004f]
g g
E 008 | 1 E
© 006 |]
0.1 } ,
-0.12 i -0.08 |
-0.14 h 0.1 L £
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Data Points Data Points

Fig. 8. The difference dif(qinc,qses) Of the eigenvectors with the second smallest eigenvalue after (a) 27, (b) 32, (c) 37, (d) 42 weeks, computed after one iteration. Green
marks indicate leaf nodes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

T T T T T T T
One iteration i
- - - Two iterations

012 |

o

o ©

[eF] -
T T

o

o

>
T

Eqif(Uinc:Abas)

o

o

=
T

0 A L L L L L L
500 1000 1500 2000 2500 3000 3500

The Added Links

4000

Fig. 9. The error Eg(Qinc, Quas) Of the eigenvectors associated with the second smallest eigenvalue.

eigenvalue can be refined for two iterations since it requires only
O(1) computational cost.

The above comparison only reveals that our incremental solu-
tion to the generalized eigenvalue system closely approximates the
solution by the baseline. However, it is important to compare the

iteration, while it has significant improvement after more links are
added, i.e., when the accumulating error grows larger. This suggests
a trade-off between accuracy and computational cost: the eigen-
vector is updated for one iteration at the beginning and is refined
for two iterations after more links are added. But in any case, the

124 H. Ning et al. / Pattern Recognition 43 (2010) 113-127

1.005 T T T

0.995

0.99

AC

0.985 |

0.98

0.975

0.97

0.965 L L L

» One iteration
- Two iterations ||

0 500 1000 1500

2000 2500 3000 3500 4000

The Added Links

Fig. 10. The accuracy corresponding to each added link.

0.7 T T T

——— Baseline
o6 H— One !terat!on
—— Two iterations

05

04

0.3

Time Cost (Second)

02 |

or 1L [

‘ ‘
I | i 1l
U I A “' -,‘“‘ ”“‘ Ul .“‘ i ”'m‘w‘*q‘“."‘.‘ Lt ._““. [

e 4 0 T
“,\“"‘v‘ h ‘lH"\‘W'h“‘|““ 4 (il ‘lﬁ“‘ll_“v ‘|M\‘|‘nl

0

0 500 1000 1500

2000 2500 3000 3500 4000

The Added Links

Fig. 11. Time cost of adding each link for both the incremental approach and the baseline.

clustering results. Cluster labels are obtained by discretizing the
eigenvectors as [2] did. Given a data point (blog) i, let }; and [; be
the labels generated by the baseline and the incremental approach,
respectively. The following metric [34] is defined to measure the ac-
curacy,

n . A<
AC = max 21 00k map(i))
map n

where n denotes the total number of data points, d(x,y) is the delta
function that gives one when x =y otherwise zero, and map(l;) is
a mapping function of labels. The optimized mapping function can
be found by the Kuhn-Munkres algorithm [35] in polynomial time.
Fig. 10 shows the accuracy corresponding to each added link. It is
about 98.22% on average. The accuracy drops slowly as more links are
added and reaches the minimum about 96.55%, i.e., about 8 blogs are
clustered differently from the baseline. Compared with one iteration,
two-iteration refinement does not make big difference if the first
portion of the links are averagely considered. But it has significant
improvement over one iteration when more links are added. From

the 3400-th link to the last, the clustering error by two-iteration
refinement is about relatively 7% smaller than that by one iteration.

Besides the accuracy, the computational cost is also compared.
Both the incremental approach and the baseline are implemented
in MATLAB. The time cost of adding each link is recorded for both
systems, which is plotted in Fig. 11. It shows that the computational
cost for the baseline is much higher than that of the incremental
approach. Averagely it is 0.2942s for the baseline, 0.0243 for one-
iteration refinement, and 0.0463 for two iterations. It is expected
that the difference is bigger for larger data sets, because the compu-
tational cost for the incremental approach is O(n) while it is O(n%2)
for the baseline.

