
Temporal Difference Learning to Detect Unsafe System States

Huazhong Ning∗, Wei Xu†, Yue Zhou∗, Yihong Gong†, Thomas Huang∗
∗ECE Department, U. of Illinois at Urbana-Champaign, Urbana, IL 61801.{hning2, yuezhou, huang}@ifp.uiuc.edu.

†NEC Laboratories America, Inc., 10080 N. Wolfe Road, Cupertina, CA 95070.{xw,ygong}@sv.nec-labs.com

Abstract

This paper proposes a general framework to detect
unsafe states of a system whose basic realtime param-
eters are captured by multi-sensors. Our approach is
to learn a danger level function which can be used to
alert the users in advance of dangerous situations. The
main challenge to this learning problem is the labelling
issue, i.e., it is difficult to assign an objective danger
level at each time step to the training data, except at the
collapse points where a penalty can be assigned and
at the successful ends where a certain reward can be
assigned. In this paper, we treat the danger level as ex-
pected future reward (penalty is regarded as negative
reward) and use temporal difference (TD) learning [2]
to learn a function to approximate the expected future
reward. The TD learning obtains the approximation by
propagating the penalty/reward observable at collapse
points or successful ends to the entire feature space fol-
lowing some constraints. Our approach is applied to,
but not limited to, the application of monitoring of driv-
ing safety and the experimental results demonstrate the
effectiveness of the approach.

Keywords: Temporal Difference Learning, Unsafe
System State, Multi-sensor, Driving Safety

1 Introduction

The increasing use of sensor technologies enables
applications of increasing importance that automati-
cally capture and process the basic parameters of and
make decision for complex systems, such as in-vehicle
information systems, computer networks, and so on.
The direct goal is to monitor the performance of the
complex system by analyzing the multi-sensor output,
especially to detect unsafe states of the system before it
collapses, so that certain measures can be taken in ad-
vance to avoid the collapses. We call it “unsafety detec-
tor”. “Unsafe” here means high probability of system
collapse in the following time interval. However, there

is no quantitative definition yet. The ideal unsafety de-
tector works like a function that takes the sensor read-
ings as input and outputs a real value at any time stamp
that indicates how safe/unsafe the system state is. In this
paper this real value is calledDanger Leveland corre-
spondingly the function calledDanger Level Function.

Our work is a special case of anomaly detec-
tion. There are mainly three categories of methods of
anomaly detection, that are more or less related to our
approach. Rule-based methods [10] check the current
and/or past sensor readings against a set of predefined
rules. A combination of violations of the rules is re-
garded as an anomaly. A large amount of literature falls
into the category of statistical methods [8, 9] that learn
generative or discriminative models to identify the ab-
normal events. The third category of methods involves
signal processing techniques [7, 5]. However, these
methods usually require sample input-output pairs to
derive rules or learn models, and the pairs are usually
unavailable in our problem due to the labelling issue.

To avoid the labelling issue, we model the danger
level as the expected future reward. A large value of
negative expected future reward indicates highly dan-
gerous state. On some specific points, the reward can
be objectively assigned to the system. For example, the
penalty (negative reward) assigned to a system crash
can be decided based on its economic loss. With the
reward suitably defined for the system, we usetempo-
ral difference (TD) learning[2] to learn the danger level
function. Roughly speaking, TD learning aims to esti-
mate the expected future reward of the system given the
current and historical sensor readings. TD learning is
originally applied to reinforcement learning. Although
our task differs from reinforcement learning in that we
do not need to find the optimal action, they share the
same problem of estimating future reward.

In this paper, our approach is validated by the exper-
iments of driving safety. But our approach is a general
framework for monitoring unsafe system states. It has
great potentials to be applied to a wide range of appli-
cations that require realtime monitoring.

2 Labelling Issue

Suppose that the feature at timet extracted from the
sensor readings isXt. Let J be the danger level func-
tion andJ(Xt) be the danger level given all past sensor
readings. Our goal is to learn the danger level function
J from the training data. An intuitive idea is to parame-
terize the danger level function and then estimate the pa-
rameters by supervised learning. However, supervised
learning requires manually labelled training data, i.e.,
assigning a danger level to the sensor readings at any
time t. Then a problem arises: can human do it objec-
tively? The answer isno. Therefore most of previous
work labels the training data manually and subjectively,
e.g., by questionnaires [4] or by simulating drowsy be-
haviors [1]. In these cases, the results are doomed to be
subjective since the learning relies on the subjectively
labelled training data.

