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Preface

From an applications viewpoint, the main reason to study the subject of this

book is to help deal with the complexity of describing random, time-varying

functions. A random variable can be interpreted as the result of a single mea-

surement. The distribution of a single random variable is fairly simple to describe.

It is completely specified by the cumulative distribution function F (x), a func-

tion of one variable. It is relatively easy to approximately represent a cumulative

distribution function on a computer. The joint distribution of several random

variables is much more complex, for in general, it is described by a joint cumu-

lative probability distribution function, F (x1, x2, . . . , xn), which is much more

complicated than n functions of one variable. A random process, for example a

model of time-varying fading in a communication channel, involves many, possi-

bly infinitely many (one for each time instant t within an observation interval)

random variables. Woe the complexity!

This book helps prepare the reader to understand and use the following meth-

ods for dealing with the complexity of random processes:

• Work with moments, such as means and covariances.

• Use extensively processes with special properties. Most notably, Gaussian pro-

cesses are characterized entirely be means and covariances, Markov pro-

cesses are characterized by one-step transition probabilities or transition

rates, and initial distributions. Independent increment processes are char-

acterized by the distributions of single increments.

• Appeal to models or approximations based on limit theorems for reduced com-

plexity descriptions, especially in connection with averages of independent,

identically distributed random variables. The law of large numbers tells

us, in a certain sense, a probability distribution can be characterized by

its mean alone. The central limit theorem, similarly tells us a probability

distribution can be characterized by its mean and variance. These limit the-

orems are analogous to, and in fact examples of, perhaps the most powerful

tool ever discovered for dealing with the complexity of functions: Taylor’s

theorem, in which a function in a small interval can be approximated using

its value and a small number of derivatives at a single point.
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• Diagonalize. A change of coordinates reduces an arbitrary n-dimensional Gaus-

sian vector into a Gaussian vector with n independent coordinates. In

the new coordinates the joint probability distribution is the product of n

one-dimensional distributions, representing a great reduction of complex-

ity. Similarly, a random process on an interval of time, is diagonalized by

the Karhunen-Loève representation. A periodic random process is diago-

nalized by a Fourier series representation. Stationary random processes are

diagonalized by Fourier transforms.

• Sample. A narrowband continuous time random process can be exactly repre-

sented by its samples taken with sampling rate twice the highest frequency

of the random process. The samples offer a reduced complexity represen-

tation of the original process.

• Work with baseband equivalent. The range of frequencies in a typical wireless

transmission is much smaller than the center frequency, or carrier frequency,

of the transmission. The signal could be represented directly by sampling at

twice the largest frequency component. However, the sampling frequency,

and hence the complexity, can be dramatically reduced by sampling a base-

band equivalent random process.

This book was written for the first semester graduate course on random pro-

cesses, offered by the Department of Electrical and Computer Engineering at

the University of Illinois at Urbana-Champaign. Students in the class are as-

sumed to have had a previous course in probability, which is briefly reviewed in

the first chapter. Students are also expected to have some familiarity with real

analysis and elementary linear algebra, such as the notions of limits, definitions

of derivatives, Riemann integration, and diagonalization of symmetric matrices.

These topics are reviewed in the appendix. Finally, students are expected to

have some familiarity with transform methods and complex analysis, though the

concepts used are reviewed in the relevant chapters.

Each chapter represents roughly two weeks of lectures, and includes homework

problems. Solutions to the even numbered problems without stars can be found

at the end of the book. Students are encouraged to first read a chapter, then try

doing the even numbered problems before looking at the solutions. Problems with

stars, for the most part, investigate additional theoretical issues, and solutions

are not provided.

Hopefully some students reading this book will find them useful for under-

standing the diverse technical literature on systems engineering, ranging from

control systems, signal and image processing, communication theory, and analy-

sis of a variety of networks and algorithms. Hopefully some students will go on to

design systems, and define and analyze stochastic models. Hopefully others will

be motivated to continue study in probability theory, going on to learn measure

theory and its applications to probability and analysis in general.

A brief comment is in order on the level of rigor and generality at which this

book is written. Engineers and scientists have great intuition and ingenuity, and
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routinely use methods that are not typically taught in undergraduate mathemat-

ics courses. For example, engineers generally have good experience and intuition

about transforms, such as Fourier transforms, Fourier series, and z-transforms,

and some associated methods of complex analysis. In addition, they routinely use

generalized functions, in particular the delta function is frequently used. The use

of these concepts in this book leverages on this knowledge, and it is consistent

with mathematical definitions, but full mathematical justification is not given in

every instance. The mathematical background required for a full mathematically

rigorous treatment of the material in this book is roughly at the level of a second

year graduate course in measure theoretic probability, pursued after a course on

measure theory.

The author gratefully acknowledges the many students and faculty mem-

bers (including Todd Coleman, Christoforos Hadjicostis, Jonathan Ligo, Andrew

Singer, R. Srikant, and Venu Veeravalli) who gave many helpful comments and

suggestions.

Bruce Hajek

July 2014



x Preface

Organization

The first four chapters of the book are used heavily in the remaining chapters,

so most readers should cover those chapters before moving on.

Chapter 1 is meant primarily as a review of concepts found in a typical first

course on probability theory, with an emphasis on axioms and the defi-

nition of expectation. Readers desiring a more extensive review of basic

probability are referred to the author’s notes for ECE 313 at the Uni-

versity of Illinois.

Chapter 2 focuses on various ways in which a sequence of random variables

can converge, and the basic limit theorems of probability: law of large

numbers, central limit theorem, and the asymptotic behavior of large

deviations.

Chapter 3 focuses on minimum mean square error estimation and the orthogo-

nality principle. Kalman filtering is explained from the geometric stand-

point based on innovations sequences.

Chapter 4 introduces the notion of random process, and briefly covers several

key examples and classes of random processes. Markov processes and

martingales are introduced in this chapter, but are covered in greater

depth in later chapters.

After Chapter 4 is covered, the following four topics can be covered indepen-

dently of each other.

Chapter 5 describes the use of Markov processes for modeling and statistical

inference. Applications include natural language processing.

Chapter 6 describes the use of Markov processes for modeling and analysis

of dynamical systems. Applications include the modeling of queueing

systems.

Chapters 7-9 develop calculus for random processes based on mean square con-

vergence, moving to linear filtering, orthogonal expansions, and ending

with causal and noncausal Wiener filtering.

Chapter 10 explores martingales with respect to filtrations, with emphasis on

elementary concentration inequalities, and on the optional sampling the-

orem.

In recent one-semester course offerings, the author covered Chapters 1-5, Sec-

tions 6.1-6.8, Chapter 7, Sections 8.1-8.4, and Section 9.1. Time did not permit

to cover the Foster-Lyapunov stability criteria, noncausal Wiener filtering, and

the chapter on martingales.

A number of background topics are covered in the appendix, including basic

notation.



1 A Selective Review of Basic
Probability

This chapter reviews many of the main concepts in a first level course on prob-

ability theory with more emphasis on axioms and the definition of expectation

than is typical of a first course.

1.1 The axioms of probability theory

Random processes are widely used to model systems in engineering and scientific

applications. This book adopts the most widely used framework of probability

and random processes, namely the one based on Kolmogorov’s axioms of proba-

bility. The idea is to assume a mathematically solid definition of the model. This

structure encourages a modeler to have a consistent, if not accurate, model.

A probability space is a triplet (Ω,F ,P). The first component, Ω, is a nonempty

set. Each element ω of Ω is called an outcome and Ω is called the sample space.

The second component, F , is a set of subsets of Ω called events. The set of events

F is assumed to be a σ-algebra, meaning it satisfies the following axioms: (See

Appendix 11.1 for set notation).

A.1 Ω ∈ F
A.2 If A ∈ F then Ac ∈ F
A.3 If A, B ∈ F then A ∪ B ∈ F . Also, if A1, A2, . . . is a sequence of

elements in F then
⋃∞
i=1Ai ∈ F .