7.3. Blog communities

The incremental spectral clustering is applied to the NEC
web-blog data set after Week 22, with the output of the baseline
as initialization. The method discovers three main communities.
The communities are basically stable from Week 23 to Week 42,

Table 1
Discovered communities.

H. Ning et al. / Pattern Recognition 43 (2010) 113-127 125

Subgraph

Keywords

fleshbot, betanews, sfist, torrone, lifehacker, threaded, middot, vonage, cingular, adwords, username, engadget, sprint, psp,
bluetooth, nokia, phillip, powerbook, macromedia, verizon, usb, adsense, lcd, widget, tivo, tuaw, sms, voip, cellphones, busi-
nessweek, myspace, samsung, aol, feedburner, plasma, wifi, wireless, logged, hd, ndash, skype, xbox, apis, api, ipod, shuffle,
nano, yahoo, os, gps, newsgator, cellphone, mozilla, sf, mobile, flash, dept, inch, blackberry, apps, mac, icio, gadget, linking,
keyboard, ads, phones, beta, subscribers, interface, bookmarks, apple, motorola, startup, ebay, itunes, opml, advertisers, google,
enhanced, newest, ajax, porn, firefox, messenger, messaging, offerings, desktop, hp, portable, acquisition, publishers, password,
networking, xp, seth, robot, silicon, gadgets, broadband

shanghaiist, ebffed, atta, uzbekistan, uranium, irs, niger, shanghai, liberals, islam, saudi, iranian, loan, sheehan, tax, gop,
beijing, opposition, fitzgerald, elections, reform, cia, arab, valerie, plame, muslims, arabia, danger, muslim, islamic, hong, novak,
democrats, pakistan, iran, partisan, palestinian, liberal, immigration, conservatives, abortion, democrat, corruption, cindy, saddam,
democratic, rove, msm, indictment, wilson, libby, constitutional, terror, ambassador, democracy, syria, withdrawal, regime,
republicans, presidential, congressional, propaganda, corps, sunni, hussein, voters, israeli, deputy, kong, taiwan, russia, hearings,
iraq, terrorism, miers, republican, election, constitution, afghanistan, pentagon, clinton, scandal, taxes, iraqis, troops, liberty,
senate, israel, fema, conservative, minister, fbi, civil, parliament, nuclear, foreign, kerry, nomination, administration, china

libraries, library, gaming, copyright, stephen, academic, wiki, spyware, lawsuit, circuit, chicago, learning, brands, games, teach,
skills, cultural, classes, complaint, teaching, staff, dance, presentation, vendors, brand, anybody, commons, amp, conferences,
marketers, culture, colleagues, corporation, print, survey, students, eric, distance, game, consumers, desk, contract, access,
computing, collection, books, titles, flickr, knowledge, conference, searching, student, authors, tech, county, trends, permission,
registration, activities, java, learned, fair, buttons, letters, cases, deeply, amendment, engines, keyword, drm, privacy, copies,
collaboration, practices, speakers, school, celebrity, taught, resources, practical, audience, seth, marketing, context, training,
motion, xml, websites, boss, courts, define, studies, job, communities, database, fiction, community, association, chat, players

. »
L 3 ;_/*
>
N
- L 4
[3
* °

i.e., both the membership and topic are roughly sustained during
this period. However, some individual blogs may jump among the
communities as the data are evolving. The incremental algorithm
can capture the evolution.

First we use the content of the blog entries to validate the dis-
covered communities. Since the algorithm simply depends on the
structural (hyperlink) information, the content validation is mean-
ingful. We extract the keywords with top relative frequency from
each community to validate whether they form a consistent cluster
[33]. Here the relative frequency f(w) of a keyword w is the ratio of
its frequency f’(w) in the content of its community to its frequency
f(w) in the entire data set, i.e., fi(w) = f'(w)/f(w). Unlike the abso-
lute frequency f’(w) in a community, relative frequency can reduce
the influence of the internal language frequency of a keyword. The
validation is done every three weeks and the top keywords basi-
cally remain stable. Table 1 shows the subgraph of each commu-
nity and its corresponding keywords at Week 28. The topics can be
clearly identified from the keywords. The three communities focus
on technology&business, politics, and culture, respectively. The tech-
nology&business community is mainly discussing high technologies
and their commercials that are often talked at the same time on
the Internet, and it is hard to separate them. More interestingly, we
find that the third community is mainly discussing a small topic of
culture—library, after carefully checking the content of its blogs.

