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Abstract 
 

Human identification at a distance has recently gained 
growing interest from computer vision researchers. This 
paper aims to propose a visual recognition algorithm 
based upon fusion of static and dynamic body biometrics. 
For each sequence involving a walking figure, pose 
changes of the segmented moving silhouettes are 
represented as an associated sequence of complex vector 
configurations, and are then analyzed using the Procrustes 
shape analysis method to obtain a compact appearance 
representation, called static information of body. Also, a 
model-based approach is presented under a Condensation 
framework to track the walker and to recover joint-angle 
trajectories of lower limbs, called dynamic information of 
gait. Both static and dynamic cues are respectively used for 
recognition using the nearest exemplar classifier. They are 
also effectively fused on decision level using different 
combination rules to improve the performance of both 
identification and verification. Experimental results on a 
dataset including 20 subjects demonstrate the validity of 
the proposed algorithm. 
 
  

1. Introduction 
 

Vision-based human identification has recently attracted 
much attention, e.g., the Human ID program of DARPA 
[20]. This strong interest is driven by a variety of potential 
applications such as visual surveillance, covert security and 
access control. As a newly emergent biometric feature, gait 
has the advantage of being non-invasive, and it is probably 
the only perceivable modality from a great distance. Gait 
recognition aims essentially to discriminate individuals by 
the way they walk.  

Current gait recognition approaches may be explicitly 
classified into two major categories, namely model-based 
methods [2,4,10] and motion-based methods [7,8,11,12]. 
As model-based examples, Johnson and Bobick [4] used 
activity-specific static body parameters for gait recognition 
without directly analyzing gait dynamics, and Yam et al. 

[10] tried the running action of gait to recognize people as 
well as walking and explored the relationship between 
walking and running that was expressed as a mapping 
based on the idea of phase modulation. Most existing 
approaches are motion-based. BenAbdelkader et al. [7] 
used image self-similarity plots of a moving person to 
recognize people, and Phillips et al. [11] described a 
silhouette correlation based algorithm for the gait 
identification problem. These approaches further provide 
clear supports for the view that it is feasible to recognize 
people by gait. 

For obtaining optimal performance, an automatic person 
identification system should integrate as many informative 
cues as available. There are various properties of gait that 
might serve as recognition features. We categorize them as 
static features and dynamic features. The former usually 
reflects geometry-based measurements such as body-height, 
stride and build, while the latter means joint-angle 
trajectories of lower limbs. Intuitively, recognizing people 
by gait depends greatly on how the static silhouette shape 
changes over time. So previous work on gait recognition 
mainly adopted low-level information such as silhouette 
[7,8,11,12]. Due to the difficulties of parameter recovery 
from video, few methods except [2,10] used higher-level 
information, e.g., temporal features of joint angles 
reflecting the dynamics of gait motion sufficiently. Based 
on the idea that body biometrics includes both the 
appearance of human body and the dynamics of gait 
motion measured during walking, here we attempt to fuse 
the two completely different sources of information 
available from walking video for personal recognition.  

The proposed method is shown in Figure 1. For each 
image sequence, background subtraction is used to extract 
moving silhouettes of the walker. Static pose changes of 
these silhouettes over time are represented as an associated 
sequence of complex vector configurations in a common 
coordinate, and are then analyzed using the Procrustes 
shape analysis method to obtain an eigen-shape for 
reflecting the body appearance, i.e., static information. 
Also, a model-based approach under a Condensation 
framework together with human body model, motion 
model and constraints is presented to track the walker in 
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image sequences. From the tracking results, we can 
calculate joint-angle trajectories of main lower limbs, i.e., 
dynamics of gait. Both static and dynamic information may 

be independently used for recognition using the nearest 
exemplar pattern classifier. They are also combined on 
decision level to improve the final performance.  
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Figure 1. Overview of the proposed algorithm 

 
2. Static feature extraction 
 
2.1. Silhouette extraction and representation 
 

A background subtraction procedure [19] is used to 
extract a single-connectivity moving region of the walker 
in each image. An important cue in determining underlying 
motion of a walking figure is his or her silhouette shape 
changes over time. For the sake of reducing redundancy, 
we only need to analyze spatial contours. The boundary 
can be obtained using a border following algorithm based 
on connectivity. Then, we compute its shape centroid (xc, 
yc). Let the centroid be the origin of a 2D shape space. We 
can unwrap the boundary as a set of pixel points (xi, yi) 
along outer-contour anticlockwise in a complex coordinate. 
That is, each shape can be described as a vector consisting 
of complex numbers with Nb boundary elements z=[z1, 
z2, …,zi, …zNb]T, where zi=xi+j*yi. Therefore, each gait 
sequence will be transformed into a sequence of such 2D 
shape configurations accordingly. 
 