If F is a σ-algebra and A, B ∈ F , then AB ∈ F by A.2, A.3 and the fact

AB = (Ac∪Bc)c. By the same reasoning, if A1, A2, . . . is a sequence of elements

in a σ-algebra F , then
⋂∞
i=1Ai ∈ F .

Events Ai, i ∈ I, indexed by a set I are called mutually exclusive if the

intersection AiAj = ∅ for all i, j ∈ I with i 6= j. The final component, P , of the

triplet (Ω,F , P ) is a probability measure on F satisfying the following axioms:

P.1 P (A) ≥ 0 for all A ∈ F
P.2 If A,B ∈ F and if A and B are mutually exclusive, then P (A ∪B) =

P (A) + P (B). Also, if A1, A2, . . . is a sequence of mutually exclusive

events in F then P (
⋃∞
i=1Ai) =

∑∞
i=1 P (Ai).

P.3 P (Ω) = 1.
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The axioms imply a host of properties including the following. For any subsets

A, B, C of F :

• If A ⊂ B then P (A) ≤ P (B)

• P (A ∪B) = P (A) + P (B)− P (AB)

• P (A∪B∪C) = P (A)+P (B)+P (C)−P (AB)−P (AC)−P (BC)+P (ABC)

• P (A) + P (Ac) = 1

• P (∅) = 0.

Example 1.1 (Toss of a fair coin) Using “H” for “heads” and “T” for “tails,”

the toss of a fair coin is modeled by

Ω = {H,T} F = {{H}, {T}, {H,T}, ∅}

P{H} = P{T} =
1

2
P{H,T} = 1 P (∅) = 0.

Note that, for brevity, we omitted the parentheses and wrote P{H} instead of

P ({H}).

Example 1.2 (Standard unit-interval probability space) Take

Ω = {ω : 0 ≤ ω ≤ 1}. Imagine an experiment in which the outcome ω is drawn

from Ω with no preference towards any subset. In particular, we want the set

of events F to include intervals, and the probability of an interval [a, b] with

0 ≤ a ≤ b ≤ 1 to be given by:

P ( [a, b] ) = b− a. (1.1)

Taking a = b, we see that F contains singleton sets {a}, and these sets have

probability zero. Since F is to be a σ-algebra, it must also contain all the open

intervals (a, b) in Ω, and for such an open interval, P ( (a, b) ) = b− a. Any open

subset of Ω is the union of a finite or countably infinite set of open intervals,

so that F should contain all open and all closed subsets of Ω. Thus, F must

contain any set that is the intersection of countably many open sets, the union

of countably many such sets, and so on. The specification of the probability

function P must be extended from intervals to all of F . It is not a priori clear

how large F can be. It is tempting to take F to be the set of all subsets of Ω.

However, that idea doesn’t work–see Problem 1.37 showing that the length of

all subsets of R can’t be defined in a consistent way. The problem is resolved

by taking F to be the smallest σ-algebra containing all the subintervals of Ω, or

equivalently, containing all the open subsets of Ω. This σ-algebra is called the

Borel σ-algebra for [0, 1], and the sets in it are called Borel sets. While not every

subset of Ω is a Borel subset, any set we are likely to encounter in applications

is a Borel set. The existence of the Borel σ-algebra is discussed in Problem
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1.38. Furthermore, extension theorems of measure theory1 imply that P can be

extended from its definition (1.1) for interval sets to all Borel sets.

The smallest σ-algebra, B, containing the open subsets of R is called the Borel

σ-algebra for R, and the sets in it are called Borel subsets of R. Similarly, the

Borel σ-algebra Bn of subsets of Rn is the smallest σ-algebra containing all sets

of the form [a1, b1]× [a2, b2]×· · ·× [an, bn]. Sets in Bn are called Borel subsets of

Rn. The class of Borel sets includes not only rectangle sets and countable unions

of rectangle sets, but all open sets and all closed sets. Virtually any subset of Rn
arising in applications is a Borel set.

Example 1.3 (Repeated binary trials) Suppose we would like to represent an

infinite sequence of binary observations, where each observation is a zero or one

with equal probability. For example, the experiment could consist of repeatedly

flipping a fair coin, and recording a one each time it shows heads and a zero

each time it shows tails. Then an outcome ω would be an infinite sequence,

ω = (ω1, ω2, · · · ), such that for each i ≥ 1, ωi ∈ {0, 1}. Let Ω be the set of all

such ω’s. The set of events can be taken to be large enough so that any set that

can be defined in terms of only finitely many of the observations is an event. In

particular, for any binary sequence (b1, · · · , bn) of some finite length n, the set

{ω ∈ Ω : ωi = bi for 1 ≤ i ≤ n} should be in F , and the probability of such a set

is taken to be 2−n.

There are also events that don’t depend on a fixed, finite number of obser-

vations. For example, let F be the event that an even number of observations

is needed until a one is observed. Show that F is an event and then find its

probability.

Solution

For k ≥ 1, let Ek be the event that the first one occurs on the kth observation.

So Ek = {ω : ω1 = ω2 = · · · = ωk−1 = 0 and ωk = 1}. Then Ek depends on only

a finite number of observations, so it is an event, and P{Ek} = 2−k. Observe

that F = E2 ∪ E4 ∪ E6 ∪ . . . , so F is an event by Axiom A.3. Also, the events

E2, E4, . . . are mutually exclusive, so by the full version of Axiom P.2:

P (F ) = P (E2) + P (E4) + · · · = 1

4

(
1 +

(
1

4

)
+

(
1

4

)2

+ · · ·

)
=

1
4

1− 1
4

=
1

3
.

The following lemma gives a continuity property of probability measures which

1 See, for example, (Royden 1968) or (Varadhan 2001). The σ-algebra F can be extended
somewhat further by requiring the following completeness property: if B ⊂ A ∈ F with
P (A) = 0, then B ∈ F (and also P (B) = 0).
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is analogous to continuity of functions on Rn, reviewed in Appendix 11.3. If

B1, B2, . . . is a sequence of events such that B1 ⊂ B2 ⊂ B3 ⊂ · · · , then we can

think that Bj converges to the set ∪∞i=1Bi as j →∞. The lemma states that in

this case, P (Bj) converges to the probability of the limit set as j →∞.

lemma 1.1 (Continuity of Probability) Suppose B1, B2, . . . is a sequence of

events.

(a) If B1 ⊂ B2 ⊂ · · · then limj→∞ P (Bj) = P (
⋃∞
i=1Bi) .

(b) If B1 ⊃ B2 ⊃ · · · then limj→∞ P (Bj) = P (
⋂∞
i=1Bi) .

Proof
Suppose B1 ⊂ B2 ⊂ · · · . Let D1 = B1, D2 = B2 − B1, and, in general, let

Di = Bi − Bi−1 for i ≥ 2, as shown in Figure 1.1. Then P (Bj) =
∑j
i=1 P (Di)

B =D D1 1 D2 3 . . .

Figure 1.1 A sequence of nested sets.

for each j ≥ 1, so

lim
j→∞

P (Bj) = lim
j→∞

j∑
i=1

P (Di)

(a)
=

∞∑
i=1

P (Di)

(b)
= P

( ∞⋃
i=1

Di

)
= P

( ∞⋃
i=1

Bi

)
.

where (a) is true by the definition of the sum of an infinite series, and (b) is true

by axiom P.2. This proves Lemma 1.1(a). Lemma 1.1(b) can be proved similarly,

or can be derived by applying Lemma 1.1(a) to the sets Bcj .

Example 1.4 (Selection of a point in a square) Take Ω to be the square region

in the plane,

Ω = {(x, y) : x, y ∈ [0, 1]}.

Let F be the Borel σ-algebra for Ω, which is the smallest σ-algebra containing

all the rectangular subsets of Ω that are aligned with the axes. Take P so that
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for any rectangle R,

P (R) = area of R.