Table 2

List of multi-topic blogs.

No. URL Topic
1 http://rconversation.blogs.com/rconversation/ 1,2
2 http://blog.ericgoldman.org/ 1,3
3 http://www.josalmon.co.uk 1,2
4 http://www.davidmattison.ca/wordpress 1,3
5 http://www.cultureby.com/trilogy/ 1,3
6 http://www.joegratz.net 1,3

Topic 1: tech&business; Topic 2: politics; Topic 3: culture.

Although the topics of the three communities are roughly sta-
ble, some individual blogs may bounce among them. We select out
such blogs and carefully read their contents. We found that they
usually cover more than one topics or change their topics at some
time. So we call them “multi-topic blogs”. The URLs and the discov-
ered topics of some multi-topic blogs are listed in Table 2. Among
them, the first blog in Table 2 was created by Rebecca MacKinnon,
a research Fellow at the Law School’s Berkman Center for Internet
and Society, who focuses on three main subjects: the future of me-
dia in the Internet age, freedom of speech online, and the Internet
in China. These subjects can be labelled as high technology and pol-
itics. The 4-th blog in Table 2, created by David Mattison, focuses

http://rconversation.blogs.com/rconversation/
http://blog.ericgoldman.org/
http://www.josalmon.co.uk
http://www.davidmattison.ca/wordpress
http://www.cultureby.com/trilogy/
http://www.joegratz.net

126 H. Ning et al. / Pattern Recognition 43 (2010) 113-127

on digital libraries, digital collections, and digital preservations. So it
is assigned to the culture community (library subtopic) or the high
technology community. When the multi-topic blogs refer to or are
referred by more blogs in one community during a specific period,
they are prone to be clustered into that community. The incremental
approach can basically capture this evolution. The baseline may also
obtain it by recomputing the eigenvalue system for each updating,
but our approach is much more efficient. Note that the identification
of multi-topic blogs is a byproduct of our approach.

8. Conclusions

This paper presented an incremental approach for spectral
clustering to handle dynamic data. Two kinds of dynamics, in-
sertion/deletion of data points and similarity change of existing
data points, are incorporated in the same framework by represent-
ing them with incidence vector/matrix. The incremental algorithm,
initialized by a standard spectral clustering, continuously and effi-
ciently updates the eigenvalue system and generates instant cluster
labels, as the data set is evolving. The algorithm is applied to the
web-blogs data. Compared with recomputation by standard spec-
tral clustering, it achieves similar accuracy but with much lower
computational cost. Close inspection into the blog content shows
that the incremental approach can discover not only the stable blog
communities but also the evolution of the individual multi-topic
blogs. Our algorithm can also solve some other related problems
involving dynamic graphs. This demonstrates the wide applicability
of our algorithm.

Appendix A. Difference of two eigenvectors

An eigenvector is subject to a scalar, i.e., if q is an eigenvector,
then cq is also an eigenvector for any constant c#0. Therefore, q; —q>
cannot be a proper difference. We define an error that is invariant
to scale and measures the difference of the two eigenvectors,

q1 q2 2
Egir(q1,q2) =min |y —— — 2= || | Al
a (A, G2) = m) Hy Tl Tl ‘ (A1)
and define the difference as
: q1 q2
dif(q1,q2)=7— — ——.
1@ 92)=7q 7~ Ty

Differentiate the right side of Eq. (A.1) and set the differentiation to
0, and then y can be solved:

) qlq
lquii gzl

Then, the difference and the error can be rewritten as

CHALE Q@

dif(q1,q2) = -, (A.2)
! I 2 gzl 1zl
(alqy)?
Egif(q1,q2) =1 - ——5—=—. (A3)
arn e 19117 19 12

The error is symmetric, i.e., Egif(q1,92) = Egir(q2,q1), but the differ-
ence is not.