2.2. Procrustes shape analysis 
 

We need one method that allows us to compare a set of 
static pose shapes in gait pattern and is robust to position, 
scale and slight rotation changes. A mathematically elegant 
way for aligning point sets is Procrustes shape analysis. A 
good brief review can be found in [1]. 

Procrustes shape analysis is intended to cope with 2D 
shapes. A shape in 2D space can be described by a vector 
of k complex numbers z=[z1, z2, …, zk]T, called a 
configuration. It is convenient to center shapes by defining 
the centered configuration u=[u1, u2, …, uk]T, zzu ii −= , 

∑
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where the superscript * represents the complex conjugation 
transpose. Given a set of n shapes, we can find their mean 
by finding u  that minimizes the objective function 
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The Procrustes mean shape û is the dominant eigenvector 
of Su, i.e., the eigenvector that corresponds to the greatest 
eigenvalue of Su [1]. 
 
2.3. Static signature acquisition 
 

Our approach uses these single shape representations 
from a gait sequence to find their mean shape as static 
signatures that can represent the appearance of body shape. 
The following summarizes the major steps in determining 
the Procrustes mean shape of a gait pattern. 

1. Select a set of k points from the boundary to represent 
a 2D shape as a vector configuration zj as discussed in 
Section 2.1; 

2. Set the centered configuration. When we represent the 
silhouette shape, we use the shape centroid as the origin of 
2D shape space to move all shapes to a common center. So 
we can directly set uj=zj, j=1, 2, …, n; 

3. Compute the matrix Su using Eqn. (3). Then, compute 
the eigenvalues and the associated eigenvectors of Su; 

4. Set the Procrustes mean shape û as the eigenvector 
that corresponds to the maximum eigenvalue, and this 
mean shape is used as static signatures. 
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(a)      (b) 

Figure 2. Plots of mean shapes and the exemplars 
 

For multiple mean shapes from multiple sequences of 
the same subject, we may acquire an exemplar by 
averaging them as a static template for that class to avoid 
selecting a random reference sample. Figure 2 (a) shows 
plots of mean shapes of four sequences of a subject and 
their exemplar, and Figure 2 (b) shows plots of multiple 
exemplars from different subjects. From Figure 2 we can 
see that the intra-subject changes in eigenshapes are very 
small, while the inter-subject changes are more significant. 
Such result implies that the mean shapes have considerable 
discriminating power. Further details on static feature 
extraction may be found in [19]. 
 
3. Dynamic feature extraction 
 

For extracting dynamic features of gait motion, we 
present a new model-based approach to tracking the 
walking figure under the Condensation framework [6].  
 
3.1. Prior knowledge 
 

Our model knowledge includes three parts: human body 
model, motion model and motion constraints [18]. The 
human body model used in this paper, similar to [5], is 
composed of 14 rigid body parts, each of which is 
represented by a truncated cone except for the head 
represented by a sphere. With the constraint that people are 
walking parallel to the image plane, the state space can be 
naturally described by a 12-dimensional vector 

{ }1021 ,,,,, θθθ LyxP = , where (x, y) is the global position 
of human body and iθ (i=1~10) is joint angles. Our motion 
model is empirically described with Gaussian functions 

( )2
,,, , tktktk uG σ  for each joint k (k = 1…10) at any phase t 

(t = 1…T) in the walking cycle. We also use conditional 
distributions to model the motion constraints of the 
dependencies of neighboring joint angles. 
 
3.2. Tracking 
 

Tracking is equivalent to relate the image data to the 
pose vector P . Since the articulated body model may be 
naturally formulated as a tree-like structure, a hierarchical 
estimation, i.e., locating the global position and tracking 
each limb separately, is suitable here.  

Given the above considerations, we first predict the 
global position from the centroid of the detected moving 
human and then refine it by searching the neighborhood of 
the predicted position. Each limb is tracked under the 
Condensation framework that uses learnt dynamical 
models, together with visual observations, to propagate the 
random sample set.  

The dynamic model needs to be designed carefully to 
improve the efficiency of factored sampling. Here, the 
learnt motion model serving as prior is integrated into the 
dynamic model. With the assumption that the Gaussian 
distributions at different phases in the motion model are 
independent, at time instant t the ith motion parameter 

ti,θ satisfies the dynamic model 

( ) ( ) ( )( )( )2
1,

2
,1,1,,1,, ,| −−−− +++= tititititititi uuGp σβσαλθγβαθθ

where 1=++ γβα  makes the drifting of ti,θ  not only 
from the tracking history 1, −tiθ  but also from the motion 
model, and λ  is a scalar that is often set to 1. This 
dynamic model is generally sufficient for all motion 
parameters, but motion constraints can further concentrate 
the samples for parameters of elbow, knee and ankle joints. 
For instance, after the shoulder joint ts,θ  is sampled, 
sample positions generated from the conditional distribution 

( )tstep ,, |θθ  for the elbow joint te,θ  also contain much 
information. So a mixed-state Condensation [17] can be 
included in the factored sampling scheme by choosing with 
a probability q to generate samples from the dynamic model 
and with a probability 1-q to generate samples from the 
conditional distribution, i.e., te,θ  satisfies  

( ) ( ) ( )( )( ) ( ) ( )tstetititetetetstete pquuGqp ,,
2

1,
2

,1,1,,,1,, |1,,| θθσβσαλθγβαθθθ −++++= −−−−

 where λγβα ,,,  are defined as above.  
 