(It can be shown that F and P exist.) Let T be the triangular region T =

{(x, y) : 0 ≤ y ≤ x ≤ 1}. Since T is not rectangular, it is not immediately clear

that T ∈ F , nor is it clear what P (T ) is. That is where the axioms come in. For

n ≥ 1, let Tn denote the region shown in Figure 1.2. Since Tn can be written as

Tn

1 2
nn

10

Figure 1.2 Approximation of a triangular region.

a union of finitely many mutually exclusive rectangles, it follows that Tn ∈ F
and it is easily seen that P (Tn) = 1+2+···+n

n2 = n+1
2n . Since T1 ⊃ T2 ⊃ T4 ⊃ T8 · · ·

and ∩jT2j = T , it follows that T ∈ F and P (T ) = limn→∞ P (Tn) = 1
2 .

The reader is encouraged to show that if C is the diameter one disk inscribed

within Ω then P (C) = (area of C) = π
4 .

1.2 Independence and conditional probability

Events A1 and A2 are defined to be independent if P (A1A2) = P (A1)P (A2).

More generally, events A1, A2, . . . , Ak are defined to be independent if

P (Ai1Ai2 · · ·Aij ) = P (Ai1)P (Ai2) · · ·P (Aij )

whenever j and i1, i2, . . . , ij are integers with j ≥ 1 and 1 ≤ i1 < i2 < · · · <
ij ≤ k. For example, events A1, A2, A3 are independent if the following four

conditions hold:

P (A1A2) = P (A1)P (A2)

P (A1A3) = P (A1)P (A3)

P (A2A3) = P (A2)P (A3)

P (A1A2A3) = P (A1)P (A2)P (A3).

A weaker condition is sometimes useful: Events A1, . . . , Ak are defined to be

pairwise independent if Ai is independent of Aj whenever 1 ≤ i < j ≤ k. In-

dependence of k events requires that 2k − k − 1 equations hold: one for each



6 A Selective Review of Basic Probability

subset of {1, 2, . . . , k} of size at least two. Pairwise independence only requires

that
(
k
2

)
= k(k−1)

2 equations hold.

If A and B are events and P (B) 6= 0, then the conditional probability of A

given B is defined by

P (A | B) =
P (AB)

P (B)
.

It is not defined if P (B) = 0, which has the following meaning. If you were to

write a computer routine to compute P (A | B) and the inputs are P (AB) = 0

and P (B) = 0, your routine shouldn’t simply return the value 0. Rather, your

routine should generate an error message such as “input error–conditioning on

event of probability zero.” Such an error message would help you or others find

errors in larger computer programs which use the routine.

As a function of A for B fixed with P (B) 6= 0, the conditional probability of

A given B is itself a probability measure for Ω and F . More explicitly, fix B

with P (B) 6= 0. For each event A define P ′(A) = P (A | B). Then (Ω,F , P ′) is a

probability space, because P ′ satisfies the axioms P1− P3. (Try showing that.)

If A and B are independent then Ac and B are independent. Indeed, if A and

B are independent then

P (AcB) = P (B)− P (AB) = (1− P (A))P (B) = P (Ac)P (B).

Similarly, if A, B, and C are independent events then AB is independent of C.

More generally, suppose E1, E2, . . . , En are independent events, suppose n = n1+

· · ·+nk with ni ≥ 1 for each i, and suppose F1 is defined by Boolean operations

(intersections, complements, and unions) of the first n1 events E1, . . . , En1 , F2

is defined by Boolean operations on the next n2 events, En1+1, . . . , En1+n2
, and

so on. Then F1, . . . , Fk are independent.

Events E1, . . . , Ek are said to form a partition of Ω if the events are mutually

exclusive and Ω = E1∪· · ·∪Ek. Of course for a partition, P (E1)+· · ·+P (Ek) = 1.

More generally, for any event A, the law of total probability holds because A is

the union of the mutually exclusive sets AE1, AE2, . . . , AEk:

P (A) = P (AE1) + · · ·+ P (AEk).

If P (Ei) 6= 0 for each i, this can be written as

P (A) = P (A | E1)P (E1) + · · ·+ P (A | Ek)P (Ek).

Figure 1.3 illustrates the condition of the law of total probability.

Judicious use of the definition of conditional probability and the law of total

probability leads to Bayes’ formula for P (Ei | A) (if P (A) 6= 0) in simple form

P (Ei | A) =
P (AEi)

P (A)
=

P (A | Ei)P (Ei)

P (A)
,

or in expanded form:

P (Ei | A) =
P (A | Ei)P (Ei)

P (A | E1)P (E1) + · · ·+ P (A | Ek)P (Ek)
.
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E

E

E
E

1
2

3

4

Ω

A

Figure 1.3 Partitioning a set A using a partition of Ω.

The remainder of this section gives the Borel-Cantelli lemma. It is a simple

result based on continuity of probability and independence of events, but it is

not typically encountered in a first course on probability. Let (An : n ≥ 0) be a

sequence of events for a probability space (Ω,F , P ).

definition 1.2 The event {An infinitely often} is the set of ω ∈ Ω such that

ω ∈ An for infinitely many values of n.

Another way to describe {An infinitely often} is that it is the set of ω such

that for any k, there is an n ≥ k such that ω ∈ An. Therefore,

{An infinitely often} = ∩k≥1 (∪n≥kAn) .

For each k, the set ∪n≥kAn is a countable union of events, so it is an event, and

{An infinitely often} is an intersection of countably many such events, so that

{An infinitely often} is also an event.

lemma 1.3 (Borel-Cantelli lemma) Let (An : n ≥ 1) be a sequence of events

and let pn = P (An).

(a) If
∑∞
n=1 pn <∞, then P{An infinitely often} = 0.

(b) If
∑∞
n=1 pn =∞ and A1, A2, · · · are mutually independent, then

P{An infinitely often} = 1.

Proof (a) Since {An infinitely often} is the intersection of the monotonically

nonincreasing sequence of events ∪n≥kAn, it follows from the continuity of proba-

bility for monotone sequences of events (Lemma 1.1) that P{An infinitely often} =

limk→∞ P (∪n≥kAn). Lemma 1.1, the fact that the probability of a union of

events is less than or equal to the sum of the probabilities of the events, and the

definition of the sum of a sequence of numbers, yield that for any k ≥ 1,

P (∪n≥kAn) = lim
m→∞

P (∪mn=kAn) ≤ lim
m→∞

m∑
n=k

pn =

∞∑
n=k

pn.

Therefore, P{An infinitely often} ≤ limk→∞
∑∞
n=k pn. If

∑∞
n=1 pn < ∞, then

limk→∞
∑∞
n=k pn = 0, which implies part (a) of the lemma.

(b) Suppose that
∑∞
n=1 pn = +∞ and that the events A1, A2, . . . are mutually
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independent. For any k ≥ 1, using the fact 1− u ≤ exp(−u) for all u,

P (∪n≥kAn)

= lim
m→∞

P (∪mn=kAn) = lim
m→∞

1−
m∏
n=k

(1− pn)

≥ lim
m→∞

1− exp

(
−

m∑
n=k

pn

)
= 1− exp

(
−
∞∑
n=k

pn

)
= 1− exp(−∞) = 1.

Therefore, P{An infinitely often} = limk→∞ P (∪n≥kAn) = 1.

Example 1.5 Consider independent coin tosses using biased coins, such that

P (An) = pn = 1
n , where An is the event of getting heads on the nth toss. Since∑∞

n=1
1
n = +∞, the part of the Borel-Cantelli lemma for independent events

implies that P{An infinitely often} = 1.

Example 1.6 Let (Ω,F , P ) be the standard unit-interval probability space de-

fined in Example 1.2, and let An = [0, 1
n ). Then pn = 1

n and An+1 ⊂ An
for n ≥ 1. The events are not independent, because for m < n, P (AmAn) =

P (An) = 1
n 6= P (Am)P (An). Of course 0 ∈ An for all n. But for any ω ∈ (0, 1],

ω 6∈ An for n > 1
ω . Therefore, {An infinitely often} = {0}. The single point set

{0} has probability zero, so P{An infinitely often} = 0. This conclusion holds

even though
∑∞
n=1 pn = +∞, illustrating the need for the independence assump-

tion in Lemma 1.3(b).