Appendix B. Influence of the leaves

Suppose that node i is a leaf that is connected to node j and j is
only connected to node k and i, i.e., i —j—k—- - -. The i- and j-th rows
of Eq. (4) give the relation of g;, g;, and qy,

qi
A =qyb,
|:qj:| K

Table 3
Influence of A on .
y) 0 0.020 0.040 0.060 0.080 0.100
n; 1.000 1.309 1.845 2.995 7.1483 —24.972
n; 1.000 1.211 1.571 2.327 5.022 —15.686
where
A:|:Wij—/1(1+Wij) _Wij :|
—Wjj (WU + ij)(l -)») -y
and

<[

If A is nonsingular, the above equation is solved,

{qi = NG
qj = 1iq-

For some combinations of wy;, wj,, and 4, n; and 1; may be very large.
Table 3 is an example where we assume w; = Wy, = el and 1 is
varying from O to 0.1. The magnitudes of »; and #; grow to more
than 15. Consequently, a small change of Aq, may correspond to a
large Ag; and Ag;.

References

[1] AY. Ng, ML Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm,
in: T.G. Dietterich, S. Becker, Z. Ghahramani (Eds.), Proceedings of the Advances
in Neural Information Processing Systems, MIT Press, Cambridge, MA, 2002,
pp. 849-856.

[2] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Transactions on
Pattern Analysis and Machine Intelligence 22 (8) (2000) 888-905.

[3] X. Zhu, Semi-supervised learning literature survey (1530). URL
(http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf).

[4] C. Gupta, R. Grossman, Genic: a single pass generalized incremental algorithm
for clustering, in: Proceedings of the SIAM International Conference on Data
Mining, 2004, pp. 137-153.

[5] S. Guha, N. Mishra, R. Motwani, L. O’Callaghan, Clustering data streams, in:
Proceedings of the IEEE Annual Symposium on Foundations of Computer
Science, 2000, p. 359.

[6] M. Charikar, C. Chekuri, T. Feder, R. Motwani, Incremental clustering and
dynamic information retrieval, in: Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, 1997, pp. 626-635.

[7] B. Bollobas, Modern Graph Theory, Springer, New York, 1998.

[8] G.H. Golub, C.F.V. Loan, Matrix Computations, John Hopkins Press, Baltimore,
MD, 1989.

[9] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Mathematical Journal
23 (98) (1973) 298-305.

[10] H. Ning, W. Xu, Y. Chi, Y. Gong, T. Huang, Incremental spectral clustering with
application to monitoring of evolving blog communities, in: Proceedings of the
SIAM International Conference on Data Mining, 2007, pp. 261-272.

[11] C. Ding, A tutorial on spectral clustering, in: Proceedings of the International
Conference on Machine Learning, 2004.

[12] Y.C. Wei, CK. Cheng, Towards efficient hierarchical designs by ratio cut
partitioning, in: Proceedings of the International Conference on Computer Aided
Design, 1989, pp. 298-301.

[13] L. Hagen, A.B. Kahng, New spectral methods for ratio cut partitioning
and clustering, IEEE Transactions on Computer-Aided Design 11 (9) (1992)
1074-1085.

[14] C. Ding, X. He, H. Zha, M. Gu, H. Simon, A min-max cut algorithm for graph
partitioning and data clustering, in: Proceedings of the IEEE International
Conference on Data Mining, 2001, pp. 107-114.

[15] D. Verma, M. Meila, A comparison of spectral clustering algorithms, Technical
Report UW-CSE-03-05-01, University of Washington, Seattle, WA, 2003.

[16] C. Valgren, T. Duckett, A. Lilienthal, Incremental spectral clustering and its
application to topological mapping, in: Proceedings of the IEEE International
Conference on Robotics and Automation, 2007, pp. 4283-4288.