   
 

   
Figure 3. Parts of the tracking results 
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The PEF (Pose Evaluation Function) reveals the 
observation density ( )tt xzp |  of an image zt given that the 
human model has the posture xt at time t. In general, 
boundary information improves the localization, whereas 
region information stabilizes the tracking. Therefore, we 
combine both of them in the PEF by computing the 
boundary matching error Eb and the region matching error 
Er to achieve both accuracy and robustness. Here the 
tracking results of 2 sequences are showed in Figure 3. Due 
to space constraint, only the human areas clipped from the 
original images are given. More details on tracking may be 
found in [18]. 
 
3.3. Dynamic signature acquisition 
 

Estimating an underlying skeleton from the tracking 
results enables us to measure joint-angle trajectories. 
Figure 4 shows signals of four joints: left and right hips, 
left and right knees from a walking instance, where the 
smoothed curves are the results after the median filtering. 
It is variations in the joint signals that we wish to consider 
as dynamic information of body biometrics, i.e., dynamics 
of gait. 
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Figure 4. Joint-angle trajectories of lower limbs 

 
Differences in body structure and dynamics naturally 

cause joint-angle trajectories to vary in both magnitude and 
time. To analyze these signals for identity recognition, we 
need to normalize them. We select only one walking cycle 
from each sequence. Without directly using the joint-angle 
trajectories, we carry out variance normalization by 
subtracting the mean of each signal and then dividing by 
the estimated standard deviation to reduce the effect of 
noise. DTW (Dynamic Time Warping) is applied to 
temporally align the signals to a fixed reference phase. 
Figure 5 shows the results of time-normalized signals of 
thigh rotation, from which we find that there are little 
variations among sequences from the same subject, 
whereas there are apparent variations among different 
subjects. We choose four normalized signals from left and 
right hips and knees to constitute a dynamic feature vector. 

Similarly, we also use multiple vectors from the same 
subject to obtain the exemplar by averaging them, which is 
regarded as a dynamic template for that class. 
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Figure 5. Time-normalized signals of joint angles 
 

4. Pattern classifiers and fusion rules 
 

Gait recognition is a traditional pattern classification 
problem. Here we try the nearest neighbor classifier with 
class exemplar (ENN). No doubt, a more sophisticated 
classifier could be employed, but the interest here is to 
evaluate the discriminatory ability of the extracted features. 

To measure similarity, we use both the Procrustes mean 
shape distance defined in Eqn. (1) for static features and 
the Euclidean distance for dynamic features respectively. 
The smaller the above distance measures are, the more 
similar the two gaits are. 

Main reasons for combining classifiers are efficiency 
and accuracy. A variety of fusion approaches for biometric 
recognition are available, a few of which are mentioned 
here [13-16]. Here, we investigate several different 
approaches to classifier combination.  

It should be noted that having obtained the score for 
each modality given the observation, one generally cannot 
directly combine these scores in a statistically meaningful 
way because they are not direct estimates of the posterior, 
but rather measures of the distance between the test 
example and the reference example [3]. These scores, with 
quite different ranges and distributions, must therefore be 
transformed to be comparable before fusion (the logistic 
function )1/( )()( xx ee βαβα ++ +  is used in this paper).  

First, we respectively investigate rank-summation-based 
and score-summation-based approaches described in [16]. 
Following the theoretical framework presented in [15], we 
also compare the max, min, mean, and product rules for 
combining classifier outputs.  

To statistically justify the above rules, a monotonic 
transformation function over scores S needs to be applied 
to reflect the posterior probability. We use the similar 
approach proposed in [3]. That is, we may estimate a 
probability distribution over the scores assigned to the 
correct labels by a mapping function T from scores to the 
empirical distribution and treat T(S) as the estimate of the 
posterior.  
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5. Experiments 
 

We collected 80 sequences from 20 subjects and four 
sequences per subject for our experiments. Each sequence 
includes a walking figure and the walker moves naturally 
in the field of view without occlusion laterally with respect 
to the image plane. All image sequences are captured by a 
stationary digital camera at a rate of 25 frames per second.  
 