1.3 Random variables and their distribution

Let a probability space (Ω,F , P ) be given. By definition, a random variable is

a function X from Ω to the real line R that is F measurable, meaning that for

any number c,

{ω : X(ω) ≤ c} ∈ F . (1.2)

If Ω is finite or countably infinite, then F can be the set of all subsets of Ω, in

which case any real-valued function on Ω is a random variable.

If (Ω,F , P ) is the standard unit-interval probability space described in Exam-

ple 1.2, then the random variables on (Ω,F , P ) are called the Borel measurable

functions on Ω. Since the Borel σ-algebra contains all subsets of [0, 1] that come

up in applications, for practical purposes we can think of any function on [0, 1]

as being a random variable. For example, any piecewise continuous or piecewise

monotone function on [0, 1] is a random variable for the standard unit-interval

probability space.
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The cumulative distribution function (CDF) of a random variable X is denoted

by FX . It is the function, with domain the real line R, defined by

FX(c) = P{ω : X(ω) ≤ c}
= P{X ≤ c} (for short).

If X denotes the outcome of the roll of a fair die (“die” is singular of “dice”) and

if Y is uniformly distributed on the interval [0, 1], then FX and FY are shown in

Figure 1.4

64

F F
YX1

53210 0 1

1

Figure 1.4 Examples of CDFs.

The CDF of a random variable X determines P{X ≤ c} for any real number

c. But what about P{X < c} and P{X = c}? Let c1, c2, . . . be a monotone

nondecreasing sequence that converges to c from the left. This means ci ≤ cj < c

for i < j and limj→∞ cj = c. Then the events {X ≤ cj} are nested: {X ≤ ci} ⊂
{X ≤ cj} for i < j, and the union of all such events is the event {X < c}. Thus,

by Lemma 1.1

P{X < c} = lim
i→∞

P{X ≤ ci} = lim
i→∞

FX(ci) = FX(c−).

Therefore, P{X = c} = FX(c)−FX(c−) = 4FX(c), where 4FX(c) is defined to

be the size of the jump of F at c. For example, if X has the CDF shown in Figure

1.5 then P{X = 0} = 1
2 . The collection of all events A such that P{X ∈ A} is

determined by FX is a σ-algebra containing the intervals, and thus this collection

contains all Borel sets. That is, P{X ∈ A} is determined by FX for any Borel

set A.

0−1

0.5

1

Figure 1.5 An example of a CDF.

proposition 1.4 A function F is the CDF of some random variable if and

only if it has the following three properties:
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F.1 F is nondecreasing

F.2 limx→+∞ F (x) = 1 and limx→−∞ F (x) = 0

F.3 F is right continuous.

Proof The “only if” part is proved first. Suppose that F is the CDF of some

random variable X. Then if x < y, F (y) = P{X ≤ y} = P{X ≤ x}+P{x < X ≤
y} ≥ P{X ≤ x} = F (x) so that F.1 is true. Consider the events Bn = {X ≤ n}.
Then Bn ⊂ Bm for n ≤ m. Thus, by Lemma 1.1,

lim
n→∞

F (n) = lim
n→∞

P (Bn) = P

( ∞⋃
n=1

Bn

)
= P (Ω) = 1.

This and the fact F is nondecreasing imply the following. Given any ε > 0, there

exists Nε so large that F (x) ≥ 1 − ε for all x ≥ Nε. That is, F (x) → 1 as

x→ +∞. Similarly,

lim
n→−∞

F (n) = lim
n→∞

P (B−n) = P

( ∞⋂
n=1

B−n

)
= P (∅) = 0.

so that F (x)→ 0 as x→ −∞. Property F.2 is proved.

The proof of F.3 is similar. Fix an arbitrary real number x. Define the sequence

of events An for n ≥ 1 by An = {X ≤ x+ 1
n}. Then An ⊂ Am for n ≥ m so

lim
n→∞

F (x+
1

n
) = lim

n→∞
P (An) = P

( ∞⋂
k=1

Ak

)
= P{X ≤ x} = FX(x).

Convergence along the sequence x+ 1
n , together with the fact that F is nonde-

creasing, implies that F (x+) = F (x). Property F.3 is thus proved. The proof of

the “only if” portion of Proposition 1.4 is complete

To prove the “if” part of Proposition 1.4, let F be a function satisfying prop-

erties F.1-F.3. It must be shown that there exists a random variable with CDF

F . Let Ω = R and let F be the set B of Borel subsets of R. Define P̃ on intervals

of the form (a, b] by P̃ ((a, b]) = F (b) − F (a). It can be shown by an extension

theorem of measure theory that P̃ can be extended to all of F so that the axioms

of probability are satisfied. Finally, let X̃(ω) = ω for all ω ∈ Ω. Then

P̃ (X̃ ∈ (a, b]) = P̃ ((a, b]) = F (b)− F (a).

Therefore, X̃ has CDF F . So F is a CDF, as was to be proved.

The vast majority of random variables described in applications are one of

two types, to be described next. A random variable X is a discrete random

variable if there is a finite or countably infinite set of values {xi : i ∈ I} such

that P{X ∈ {xi : i ∈ I}} = 1. The probability mass function (pmf) of a

discrete random variable X, denoted pX(x), is defined by pX(x) = P{X = x}.
Typically the pmf of a discrete random variable is much more useful than the
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CDF. However, the pmf and CDF of a discrete random variable are related by

pX(x) = 4FX(x) and conversely,

FX(x) =
∑
y:y≤x

pX(y), (1.3)

where the sum in (1.3) is taken only over y such that pX(y) 6= 0. If X is a discrete

random variable with only finitely many mass points in any finite interval, then

FX is a piecewise constant function.

A random variableX is a continuous random variable if the CDF is the integral

of a function:

FX(x) =

∫ x

−∞
fX(y)dy.

The function fX is called the probability density function (pdf). If the pdf fX is

continuous at a point x, then the value fX(x) has the following nice interpreta-

tion:

fX(x) = lim
ε→0

1

ε

∫ x+ε

x

fX(y)dy

= lim
ε→0

1

ε
P{x ≤ X ≤ x+ ε}.

If A is any Borel subset of R, then

P{X ∈ A} =

∫
A

fX(x)dx. (1.4)

The integral in (1.4) can be understood as a Riemann integral if A is a finite union

of intervals and f is piecewise continuous or monotone. In general, fX is required

to be Borel measurable and the integral is defined by Lebesgue integration.2

Any random variable X on an arbitrary probability space has a CDF FX .

As noted in the proof of Proposition 1.4 there exists a probability measure PX
(called P̃ in the proof) on the Borel subsets of R such that for any interval (a, b],

PX((a, b]) = P{X ∈ (a, b]}.

We define the probability distribution of X to be the probability measure PX .

The distribution PX is determined uniquely by the CDF FX . The distribution

is also determined by the pdf fX if X is continuous type, or the pmf pX if X

is discrete type. In common usage, the response to the question “What is the

distribution of X?” is answered by giving one or more of FX , fX , or pX , or

possibly a transform of one of these, whichever is most convenient.

1.4 Functions of a random variable

Recall that a random variable X on a probability space (Ω,F , P ) is a function

mapping Ω to the real line R, satisfying the condition {ω : X(ω) ≤ a} ∈ F
2 Lebesgue integration is defined in Sections 1.5 and 11.5
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for all a ∈ R. Suppose g is a function mapping R to R that is not too bizarre.

Specifically, suppose for any constant c that {x : g(x) ≤ c} is a Borel subset of

R. Let Y (ω) = g(X(ω)). Then Y maps Ω to R and Y is a random variable. See

Figure 1.6. We write Y = g(X).

