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ABSTRACT

We propose a discriminative learning approach for fusing multi-
channel sequential data with application to detect unsafe driv-
ing patterns from multi-channel driving recording data. The
fusion is performed using a discriminatively trained graphical
model - conditional random field (CRF). The proposed ap-
proach offers several advantage over existing information fus-
ing approaches. First, it derives its classification power by di-
rectly modelling and maximizing the conditional probability.
Second, it represents the variable dependency in an undirected
graph, which is very efficient in inference. Third, it does not
require to label all the training data and utilizes both labelled
and unlabelled data efficiently by semi-supervised learning
algorithms. The proposed approach is evaluated on driving
recording data collected from driving simulator - STISIM.
Experiments show it outperforms the simple discriminative
classifier (SVM) and generative model (HMM).

1. INTRODUCTION

Unsafe driving patterns are often implicated in traffic acci-
dents. Although it is difficult to determine the exact number
of accidents due to unsafe driving patterns, it is widely be-
lieved that the two are highly correlated. In efforts to shed
light on road safety problems, considerable research has been
devoted to developing mathematical model and algorithms to
evaluate and predict the operators’ driving statuses and per-
formances. [7] [3] use video image and physiological data to
tracking eyes’ and facial movements for driver fatigue mon-
itoring and prediction. A computational state-based model
of driver behavior is developed in [5] using Hidden Markov
Model (HMM) and after training it is able to predict when the
driver is about to brake or turn. Research is also performed
to monitor the behavior of the driver from the recording of
the hardware system under the control of the driver such as
steering wheel, acceleration, braking, gear changing [1].
Most technologies detect unsafe driving behaviors from
real-time recording of multi-sensory signals such as driving
performance, physiological activities, videos, and etc. Al-
though imperfectly and inaccurately, each type of sensory sig-
nal provides some characterizations of the system status. How-
ever, we believe that if different types of sensory data are
combined systematically under a unified framework, it will
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Fig. 1. Flowchart of the unsafe driving pattern detector.

reduce the uncertainty and ambiguity present in the single-
source information inference algorithm.

In this paper, we focus on the problem of inferring hidden
driving patterns from multiple sequential signals in driving
recordings. The proposed algorithm is tested in the data col-
lected from driving simulators. Fig 1 gives a brief overview
of the proposed algorithm applied to driving pattern classi-
fication task. The driver’s performance data is sampled and
recorded in real-time. Features are extracted from the raw
data. The feature vector is then fed into the inference model
to estimate the current driving state - either safe or unsafe.
The warning system will be activated if unsafe driving pattern
is detected. The parameters of the inference model are learnt
from training data and labels. In training, we effectively com-
bine the labelled and unlabelled data using semi-supervised
learning algorithms.

The rest of the paper is organized as follows: Section 2
discuss the CRF model and its learning/inference. We show
how to use semi-supervised learning method to combine la-
belled and unlabelled data for training in Section 3. Section 4
describe the data collection and feature extraction. Encourag-
ing experimental results are demonstrated in Section 5.

2. CONDITIONAL RANDOM FIELD (CRF)

The problem of fusing multi-channel sequential signal can be
viewed as inferring the hidden patterns from observation vec-
tors - a classification problem. However, it is not trivial to
directly apply discriminative classifiers such as support vec-
tor machine (SVM) because the observations are temporally
correlated. One alternative approach is generative model such
as Hidden Markov Model (HMM). The drawback of HMM is
that it models the observations independently given the hid-
den variables, and this assumption is too strong in many cases.
For example, in HMM we can not use the feature generated
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Fig. 2. A diagram for linear-chain CRF.

from the whole observation such as the total number of acci-
dents/violations. Because of the problems addressed above,
we choose Conditional Random Field (CRF) - a discrimina-
tively trained graphical model as our inference model.

2.1. Definition of CRF

Conditional random field (CRF) [4] is a discriminatively-
trained undirected graphical model of which hidden modes
have Markov property conditioned on the observation. CRF
brings together the merits of discriminative and generative
models. The features are combined using exponential func-
tions, which are trained discriminatively to maximize the con-
ditional probability of the label given observation. But like
generative models, the probabilities are propagated through
neighboring nodes to obtain globally optimal labelling, which
allow us to infer efficiently. Due to the sequential nature of
driving record data, in this paper we focus on linear-chain
CRF.
The feature function of node y; in the CRF is defined as:

Fi(Y, X)=> M- fulyirvio1, X)
k

where fj; is the feature. The conditional probability of label
sequence y given input sequence x is given by:

p(Y1X) = TR

€))

where 4 ranges over input nodes and Z(X
function:
=D exp(d_F(Y, X))
Y i

In this paper we focus on linear-chain CRF although CRF
was originally defined in general graphs. In linear-chain CRF
the hidden variables are sequential connected in a linear-chain
structure, where the marginal probabilities can be computed
in linear time by dynamic programming. Fig 2 gives an ex-
ample of linear-chain CRF.