However, it is determinable that it is definitely un-
safe at a collapse point and that it is safe if the system
is ended successfully, although the safeness is uncer-
tain at any other time. Furthermore, as illustrated in
Figure 1(a), it is natural to assume that it becomes more
and more unsafe when approaching to the collapse point
and that it is safer when being far away from the col-
lapse point. Instead of being predefined by some sub-
jective rules, this constraint should be learnt from the
training data. From above, it is reasonable to assign an
extremum penalty (without loss of generality, it is neg-
ative and minimum in this paper) to the collapse point
and to assign a certain positive reward when the system
has successfully ended. Then the penalty and reward
are propagated to any other time according to the above
learned constraint, which in turn forms the danger level
function. Here the TD learning is used to accomplish
the propagation and avoid the labelling issue.

The above constraint itself gives cues of how to man-
ually (subjectively, too) label the training data. The
hard labelhas discrete values{1,−1}: 1 means a safe

Collapse at

safer unsafer

minXJ
ct

=)(

?)(=tXJ

ct
t

(a)

Collapse Trajectory
Success Trajectory

Feature Space

)(XJ

X

(b)

Figure 1. (a) Labelling issue. (b) Trajecto-
ries and sink points in feature space.

state and−1 indicates a unsafe state. Thesoft la-
bel takes continuous value and is consistent with Fig-
ure 1(a). Bothhard andsoft labelapproaches are com-
pared with our TD learning method in the experiments.

3 Temporal Difference (TD) Learning

We first give an intuitive idea of estimating the dan-
ger level functionJ by TD learning. In the feature
space, each segment of a system running course corre-
sponds to a trajectory which is ended with either col-
lapse or success. As in Figure 1(b), the red dotted
curves indicate collapse trajectories, and green solid
curves success trajectories. The collapse (red) points
can be viewed as sink points, and a moving point in the
feature space will be either absorbed into a sink point or
be stopped by external force, which forms collapse or
success trajectory respectively. The training data corre-
spond to sparse trajectories in the feature space. AndJ
can take values of either a minimum penalty or a posi-
tive reward at the end of each trajectory. But the values
at any other points in the feature space are uncertain.
The TD learning propagates the penalty/reward so that
J has values in the entire feature space.

3.1 Estimation by TD(λ)

Here the learning involves two main choices [2]: 1)
the choice of an approximation architecture to represent
the danger level function; 2) the choice of a training
algorithm. We replace the optimal danger level function
J(Xt) with a suitable approximationJ(Xt, r), wherer
is a vector of parameters.J(Xt, r) can be a linear or
non-linear function ofr or even a neural network with
r as the weights. In this paper, both the linear and non-
linear representations are used,

Linear: J(Xt, r) = Xtr

Non-linear: J(Xt, r) =
S∑

i=1

αie
−||Xt−ri||

2σ2 + β

In non-linear representation,S is the number of kernels
andr = (α1, · · · , αS , r1, · · · , rS , β). It is originated
from the idea of sink points in Figure 1(b). The lin-
ear representation requires low computational cost and
may have good generalization ability when feature di-
mension is high. In the following, we give a detailed
description of the algorithm to learn the parameterr.

Assume that the system transition from stateXt to
Xt+1 incurs a danger level changeg(Xt, Xt+1), then
the danger level functionJ(Xt) should satisfy theBell-
man’s equation[2, 6]

J(Xt) = min
Xt+1

(g(Xt, Xt+1) + J(Xt+1)) (1)

2

Suppose there areN trajectories in the training data
(X(n)

1 , X
(n)
2 , · · · , X

(n)
Tn

), n = 1, 2, · · · , N whereTn is
the length ofn-th trajectory. Denote thereal danger
level atX(n)

t of n-th trajectory asD(X(n)
t). Note that

J(Xt, r) is an parametric approximation ofD(Xt). Ac-
cording to Eqn. 1, we have

D(X(n)
t) =

Tn−1∑
s=t

g(X(n)
s , X

(n)
s+1) + M (n) (2)

whereM (n) is the penalty/reward at the end of then-
th trajectory. We consider the linear/nonlinear function
of J(Xt, r) that approximatesD(Xt), wherer is a pa-
rameter vector. In our problem,r can be estimated by
solving the least square optimization problem [2]

min
r

N∑
n=1

Tn∑
t=1

(J(X(n)
t , r)−D(X(n)

t))2 (3)