Ω

g(X(  ))X(  )ω ω

gX

Figure 1.6 A function of a random variable as a composition of mappings.

Often we’d like to compute the distribution of Y from knowledge of g and

the distribution of X. In case X is a continuous random variable with known

distribution, the following three step procedure works well:

(1) Examine the ranges of possible values of X and Y . Sketch the function

g.

(2) Find the CDF of Y , using FY (c) = P{Y ≤ c} = P{g(X) ≤ c}. The

idea is to express the event {g(X) ≤ c} as {X ∈ A} for some set A

depending on c.

(3) If FY has a piecewise continuous derivative, and if the pdf fY is desired,

differentiate FY .

If instead X is a discrete random variable then step 1 should be followed. After

that the pmf of Y can be found from the pmf of X using

pY (y) = P{g(X) = y} =
∑

x:g(x)=y

pX(x).

Example 1.7 Suppose X is a N(µ = 2, σ2 = 3) random variable (see Section

1.6 for the definition) and Y = X2. Let us describe the density of Y . Note that

Y = g(X) where g(x) = x2. The support of the distribution of X is the whole

real line, and the range of g over this support is R+. Next we find the CDF, FY .

Since P{Y ≥ 0} = 1, FY (c) = 0 for c < 0. For c ≥ 0,

FY (c) = P{X2 ≤ c} = P{−
√
c ≤ X ≤

√
c}

= P

{
−
√
c− 2√
3

≤ X − 2√
3
≤
√
c− 2√

3

}
= Φ

(√
c− 2√

3

)
− Φ

(
−
√
c− 2√
3

)
.
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Differentiate with respect to c, using the chain rule and Φ′(s) = 1√
2π

exp(− s
2

2 ),

to obtain

fY (c) =

 1√
24πc

{
exp

(
−
[√

c−2√
6

]2)
+ exp

(
−
[
−
√
c−2√
6

]2)}
if c ≥ 0

0 if c < 0
.

Example 1.8 Suppose a vehicle is traveling in a straight line at speed a, and

that a random direction is selected, subtending an angle Θ from the direction

of travel which is uniformly distributed over the interval [0, π]. See Figure 1.7.

Then the effective speed of the vehicle in the random direction is B = a cos(Θ).

B

a

Θ

Figure 1.7 Direction of travel and a random direction.

Let us find the pdf of B.

The range of a cos(θ), as θ ranges over [0, π], is the interval [−a, a]. Therefore,

FB(c) = 0 for c ≤ −a and FB(c) = 1 for c ≥ a. Let now −a < c < a. Then,

because cos is monotone nonincreasing on the interval [0, π],

FB(c) = P{a cos(Θ) ≤ c} = P
{

cos(Θ) ≤ c

a

}
= P

{
Θ ≥ cos−1

( c
a

)}
= 1−

cos−1
(
c
a

)
π

.

Therefore, because cos−1(y) has derivative, −(1− y2)−
1
2 ,

fB(c) =

{
1

π
√
a2−c2 | c |< a

0 | c |> a
.

A sketch of the density is given in Figure 1.8.

Example 1.9 Suppose Y = tan(Θ), as illustrated in Figure 1.9, where Θ is

uniformly distributed over the interval (−π2 ,
π
2 ) . Let us find the pdf of Y . The

function tan(θ) increases from −∞ to ∞ as θ ranges over the interval (−π2 ,
π
2 ).
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−a a

fB

0

Figure 1.8 The pdf of the effective speed in a uniformly distributed direction in two
dimensions.

Y0

Θ

Figure 1.9 A horizontal line, a fixed point at unit distance, and a line through the
point with random direction.

For any real c,

FY (c) = P{Y ≤ c}
= P{tan(Θ) ≤ c}

= P{Θ ≤ tan−1(c)} =
tan−1(c) + π

2

π
.

Differentiating the CDF with respect to c yields that Y has the Cauchy pdf:

fY (c) =
1

π(1 + c2)
−∞ < c <∞.

Example 1.10 Given an angle θ expressed in radians, let (θ mod 2π) denote the

equivalent angle in the interval [0, 2π]. Thus, (θ mod 2π) is equal to θ + 2πn,

where the integer n is such that 0 ≤ θ + 2πn < 2π.

Let Θ be uniformly distributed over [0, 2π], let h be a constant, and let

Θ̃ = (Θ + h mod 2π).

Let us find the distribution of Θ̃.

Clearly Θ̃ takes values in the interval [0, 2π], so fix c with 0 ≤ c < 2π and

seek to find P{Θ̃ ≤ c}. Let A denote the interval [h, h + 2π]. Thus, Θ + h is

uniformly distributed over A. Let B =
⋃
n[2πn, 2πn+ c]. Thus Θ̃ ≤ c if and only
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if Θ + h ∈ B. Therefore,

P{Θ̃ ≤ c} =

∫
A

⋂
B

1

2π
dθ.

By sketching the set B, it is easy to see that A
⋂
B is either a single interval

of length c, or the union of two intervals with lengths adding to c. Therefore,

P{Θ̃ ≤ c} = c
2π , so that Θ̃ is itself uniformly distributed over [0, 2π]

Example 1.11 Let X be an exponentially distributed random variable with

parameter λ. Let Y = bXc, which is the integer part of X, and let R = X−bXc,
which is the remainder. We shall describe the distributions of Y and R.

Clearly Y is a discrete random variable with possible values 0, 1, 2, . . . , so it

is sufficient to find the pmf of Y . For integers k ≥ 0,

pY (k) = P{k ≤ X < k + 1} =

∫ k+1

k

λe−λxdx = e−λk(1− e−λ)

and pY (k) = 0 for other k.

Turn next to the distribution of R. Clearly R takes values in the interval [0, 1].

So let 0 < c < 1 and find FR(c):

FR(c) = P{X − bXc ≤ c} = P

{
X ∈

∞⋃
k=0

[k, k + c]

}

=

∞∑
k=0

P{k ≤ X ≤ k + c} =

∞∑
k=0

e−λk(1− e−λc) =
1− e−λc

1− e−λ
,

where we used the fact 1 + α + α2 + · · · = 1
1−α for | α |< 1. Differentiating FR

yields the pmf:

fR(c) =

{
λe−λc

1−e−λ 0 ≤ c ≤ 1

0 otherwise
.

What happens to the density of R as λ→ 0 or as λ→∞? By l’Hospital’s rule,

lim
λ→0

fR(c) =

{
1 0 ≤ c ≤ 1

0 otherwise
.

That is, in the limit as λ→ 0, the density of X becomes more and more evenly

spread out, and R becomes uniformly distributed over the interval [0, 1]. If λ is

very large then the factor 1− e−λ is nearly one , and the density of R is nearly

the same as the exponential density with parameter λ.

An important step in many computer simulations of random systems is to

generate a random variable with a specified CDF, by applying a function to a

random variable that is uniformly distributed on the interval [0, 1]. Let F be a
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function satisfying the three properties required of a CDF, and let U be uniformly

distributed over the interval [0, 1]. The problem is to find a function g so that F

is the CDF of g(U). An appropriate function g is given by the inverse function of

F . Although F may not be strictly increasing, a suitable version of F−1 always

exists, defined for 0 < u < 1 by

F−1(u) = min{x : F (x) ≥ u}. (1.5)

If the graphs of F and F−1 are closed up by adding vertical lines at jump points,

then the graphs are reflections of each other about the x = y line, as illustrated in

Figure 1.10. It is not hard to check that for any real xo and uo with 0 < uo < 1,

F (u)

1

1

!1

F(x)

x u

Figure 1.10 A CDF and its inverse.

F−1(uo) ≤ xo if and only if uo ≤ F (xo).

Thus, if X = F−1(U) then

FX(x) = P{F−1(U) ≤ x} = P{U ≤ F (x)} = F (x),

so that indeed F is the CDF of X

Example 1.12 Suppose F (x) = 1 − e−x for x ≥ 0 and F (x) = 0 for x < 0.