[17] C.C. Aggarwal, J. Han,]. Wang, P.S. Yu, A framework for clustering evolving data
streams, in: Proceedings of the 29th International Conference on Very Large
Data Bases, VLDB Endowment, 2003, pp. 81-92.

[18] G.S. Manku, S. Rajagopalan, B.G. Lindsay, Approximate medians and other
quantiles in one pass and with limited memory, in: Proceedings of the ACM
SIGMOD International Conference on Management of Data, 1998, pp. 426-435.

http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf

H. Ning et al. / Pattern Recognition 43 (2010) 113-127 127

[19] G.S. Manku, S. Rajagopalan, B.G. Lindsay, Random sampling techniques for space
efficient online computation of order statistics of large datasets, in: Proceedings
of the ACM SIGMOD International Conference on Management of Data, 1999,
pp. 251-262.

[20] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, R. Motwani, Streaming-data
algorithms for high-quality clustering, in: Proceedings of the International
Conference on Data Engineering, 2002, pp. 685-694.

[21] P. Desikan, N. Pathak,]. Srivastava, V. Kumar, Incremental page rank
computation on evolving graphs, in: Proceedings of the International World
Wide Web Conference, 2005, pp. 1094-1095.

[22] AN. Langville, C.D. Meyer, Updating pagerank with iterative aggregation, in:
Proceedings of the International World Wide Web Conference, 2004, pp.
392-393.

[23] D. Chakrabarti, R. Kumar, A. Tomkins, Evolutionary clustering, in: Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2006, pp. 554-560.

[24] Y. Chi, X. Song, D. Zhou, K. Hino, B. Tseng, Evolutionary spectral clustering
by incorporating temporal smoothness, in: Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2007, pp.
153-162.

[25] S.X. Yu,]. Shi, Segmentation given partial grouping constraints, [EEE Transactions
on Pattern Analysis and Machine Intelligence 26 (2) (2004) 173-183.

[26] F.RK. Chung, Spectral Graph Theory, in: CBMS Regional Conference Series in
Mathematics, vol. 92, American Mathematical Society, Providence, RI, 1997.

[27] A. Zhou, F. Cao, W. Qian, C. Jin, Tracking clusters in evolving data streams over
sliding windows, Knowledge and Information Systems 15 (2) (2008) 181-214.

[28] H. Ning, M. Liu, H. Tang, T. Huang, A spectral clustering approach to speaker
diarization, in: Proceedings of the International Conference on Spoken Language
Processing, 2006.

[29] L. Zelnik-Manor, P. Perona, Self-tuning spectral clustering, in: Proceedings of
the Advances in Neural Information Processing Systems, 2005, pp. 1601-1608.

[30] A. Ghosh, S. Boyd, Growing well-connected graphs, in: Proceedings of the 45th
IEEE Conference on Decision and Control, 2006, pp. 6605-6611.

[31] Y. Kim, M. Mesbahi, On maximizing the second smallest eigenvalue of a state
dependent graph Laplacian, IEEE Transactions on Automatic Control 51 (1)
(2006) 116-120.

[32] H. Rheingold, The Virtual Community: Homesteading on the Electronic Frontier,
The MIT Press, Cambridge, MA, 2000.

[33] Y.-R. Lin, H. Sundaram, Y. Chi, J. Tatemura, B. Tseng, Discovery of blog
communities based on mutual awareness, in: Proceedings of the 3rd Annual
Workshop on the Weblogging Ecosystem, 2006.

[34] W. Xu, X. Liu, Y. Gong, Document clustering based on non-negative matrix
factorization, in: Proceedings of the ACM SIGIR Special Interest Group on
Information Retrieval, 2003, pp. 267-273.

[35] L. Lovasz, M. Plummer, Matching Theory, Akademiai Kiado, North-Holland,
Budapest, 1986.