) is the partition

2.2. CREF inferences

The inference problem of CRF is to find the best label Y such
that the log likelihood is maximized: argmaxy P(Y|X,6),
where 6 is the parameters.

The marginal probabilities of CRF can be inferred using
dynamic programming in linear time analog to the Viterbi al-
gorithm for HMM.

2.3. Training CRF parameters

The training problem of CRF is defined as follows: given
the training data set y;, find the best model parameters such
that the log likelihood log p(Y'|X) is maximized. There is no
close-form solution to this problem. However, because the
log likelihood function is convex, it can be maximized nu-
merically by many optimization methods, e.g. quasi-Newton
method.

The partial derivative of the log likelihood function is com-
puted as follows:

dlog p(Y|X) N ,
e kaYX S AKX

i=1 Y’

P(Y'1X) -
@)

where NN is the number of training data. The equation shows
that the kth partial derivative of the log likelihood function is
the difference between the empirical expected value of feature
f%(Y, X) and the model’s expected value of f;(Y’, X') minus
the derivative of the Gaussian prior. The Gaussian prior over
the parameter space provides smoothing to help cope with
sparsity in the training data [2].

3. TRAINING WITH LABELLED AND
UNLABELLED DATA

3.1. The labelled and unlabelled data

Training the CRFs requires the labels of the whole data se-
quence. In our case, unfortunately, it is very time-consuming
and expensive to label all the data sequences. The reason is
that although we can always assign unsafe labels to the data
with accidents or violations, the reverse argument is not true
- driving patterns without accidents or violations may not be
safe because unsafe driving patterns do not necessarily lead to
accidents or violations. Therefore, we have to manually look
at the long driving performance recording and assign label to
each segment. It requires the efforts of human annotators who
have fairly amount of driving experiences. Another problem
with this labelling scheme is that the data labelling is subjec-
tive especially for a few non-trivial cases and the labels from
different annotators may not agree with each other.

In our system we use the semi-supervised learning tech-
niques, which effectively combine the labelled and unlabelled
data.

3.2. Semi-supervised learning with Gaussian fields

To utilize the unlabelled data, we use the semi-supervised
learning algorithm proposed in [6]. This approach is based on
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Gaussian fields defined on a weighted graph over the labelled
and unlabelled data. The weights of the graph are predefined
in terms of the similarity function between observations. We
give a brief overview of the algorithm in the following:

1. Construct a undirect graph whose nodes correspond to
each data point - labelled or unlabelled.

2. Compute the weight of the graph edge from a similarity
function, e.g. a Gaussian function.

3. Assign a real-valued function f to each node with the
constraint that f equals the label for the labelled data.

4. Minimize the quadratic graph energy function

() =5 wa () - fGF @

5. Assign labels to the unlabelled data according to its f
function value.

4. DATA PREPROCESSING AND FEATURE
COMPUTING

4.1. Data collection and preprocessing

The driver performance data was collected by the STISIM car
driving simulators (http://www.systemstech.com/). The sim-
ulator was instrumented to save data on the driver’s perfor-
mance during the driving course. The data is sampled at the
frequency of 30Hz. Fig 3(a) shows a picture of the interface
of STISIM driving simulator.

In our system, we use 9 channels of driving performance
recording: throttle, brake, steering wheel, position, speed, ac-
celeration, lane position, distance to same lane vehicle, dis-
tance to incoming vehicle. Because our CRF model is gen-
eral, we may include more types of data in the future without
modifying the whole framework. Fig 3(b) shows a sample
plot of the driving performance data.

Because the sampling rate of driving performance data is
very high, the raw data is first evenly segmented by sliding-
windows of one-second size. The statistics of the data within
each sliding window are calculated, e.g. minimum, maxi-
mum, mean, variance, first-order derivative and etc. A Gaus-
sian Mixture Model (GMM) is then estimated using Expec-
tation Maximization (EM) algorithm of each statistic for safe
driving pattern and unsafe driving pattern respectively.