5.1. Experimental results  
 

For each image sequence, we first extract static features 
in the manner described in Section 2. Further, we perform 
model-based tracking and recover dynamic features in the 
manner described in Section 3. It should be noted that 
self-occlusion of body parts, shadow under the feet, the 
arm and the torso having the same color, and low quality of 
the images all bring challenges to our tracking method. For 
a small portion of failed tracking sequences, we manually 
obtain the motion parameters as the focus of this paper is 
not on tracking per se but on gait recognition using the 
tracking data as dynamic features. 

Due to a small number of examples, we hope to compute 
an unbiased estimate of the true recognition rate using a 
leave-one-out cross-validation method. That is, we first 
leave one example out, train on the rest, and then classify 
or verify the omitted element according to its differences 
with respect to the rest examples.  
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(a) Identification   (b) Verification 

Figure 6. The results using a single modality 
 

First, we separately use static features and dynamic 
features obtained from walking video for recognition. In 
identification mode, the classifier determines which class a 
given measurement belongs to. One useful measure of 
classification performance that is more general than 
classification error is CMS (Cumulative Match Scores) [9] 
which is firstly introduced in the FETET protocol for the 
evaluations of face recognition algorithms. It indicates the 
probability that the correct match is included in the top n 
matches. For completeness, we also use the ROC (Receiver 
Operating Characteristic) curves to report verification 
results. In verification mode, the classifier is asked to 
verify whether a new measurement really belongs to 
certain claimed class. ROC curves give plots of various 
pairs of FAR (False Acceptance Rate) and FRR (False 
Rejection Rate) under different decision threshold values 

for the acceptance. Figure 6 (a) and (b) respectively show 
performance of identification (for ranks up to 20) and 
verification using a single modality. It should be mentioned 
that the CCR (Correct Classification Rate) is equivalent to 
p(1) (i.e., rank=1). 
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(a) Identification   (b) Verification 

Figure 7. Fusion results of rank and score based 
summation rules 
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Figure 8. Fusion results using the product, sum, max 
and min combination rules 
 

Based on the combination rules described in Section 4, 
we examine the results after fusing both static features and 
dynamic features. Figure 7 (a) and (b) show the results of 
identification and verification using rank-summation-based 
and score-summation-based combination rules respectively, 
and Figure 8 (a) and (b) give the results of identification 
and verification using the product, sum, max and min 
combination rules respectively. For comparison, we also 
plot the results using a single modality in Figure 7 and 
Figure 8. 
 
5.2. Analysis of results 
 

From Figure 6, we can see that there is indeed identity 
information in both static and dynamic features derived 
from walking video that can be explored for the 
recognition task. The results using dynamic information 
are somewhat better than those using static information. 
This is likely due to the fact that the dynamics reflect more 
essential information of gait motion. 

Figure 7 and Figure 8 demonstrate the improved 
performance of both identification and verification for the 
integration step than that using any single modality. A 
summary of CCRs and EERs (Equal Error Rate) is given in 
Table 1 for clarity. Another interesting observation from 

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



the comparative results is that the score-summation-based 
rule outperforms other combinations schemes as a whole. 
Of the last 4 statistical combination rules, the sum rule is 
the best for identification, which has also been shown in 
[15] using the sensitivity analysis to demonstrate that the 
sum rule is the most resilient to estimation errors. However, 
the product rule is best for verification. The main reason 
for the poor performance of the min rule is probably 
because that it suffers more from the noise in score 
assignment than the relatively robust mean and product 
rules. Also, it is believed that there will be better results if 
there are sufficient data to precisely model the probability 
distributions of scores for the two pattern classifiers. In all, 
these studies highlight the importance of a careful choice 
of the whole combination strategy. 
 

Table 1. Summary of CCRs and EERs 
 CCR (rank=1) CCR (rank=3) EER 

Static features 83.75% 92.50% 10.0%
Dynamic features 87.50% 97.50% 8.42%
Rank-summation 87.50% 100% 3.75%
Score-summation 97.50% 100% 3.75%

Product 92.50% 97.50% 3.54%
Sum 96.25% 100% 5.00%
Max 95.00% 100% 4.70%
Min 91.25% 97.50% 5.00%

 
Although as a whole the results are very encouraging, 

more experiments on a larger and more realistic database 
still need to be investigated in future work in order to be 
more conclusive. 
 

6. Conclusions 
 

This paper has proposed a method based on fusion of 
static and dynamic body biometrics for gait recognition. A 
statistical approach based on Procrustes shape analysis is 
used to obtain a compact representation of the appearance 
of body shape from spatiotemporal pattern of walking. A 
model-based approach is employed to track the walker and 
to recover joint-angle trajectories of lower limbs that 
reflect the dynamics of gait. Both static and dynamic cues 
of body biometrics may be independently used for 
recognition. Also, they have been combined on decision 
level for improving the performance. Experimental results 
have demonstrated the feasibility of the proposed method. 
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