The above least square problem can be solved by an
incremental gradient method [2]. For convenience, only
one trajectory is considered for each iteration, i.e., the
parameter vectorr is updated iteratively by

∆r = −γ

T−1∑
t=1

∇rJ(Xt, r) (J(Xt, r)−D(Xt)) (4)

where(X1, X2, · · · , XT) is a trajectory,∇rJ(Xt, r) is
the partial differentiation with respect tor, andγ is a
step size. By inserting Eqn. 2 into Eqn. 4 and after a
few manipulations,∆r is rewritten as

∆r = γ
T−1∑
t=1

∇rJ(Xt, r)
T−1∑
s=t

dsλ
s−t (5)

where the quantitiesds are defined by

ds = g(Xs, Xs+1) + J(Xs+1, r)− J(Xs, r) (6)

Here J(XT , r) = M is fixed as the penalty/reward
at the end of that trajectory.ds is called temporal
difference[2]. The key idea of TD learning is that
g(Xs, Xs+1) + J(Xs+1, r) is a sample of the value
J(Xs, r), and it is more likely to be correct because it
is closer toJ(XT , r). The weightλs−t, 0 ≤ λ ≤ 1, is
used to decrease the influence of further temporal dif-
ference on∇rJ(Xt, r). The above equation provides a
family of algorithms, known as TD(λ).

Figure 2(a) gives a danger level function of a test-
ing driving course constructed by linearly parameter-
ized approximation. The crash (red) point and the pre-
ceding frames have very small value, which is consis-
tent with that the smaller the danger level the more un-
safe the system. There are some other points having

very small values but without crash. Manually checking
some of these points by playing back the driving courses
in STISIM system shows that the drivers at these points
usually take risk of unsafe driving. Since these points
are not labelled as “unsafe”, it deteriorates the perfor-
mance of our approach to some extent.

4 Experiments

Our general framework has a wide range of applica-
tions that attempt to detect unsafe system states by ana-
lyzing multi-sensor data. This paper applies it to driving
safety to demonstrate its effectiveness.

Data collection. The multi-sensor data were col-
lected through the STISIM simulator, including time
stamp, distance, lane position, acceleration due to the
throttle and brake, velocity, steering input, throttle in-
put, brake input, and so on. We have 36 drivers, and
each drives for about 20 minutes, having1 ∼ 3 crashes
per driving course. Each time one driver is selected out
for testing and the other drivers for training. We com-
pute the average performance over the 36 drivers.

Feature extraction. Instead of using the original
sensor dataZt, we extract new features from each win-
dow Zt−s:t by a transformationXt = T (Zt−s:t). The
transformationT reduces the dimension of the origi-
nal feature and summarizes the information meaning-
ful to unsafety detection. UsuallyT is empirically de-
termined but extracting information as much as possi-
ble. In driving safety,T extractsmean, max, min, and
variancefrom each dimension of the sensor reading and
weavefrom the dimensions of lane position and steering
wheel. Hereweaveis the frequency of vehicle oscilla-
tion on the lane, which reveals the driver’s skills, fa-
tigue, and drowsiness to some extent. These measures
are stacked and form the new featureXt.

In the experiments, each trajectory containsL = 60

0 500 1000 1500
−240

−220

−200

−180

−160

−140

−120

−100

−80

−60

Frame No.

D
an

ge
r

Le
ve

l

Danger level
Crash Point

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

2

4

6

8

10

12

14

16

P
c

R

Random Guess
Logistic regression
Linear regression
Linear TD
Non−linear TD

(b)

Figure 2. (a) Danger level function con-
structed by linearly parameterized ap-
proximation. The red mark indicates a
crash point. (b) Pc-R curves of our ap-
proach and the baselines. Best viewed in
color.

3

frames, and each frame corresponds to a feature ex-
tracted from a window of15 seconds. The consecutive
frames have80% overlapping. The non-crash trajec-
tories are randomly selected from each driving course
but they have no overlapping with any crash trajectory.
The ratio of the number of non-crash trajectories to that
of crash trajectories is kept to10 : 1 for each driving
course. So we have about1050 non-crash trajectories
and105 crash trajectories for training, and leave about
30 non-crash and3 crash trajectories for testing.