Since F is continuously increasing in this case, we can identify its inverse by

solving for x as a function of u so that F (x) = u. That is, for 0 < u < 1, we’d

like 1 − e−x = u which is equivalent to e−x = 1 − u, or x = − ln(1 − u). Thus,

F−1(u) = − ln(1− u). So we can take g(u) = − ln(1− u) for 0 < u < 1. That is,

if U is uniformly distributed on the interval [0, 1], then the CDF of − ln(1− U)

is F . The choice of g is not unique in general. For example, 1− U has the same

distribution as U , so the CDF of − ln(U) is also F . To double check the answer,

note that if x ≥ 0, then

P{− ln(1− U) ≤ x} = P{ln(1− U) ≥ −x}
= P{1− U ≥ e−x} = P{U ≤ 1− e−x} = F (x).
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Example 1.13 Suppose F is the CDF for the experiment of rolling a fair die,

shown on the left half of Figure 1.4. One way to generate a random variable

with CDF F is to actually roll a die. To simulate that on a compute, we’d seek

a function g so that g(U) has the same CDF. Using g = F−1 and using (1.5)

or the graphical method illustrated in Figure 1.10 to find F−1, we get that for

0 < u < 1, g(u) = i for i−1
6 < u ≤ i

6 for 1 ≤ i ≤ 6. To double check the answer,

note that if 1 ≤ i ≤ 6, then

P{g(U) = i} = P

{
i− 1

6
< U ≤ i

6

}
=

1

6

so that g(U) has the correct pmf, and hence the correct CDF.

1.5 Expectation of a random variable

The expectation, alternatively called the mean, of a random variable X can

be defined in several different ways. Before giving a general definition, we shall

consider a straight forward case. A random variable X is called simple if there is a

finite set {x1, . . . , xm} such that X(ω) ∈ {x1, . . . , xm} for all ω. The expectation

of such a random variable is defined by

E[X] =

m∑
i=1

xiP{X = xi}. (1.6)

The definition (1.6) clearly shows that E[X] for a simple random variable X

depends only on the pmf of X.

Like all random variables, X is a function on a probability space (Ω,F , P ).

Figure 1.11 illustrates that the sum defining E[X] in (1.6) can be viewed as an

integral over Ω. This suggests writing

E[X] =

∫
Ω

X(ω)P (dω). (1.7)

Let Y be another simple random variable on the same probability space as

X, with Y (ω) ∈ {y1, . . . , yn} for all ω. Of course E[Y ] =
∑n
i=1 yiP{Y = yi}.

One learns in any elementary probability class that E[X + Y ] = E[X] + E[Y ].

Note that X + Y is again a simple random variable, so that E[X + Y ] can be

defined in the same way as E[X] was defined. How would you prove E[X+Y ] =

E[X]+E[Y ]? Is (1.6) helpful? We shall give a proof that E[X+Y ] = E[X]+E[Y ]

motivated by (1.7).

The sets {X = x1}, . . . , {X = xm} form a partition of Ω. A refinement of this

partition consists of another partition C1, . . . , Cm′ such that X is constant over

each Cj . If we let x′j denote the value of X on Cj , then clearly

E[X] =
∑
j

x′jP (Cj ].
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X(  )=x
X(  )=x

X(  )=x

1
2

3

Ω
ω

ω

ω

Figure 1.11 A simple random variable with three possible values.

Now, it is possible to select the partition C1, . . . , Cm′ so that both X and Y

are constant over each Cj . For example, each Cj could have the form {X =

xi} ∩ {Y = yk} for some i, k. Let y′j denote the value of Y on Cj . Then x′j + y′j
is the value of X + Y on Cj . Therefore,

E[X + Y ] =
∑
j

(x′j + y′j)P (Cj) =
∑
j

x′jP (Cj) +
∑
j

y′jP (Cj) = E[X] + E[Y ].

While the expression (1.7) is rather suggestive, it would be overly restrictive

to interpret it as a Riemann integral over Ω. For example, if X is a random

variable for the standard unit-interval probability space defined in Example 1.2,

then it is tempting to define E[X] by Riemann integration (see the appendix):

E[X] =

∫ 1

0

X(ω)dω. (1.8)

However, suppose X is the simple random variable such that X(w) = 1 for

rational values of ω and X(ω) = 0 otherwise. Since the set of rational numbers

in Ω is countably infinite, such X satisfies P{X = 0} = 1. Clearly we’d like

E[X] = 0, but the Riemann integral (1.8) is not convergent for this choice of X.

The expression (1.7) can be used to define E[X] in great generality if it is

interpreted as a Lebesgue integral, defined as follows: Suppose X is an arbitrary

nonnegative random variable. Then there exists a sequence of simple random

variables X1, X2, . . . such that for every ω ∈ Ω, X1(ω) ≤ X2(ω) ≤ · · · and

Xn(ω) → X(ω) as n → ∞. Then E[Xn] is well defined for each n and is non-

decreasing in n, so the limit of E[Xn] as n → ∞ exists with values in [0,+∞].

Furthermore it can be shown that the value of the limit depends only on (Ω,F , P )

and X, not on the particular choice of the approximating simple sequence. We
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thus define E[X] = limn→∞E[Xn]. Thus, E[X] is always well defined in this

way, with possible value +∞, if X is a nonnegative random variable.

Suppose X is an arbitrary random variable. Define the positive part of X

to be the random variable X+ defined by X+(ω) = max{0, X(ω)} for each

value of ω. Similarly define the negative part of X to be the random variable

X−(ω) = max{0,−X(ω)}. Then X(ω) = X+(ω)−X−(ω) for all ω, and X+ and

X− are both nonnegative random variables. As long as at least one of E[X+]

or E[X−] is finite, define E[X] = E[X+] − E[X−]. The expectation E[X] is

undefined if E[X+] = E[X−] = +∞. This completes the definition of E[X]

using (1.7) interpreted as a Lebesgue integral.

We will prove that E[X] defined by the Lebesgue integral (1.7) depends only

on the CDF of X. It suffices to show this for a nonnegative random variable X.

For such a random variable, and n ≥ 1, define the simple random variable Xn

by

Xn(ω) =

{
k2−n if k2−n ≤ X(ω) < (k + 1)2−n, k = 0, 1, . . . , 22n − 1

0 else
.

Then

E[Xn] =

22n−1∑
k=0

k2−n(FX((k + 1)2−n)− FX(k2−n),

so that E[Xn] is determined by the CDF FX for each n. Furthermore, the Xn’s

are nondecreasing in n and converge to X. Thus, E[X] = limn→∞E[Xn], and

therefore the limit E[X] is determined by FX .

In Section 1.3 we defined the probability distribution PX of a random variable

such that the canonical random variable X̃(ω) = ω on (R,B, PX) has the same

CDF as X. Therefore E[X] = E[X̃], or

E[X] =

∫ ∞
−∞

xPX(dx) (Lebesgue). (1.9)

By definition, the integral (1.9) is the Lebesgue-Stieltjes integral of x with respect

to FX , so that

E[X] =

∫ ∞
−∞

xdFX(x) (Lebesgue-Stieltjes). (1.10)

Expectation has the following properties. Let X,Y be random variables and c

be a constant.

E.1 (Linearity) E[cX] = cE[X]. If E[X], E[Y ] and E[X] + E[Y ] are well

defined, then E[X + Y ] is well defined and E[X + Y ] = E[X] + E[Y ].

E.2 (Preservation of order) If P{X ≥ Y } = 1 and E[Y ] is well defined

with E[Y ] > −∞, then E[X] is well defined and E[X] ≥ E[Y ].
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E.3 If X has pdf fX then

E[X] =

∫ ∞
−∞

xfX(x)dx (Lebesgue).

E.4 If X has pmf pX then

E[X] =
∑
x>0

xpX(x) +
∑
x<0

xpX(x).