About the Author—HUAZHONG NING received the B.Sc. degree in computer science from the University of Science and Technology of China, Hefei, China, in 2000, and
received the M.Sc. degree in pattern recognition and intelligence systems from the Institute of Automation, Chinese Academy of Sciences, Beijing, China, in 2003, and is
currently working toward the Ph.D. degree in electrical engineering at the University of Illinois at Urbana-Champaign. He has worked as a 3G Software Engineer in Alcatel
Shanghai Bell, China, and as summer interns in NEC American Labs, USA. His current research interests include video/image processing, machine learning, clustering, audio
analysis, data mining, etc.

About the Author—WEI XU received his B.S. degree from Tsinghua University, Beijing, China, in 1998, and M.S. degree from Carnegie Mellon University (CMU), Pittsburgh,
USA, in 2000. From 1998 to 2001, he was a research assistant at the Language Technology Institute at CMU. In 2001, he joined NEC Laboratories America working on
intelligent video analysis. His research interests include computer vision, image and video understanding, machine learning and data mining.

About the Author—YUN CHI has been a research staff member in NEC Laboratories America, Inc. (Cupertino, CA) since 2005. He received an M.S. degree in electrical
engineering from the University of Notre Dame in 2000, an M.S. degree and a Ph.D. degree, both in Computer Science, from the University of California, Los Angeles in 2001
and 2005, respectively. His primary research interests include data mining, machine learning, information retrieval, and databases.

About the Author—YIHONG GONG received his B.S., M.S., and Ph.D. degrees in electronic engineering from the University of Tokyo in 1987, 1989, and 1992, respectively.
He then joined the Nanyang Technological University of Singapore, where he worked as an assistant professor in the School of Electrical and Electronic Engineering for four
years. From 1996 to 1998, he worked for the Robotics Institute, Carnegie Mellon University as a project scientist. He was a principal investigator for both the Informedia
Digital Video Library project and the Experience-On-Demand project funded in multi-million dollars by NSF, DARPA, NASA, and other government agencies. In 1999, he
joined NEC Laboratories America, and has been leading the Multimedia Processing group since then. In 2006, he became the site manager to lead the Cupertino branch of
the labs. His research interests include multimedia content analysis and machine learning applications. The major research achievements from his group include news video
summarization, sports highlight detection, data clustering, and SmartCatch video surveillance that led to a successful spin-off.

About the Author—THOMAS S. HUANG (S'61-M'63-SM'76-F79-LF-01) received the B.S. degree in electrical engineering from the National Taiwan University, Taipei, Taiwan,
R.0.C,, and the M.S. and D.Sc. degrees in electrical engineering from the Massachusetts Institute of Technology (MIT), Cambridge.

He was on the Faculty of the Department of Electrical Engineering at MIT from 1963 to 1973 and the School of Electrical Engineering and Director of its Laboratory for
Information and Signal Processing at Purdue University, West Lafayette, IN, from 1973 to 1980. In 1980, he joined the University of Illinois at Urbana-Champaign, Urbana,
where he is now the William L. Everitt Distinguished Professor of Electrical and Computer Engineering, a Research Professor at the Coordinated Science Laboratory, and
Head of the Image Formation and Processing Group at the Beckman Institute for Advanced Science and Technology and Co-Chair of the Institute’s major research theme
Human Computer Intelligent Interaction. He has published 20 books, and over 500 papers in network theory, digital filtering, image processing, and computer vision. His
professional interests lie in the broad area of information technology, especially the transmission and processing of multidimensional signals.

	Incremental spectral clustering by efficiently updating the eigen-system
	Introduction
	Related work
	Basic formulations
	Normalized cut
	Incidence vector/matrix

	Incremental spectral clustering
	Increment of eigenvalue DDDDlambda
	Increment of eigenvector DDDD=q
	Iterative refinement of DDDDlambda and DDDD=q

	Discussions on the incremental algorithm
	Relation to other problems
	Algebraic connectivity
	The most significant edge
	Linear embedding

	Experiments
	Data description
	Comparison with the baseline
	Blog communities

	Conclusions
	Appendix A. Difference of two eigenvectors
	Appendix B. Influence of the leaves
	References