4.2. Features for CRF

The CREF relaxes the observation independence assumption
in HMM and estimates the conditional probability given the
whole observations. Therefore, we have much more flexibili-
ties in choosing features for the model. We generally catego-
rize the features into two types:

(b)

Fig. 3. STISIM driving simulator (a)The simulator interface;
(b)A plot of the collected driving recording data.

1. HMM-style features The HMM-style features are pretty
much the same as the features we use for HMM. The
features are in the forms of (a) f(y;,x;) which asso-
ciates one hidden variable with its corresponding ob-
servation (b) f(y;—1, y;) which represents the graph dy-
namics.

2. CRF-style features The CRF-style features are more
generalized and associate one hidden segments or two
neighboring hidden segments with the whole observa-
tion. The features are in the form of (a) f(y;, X) (b)

F Wi yi-1, X).

The features in CRFs are much more expressive than in
HMMs because they depend on the whole observations. In
modelling the driving recording data, however, we restrict that
all the features are causal, i.e., they only depend on the obser-
vation on or before current time.

4.3. Feature extraction from driving recording data

The statistical data of each sliding window z; is compared
with the GMM model to compute the feature f(y;, ;). The
system dynamic f(y;—1, y;) is modelled using a Gaussian func-
tion.

The CRF-style features capture the dependency between
the hidden state and the observation. For example, we aggre-
gate the number of past accidents and violations as a bias for
unsafe driving patterns, with features of form f(y;, X). Other
features of f(y;, X) include the dependency between veloc-
ity variance and y;, the dependency between average velocity
and y; and etc. The relationship between observation vari-
ance and system dynamic is modelled using features of form
f (i, yi—1, X). We also penalize very short safe driving seg-
ment because it is very unlikely in real situation.

5. EXPERIMENTS

5.1. Experiment setting

Our experiments are carried out in the following way. The
driving performances used in experiments are collected and
recorded from the same driving courses taken by 15 different
individuals. The performance is evaluated by cross-validation
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SVM | HMM | CRF
P(A[U) | 0.059 | 0.063 | 0.081
P(A]S) | 0.013 | 0.0103 | 0.0072
P(U|A) | 0.539 | 0.580 | 0.700
P(A]U)

Pl |45 |61 11.3

Table 1. Experimental result of different classifiers

- each time we use 14 individuals for training and 1 individual
for testing.

5.2. Performance evaluation

For comparison, we test other classifiers such as SVM, HMM
with the same data. The SVM is directly applied to the sliding-
window statistics with RBF kernel. For HMM, the likelihood
is modelled using GMM. The CREF is trained with both la-
belled and unlabelled data.

One problem with evaluation is how to justify unsafe driv-
ing pattern. As we mention in the previous section, we believe
accident and unsafe driving patterns are correlated and the
probability of accident under unsafe driving patterns should
be much high than under safe driving patterns. Let us de-
note A as accident, U as unsafe driving pattern, S as safe
driving pattern. The conditional probabilities of accident un-
der safe/unsafe driving patterns - P(A|S) and P(A|U) can
be used to evaluate the accuracy of the classifiers indirectly.
We report the the likelihood P(A|U), P(A|S), the posterior

P(U|A) and the likelihood ratio 5412 for SVM, HMM, and

CREF respectively in Table 1. In all experiments 30% of the

training data is labelled. The proposed algorithm increases

the likelihood ratio 1;((:2\‘%)) from 4.5 for SVM up to 11.3.

High IF;((‘;‘“‘ g)) indicates that the probability of accident is much
higher in unsafe driving pattern than in safe driving pattern,
which corresponds to our assumption that the unsafe driving
pattern implicates accident.

We also compare the performances of the proposed algo-
rithm given different sizes of labelled data in Fig 4. It shows
that P(A|U) and P(A|S) are improved with more labelled
data, which implicates better classification performances.

6. CONCLUSION

We have presented a discriminative classification framework
for fusing multi-channel sequential data to label hidden pat-
terns. It only requires partial data to be labelled. The learn-
ing and inference model is based on conditional random field
(CRF). The proposed algorithm also uses Gaussian field and
harmonic function to combine labelled and unlabelled data for
training. Experiments demonstrate significant improvement
in performance compared to individual classifier (SVM) and
generative model (HMM).
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Fig. 4. The performance change with the increase of labelled
data.

Future work includes exploring more expressive features
for the model, and incorporating continuous hidden labels.
We are exploring semi-Markov CRF to further improve the
performance of the inference. It may also be possible to ap-
ply other semi-supervised learning algorithm to the proposed
approach.
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