E.5 (Law of the unconscious statistician (LOTUS) ) If g is Borel measur-

able,

E[g(X)] =

∫
Ω

g(X(ω))P (dω) (Lebesgue)

=

∫ ∞
−∞

g(x)dFX(x) (Lebesgue-Stieltjes).

and in case X is a continuous type random variable

E[g(X)] =

∫ ∞
−∞

g(x)fX(x)dx (Lebesgue).

E.6 (Integration by parts formula)

E[X] =

∫ ∞
0

(1− FX(x))dx−
∫ 0

−∞
FX(x)dx, (1.11)

which is well defined whenever at least one of the two integrals in (1.11) is

finite. There is a simple graphical interpretation of (1.11). Namely, E[X]

is equal to the area of the region between the horizontal line {y = 1} and

the graph of FX and contained in {x ≥ 0}, minus the area of the region

bounded by the x axis and the graph of FX and contained in {x ≤ 0},
as long as at least one of these regions has finite area. See Figure 1.12.

X x

y

y=1

F  (x)
X

0

+

!
F  (x)

Figure 1.12 E[X] is the difference of two areas.

Properties E.1 and E.2 are true for simple random variables and they carry over

to general random variables in the limit defining the Lebesgue integral (1.7).

Properties E.3 and E.4 follow from the equivalent definition (1.9) and properties

of Lebesgue-Stieltjes integrals. Property E.5 can be proved by approximating g
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by piecewise constant functions. Property E.6 can be proved by integration by

parts applied to (1.10). Alternatively, since F−1
X (U) has the same distribution

as X, if U is uniformly distributed on the interval [0, 1], the law of the uncon-

scious statistician yields that E[X] =
∫ 1

0
F−1
X (u)du, and this integral can also be

interpreted as the difference of the areas of the same two regions.

The variance of a random variable X with E[X] finite is defined by Var(X) =

E[(X−E[X])2]. By the linearity of expectation, if E[X] is finite, the variance ofX

satisfies the useful relation: Var(X) = E[X2−2XE[X]+E[X]2] = E[X2]−E[X]2.

The following two inequalities are simple and fundamental. The Markov in-

equality states that if Y is a nonnegative random variable, then for c > 0,

P{Y ≥ c} ≤ E[Y ]

c
.

To prove Markov’s inequality, note that I{Y≥c} ≤ Y
c , and take expectations on

each side. The Chebychev inequality states that if X is a random variable with

finite mean µ and variance σ2, then for any d > 0,

P{|X − µ| ≥ d} ≤ σ2

d2
.

The Chebychev inequality follows by applying the Markov inequality with Y =

|X − µ|2 and c = d2.

The characteristic function ΦX of a random variable X is defined by

ΦX(u) = E[ejuX ]

for real values of u, where j =
√
−1. For example, if X has pdf f , then

ΦX(u) =

∫ ∞
−∞

exp(jux)fX(x)dx,

which is 2π times the inverse Fourier transform of fX .

Two random variables have the same probability distribution if and only if

they have the same characteristic function. If E[Xk] exists and is finite for an

integer k ≥ 1, then the derivatives of ΦX up to order k exist and are continuous,

and

Φ
(k)
X (0) = jkE[Xk].

For a nonnegative integer-valued random variable X it is often more convenient

to work with the z transform of the pmf, defined by

ΨX(z) = E[zX ] =

∞∑
k=0

zkpX(k)

for real or complex z with | z |≤ 1. Two such random variables have the same

probability distribution if and only if their z transforms are equal. If E[Xk] is

finite it can be found from the derivatives of ΨX up to the kth order at z = 1,

Ψ
(k)
X (1) = E[X(X − 1) · · · (X − k + 1)].
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1.6 Frequently used distributions

The following is a list of the most basic and frequently used probability distribu-

tions. For each distribution an abbreviation, if any, and valid parameter values

are given, followed by either the CDF, pdf or pmf, then the mean, variance, a

typical example and significance of the distribution.

The constants p, λ, µ, σ, a, b, and α are real-valued, and n and i are integer-

valued, except n can be noninteger-valued in the case of the gamma distribution.

Bernoulli:
Be(p), 0 ≤ p ≤ 1

pmf: p(i) =


p i = 1

1− p i = 0

0 else

z-transform: 1− p+ pz

mean: p variance: p(1− p)

Example: Number of heads appearing in one flip of a coin. The coin is called fair

if p = 1
2 and biased otherwise.

Binomial:
Bi(n, p), n ≥ 1, 0 ≤ p ≤ 1

pmf:p(i) =

(
n

i

)
pi(1− p)n−i 0 ≤ i ≤ n

z-transform: (1− p+ pz)n

mean: np variance: np(1− p)

Example: Number of heads appearing in n independent flips of a coin.

Poisson:

pmf: p(i) =
λie−λ

i!
i ≥ 0

z-transform: exp(λ(z − 1))

mean: λ variance: λ

Example: Number of phone calls placed during a ten second interval in a large

city.

Significance: The Poisson pmf is the limit of the binomial pmf as n→ +∞ and

p→ 0 in such a way that np→ λ.
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Geometric:
Geo(p), 0 < p ≤ 1

pmf: p(i) = (1− p)i−1p i ≥ 1

z-transform:
pz

1− z + pz

mean:
1

p
variance:

1− p
p2

Example: Number of independent flips of a coin until heads first appears.

Significant property: If X has the geometric distribution, P{X > i} = (1 − p)i
for integers i ≥ 1. So X has the memoryless property:

P (X > i+ j | X > i) = P{X > j} for i, j ≥ 1.

Any positive integer-valued random variable with this property has a geometric

distribution.

Gaussian
(also called Normal): N(µ, σ2), µ ∈ R, σ ≥ 0

pdf (if σ2 > 0): f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
pmf (if σ2 = 0): p(x) =

{
1 x = µ

0 else

characteristic function: exp(juµ− u2σ2

2
)

mean: µ variance: σ2

Example: Instantaneous voltage difference (due to thermal noise) measured across

a resistor held at a fixed temperature.

Notation: The character Φ is often used to denote the CDF of a N(0, 1) random

variable,3 and Q is often used for the complementary CDF:

Q(c) = 1− Φ(c) =

∫ ∞
c

1√
2π
e−

x2

2 dx

Significant property (Central limit theorem): If X1, X2, . . . are independent and

identically distributed with mean µ and nonzero variance σ2, then for any con-

stant c,

lim
n→∞

P

{
X1 + · · ·+Xn − nµ√

nσ2
≤ c
}

= Φ(c).

3 As noted earlier, Φ is also used to denote characteristic functions. The meaning should be
clear from the context.
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Exponential:
Exp (λ), λ > 0

pdf: f(x) = λe−λx x ≥ 0

characteristic function:
λ

λ− ju

mean:
1

λ
variance:

1

λ2

Example: Time elapsed between noon sharp and the first telephone call placed

in a large city, on a given day.

Significance: If X has the Exp(λ) distribution, P{X ≥ t} = e−λt for t ≥ 0. So

X has the memoryless property:

P{X ≥ s+ t | X ≥ s} = P{X ≥ t} s, t ≥ 0.

Any nonnegative random variable with this property is exponentially distributed.

Uniform:
U(a, b) −∞ < a < b <∞

pdf: f(x) =

{
1
b−a a ≤ x ≤ b
0 else

characteristic function:
ejub − ejua

ju(b− a)

mean:
a+ b

2
variance:

(b− a)2

12

Example: The phase difference between two independent oscillators operating at

the same frequency may be modeled as uniformly distributed over [0, 2π]

Significance: Uniform is uniform.

Gamma(n, α):
n, α > 0 (n real valued)

pdf: f(x) =
αnxn−1e−αx

Γ(n)
x ≥ 0

where Γ(n) =

∫ ∞
0

sn−1e−sds

characteristic function:

(
α

α− ju

)n
mean:

n

α
variance:

n

α2

Significance: If n is a positive integer then Γ(n) = (n− 1)! and a Gamma (n, α)
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random variable has the same distribution as the sum of n independent, Exp(α)

distributed random variables.