Evaluation. We compare our algorithm with two
baselines. The first baseline is a two-category classifier
using logistic regression that is generally regarded as
a safe and robust classifier relying on few assumptions
[3]. Its training data are manually obtainedhard labels.
The second baseline is a linear regressor. Its training
data aresoft labels. Note that the training data for both
baselines are labelled manually. Therefore, comparing
our approach with the baselines demonstrates our ap-
proach effectively avoids the labelling issue.

We specifically define an evaluation metric to mea-
sure the performance. The metric is to measure how
much the probability of accidents increases when we
only look at the claimed danger time. The higher the
increase, the more power of detecting unsafe driving.
We do not have ground truth for the testing data except
at the crash points. To make the evaluation feasible,tr
seconds before each crash are directly defined asreal
danger time. Let Tr be the total real danger time in
the testing data andT be the total time. Theclaimed
danger time, denoted asTc, is the time when the value
of danger level is below a threshold. LetTcr be the
real danger time that is also claimed as danger time
by our approach or the baselines. With these defini-
tions, theprecisioncan be defined asp = Tcr/Tc. And
pr = Tr/T is the percentage of the real danger time in
the total time. ThenR = p/pr expresses how much the
probability of accidents increases when we only look at
the claimed danger time. The greater theR the better
the performance.R is calculated at a certain level of
Pc = Tc/T , the percentage of claimed danger time in
total time. LowerPc is preferred because highPc often
means high false alarm that may result in a “cry wolf”
effect where drivers cease to trust automation.

Pc can be lowered down by adjusting the threshold
for the danger level. Actually, a threshold corresponds
to a value ofPc and, in turn, ofR. Therefore, we can
generate aPc-R curve over all possible thresholds. The
curve represents the performance of the corresponding
approach. Note that the real number output, instead of
the binary output, is used for the first baseline (logistic
regression). Figure 2(b) gives thePc-R curves of both
our approach and the baselines. Obviously, the curve

for the random guess is always one. From the figure,
the order of performance at lowPc(< 5%), is random
guess< logistic classifier< linear regression< lin-
ear TD learning< nonlinear (multi-RBF) TD learning.
It shows that our approach, both linear and nonlinear
TD learning, outperforms the baselines because our ap-
proach can avoid the labelling issue. Especially, the per-
formance of nonlinear TD learning is much better than
those of other methods. We compare the performance
at low Pc(< 5%) because the in-vehicle warning sys-
tem is preferred to work at lowPc. When we only look
at the claimed danger time, the possibility of accidents
is much higher than looking at the total time (R À 1),
which means that our approach does have much power
to detect unsafe driving.

5 Conclusions

This paper proposes a general framework to detect
unsafe system states. It uses temporal difference learn-
ing to approximate a danger level function that indicates
how safe/unsafe the system is. The main challenge to
the learning procedure is the labelling issue. This paper
uses TD learning to avoid the labelling issue. The ap-
proach is applied to, but not limited to, the application
of driving safety and the experimental results demon-
strate the effectiveness of the approach.

References

[1] L. Bergasa, J. Nuevo, M. Sotelo, R. Barea, and M. Lopez.
Real-time system for monitoring driver vigilance.IEEE
Trans. Intelligent Transportation System, 2006.

[2] D. Bertsekas and J. Tsitsiklis.Neuro-Dynamic Program-
ming. Athena Scientific, 1996.

[3] T. Hastie, R. Tibshirani, and J. H. Friedman.The Ele-
ments of Statistical Learning. Springer, August 2001.

[4] J. A. Healey and R. W. Picard. Detecting stress dur-
ing real-world driving tasks using physiological sensors.
IEEE Trans. Intelligent Transportation System, 2005.

[5] G. Jiang, H. Chen, and K. Yoshihira. Discovering likely
invariants of distributed transaction systems for auto-
nomic system management. InICAC, 2006.

[6] L. Kaelbling, M. Littman, and A. Moore. Reinforcement
learning: A survey.Journal of Artificial Intelligence Re-
search, 1996.

[7] T. Lotze, G. Shmueli, S. Murphy, and H. Burkom. A
wavelet-based anomaly detector for early detection of
disease outbreaks. InICML, 2001.

[8] T. Menzies and D. Allen. Bayesian anomaly detection.
ICML Workshop on MLASED, 2006.

[9] T. Singliar and M. Hauskrecht. Towards a learning traffic
incident detection system.ICML Workshop on MLASED,
2006.

[10] W. Wong, A. Moore, G. Cooper, and M. Wagner. Rule-
based anomaly pattern detection for detecting disease
outbreaks.AAAI, 2002.

4