Rayleigh(σ2):

pdf: f(r) =
r

σ2
exp

(
− r2

2σ2

)
r > 0

CDF : 1− exp

(
− r2

2σ2

)
mean: σ

√
π

2
variance: σ2

(
2− π

2

)
Example: Instantaneous value of the envelope of a mean zero, narrow band noise

signal.

Significance: If X and Y are independent, N(0, σ2) random variables, (X2+Y 2)
1
2

has the Rayleigh(σ2) distribution. Also notable is the simple form of the CDF.

1.7 Failure rate functions

Eventually a system or a component of a particular system will fail. Let T be a

random variable that denotes the lifetime of this item. Suppose T is a positive

random variable with pdf fT . The failure rate function, h = (h(t) : t ≥ 0), of T

(and of the item itself) is defined by the following limit:

h(t)
4
= lim
ε→0

P (t < T ≤ t+ ε|T > t)

ε
.

That is, given the item is still working after t time units, the probability the item

fails within the next ε time units is h(t)ε+ o(ε).

The failure rate function is determined by the distribution of T as follows:

h(t) = lim
ε→0

P{t < T ≤ t+ ε}
P{T > t}ε

= lim
ε→0

FT (t+ ε)− FT (t)

(1− FT (t))ε

=
fT (t)

1− FT (t)
, (1.12)

because the pdf fT is the derivative of the CDF FT .

Conversely, a nonnegative function h = (h(t) : t ≥ 0) with
∫∞

0
h(t)dt = ∞

determines a probability distribution with failure rate function h as follows. The

CDF is given by

F (t) = 1− e−
∫ t
0
h(s)ds. (1.13)

It is easy to check that F given by (1.13) has failure rate function h. To derive
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(1.13), and hence show it gives the unique distribution with failure rate function

h, start with the fact that we would like F ′/(1 − F ) = h. Equivalently, (ln(1 −
F ))′ = −h or ln(1−F ) = ln(1−F (0))−

∫ t
0
h(s)ds, which is equivalent to (1.13).

Example 1.14 (a) Find the failure rate function for an exponentially distributed

random variable with parameter λ. (b) Find the distribution with the linear fail-

ure rate function h(t) = t
σ2 for t ≥ 0. (c) Find the failure rate function of

T = min{T1, T2}, where T1 and T2 are independent random variables such that

T1 has failure rate function h1 and T2 has failure rate function h2.

Solution

(a) If T has the exponential distribution with parameter λ, then for t ≥ 0,

fT (t) = λe−λt and 1 − FT (t) = e−λt, so by (1.12), h(t) = λ for all t ≥ 0. That

is, the exponential distribution with parameter λ has constant failure rate λ.

The constant failure rate property is connected with the memoryless property of

the exponential distribution; the memoryless property implies that P (t < T ≤
T + ε|T > t) = P{T > ε}, which in view of the definition of h shows that h is

constant.

(b) If h(t) = t
σ2 for t ≥ 0, then by (1.13), FT (t) = 1− e−

t2

2σ2 . The corresponding

pdf is given by

fT (t) =

{
t
σ2 e
− t2

2σ2 t ≥ 0

0 else
.

This is the pdf of the Rayleigh distribution with parameter σ2.

(c) By the independence and (1.12) applied to T1 and T2,

P{T > t} = P{T1 > t and T2 > t} = P{T1 > t}P{T2 > t}
= e

∫ t
0
−h1(s)dse

∫ t
0
−h2(s)ds = e−

∫ t
0
h(s)ds,

where h = h1 + h2. Therefore, the failure rate function for the minimum of

two independent random variables is the sum of their failure rate functions.

This makes intuitive sense; if there is a system that fails when either of one of

two components fails, then the rate of system failure is the sum of the rates of

component failure.

1.8 Jointly distributed random variables

Let X1, X2, . . . , Xm be random variables on a single probability space (Ω,F , P ).

The joint cumulative distribution function (CDF) is the function on Rm defined

by

FX1X2···Xm(x1, . . . , xm) = P{X1 ≤ x1, X2 ≤ x2, . . . , Xm ≤ xm}.
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The CDF determines the probabilities of all events concerning X1, . . . , Xm. For

example, if R is the rectangular region (a, b]× (a′, b′] in the plane, then

P{(X1, X2) ∈ R} = FX1X2
(b, b′)− FX1X2

(a, b′)− FX1X2
(b, a′) + FX1X2

(a, a′).

We write +∞ as an argument of FX in place of xi to denote the limit as xi →
+∞. By the countable additivity axiom of probability,

FX1X2
(x1,+∞) = lim

x2→∞
FX1X2

(x1, x2) = FX1
(x1).

The random variables are jointly continuous if there exists a function fX1X2···Xm ,

called the joint probability density function (pdf), such that

FX1X2···Xm(x1, . . . , xm) =

∫ x1

−∞
· · ·
∫ xm

−∞
fX1X2···Xm(u1, . . . , um)dum · · · du1.

Note that if X1 and X2 are jointly continuous, then

FX1
(x1) = FX1X2

(x1,+∞)

=

∫ x1

−∞

[∫ ∞
−∞

fX1X2
(u1, u2)du2

]
du1.

so that X1 has pdf given by

fX1
(u1) =

∫ ∞
−∞

fX1X2
(u1, u2)du2.

The pdf’s fX1
and fX2

are called the marginal pdfs for the joint pdf fX1,X2
.

If X1, X2, . . . , Xm are each discrete random variables, then they have a joint

pmf pX1X2···Xm defined by

pX1X2···Xm(u1, u2, . . . , um) = P{X1 = u1, X2 = u2, · · · , Xm = um}.

The sum of the probability masses is one, and for any subset A of Rm

P{(X1, . . . , Xm) ∈ A} =
∑

(u1,...,um)∈A

pX(u1, u2, . . . , um).

The joint pmf of subsets of X1, . . . Xm can be obtained by summing out the other

coordinates of the joint pmf. For example,

pX1
(u1) =

∑
u2

pX1X2
(u1, u2).

The joint characteristic function of X1, . . . , Xm is the function on Rm defined

by

ΦX1X2···Xm(u1, u2, . . . , um) = E[ej(X1u1+X2ux+···+Xmum)].

Random variables X1, . . . , Xm are defined to be independent if for any Borel

subsets A1, . . . , Am of R, the events {X1 ∈ A1}, . . . , {Xm ∈ Am} are indepen-

dent. The random variables are independent if and only if the joint CDF factors.

FX1X2···Xm(x1, . . . , xm) = FX1(x1) · · ·FXm(xm).
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If the random variables are jointly continuous, independence is equivalent to the

condition that the joint pdf factors. If the random variables are discrete, inde-

pendence is equivalent to the condition that the joint pmf factors. Similarly, the

random variables are independent if and only if the joint characteristic function

factors.

1.9 Conditional densities

Suppose that X and Y have a joint pdf fXY . Recall that the pdf fY , the second

marginal density of fXY , is given by

fY (y) =

∫ ∞
−∞

fXY (x, y)dx.

The conditional pdf of X given Y , denoted by fX|Y (x | y), is undefined if fY (y) =

0. It is defined for y such that fY (y) > 0 by

fX|Y (x | y) =
fXY (x, y)

fY (y)
−∞ < x < +∞.

If y is fixed and fY (y) > 0, then as a function of x, fX|Y (x | y) is itself a pdf.

The expectation of the conditional pdf is called the conditional expectation

(or conditional mean) of X given Y = y, written as

E[X | Y = y] =

∫ ∞
−∞

xfX|Y (x | y)dx.

If the deterministic function E[X | Y = y] is applied to the random variable Y ,

the result is a random variable denoted by E[X | Y ].

Note that conditional pdf and conditional expectation were so far defined in

case X and Y have a joint pdf. If instead, X and Y are both discrete random

variables, the conditional pmf pX|Y and the conditional expectation E[X | Y = y]

can be defined in a similar way. More general notions of conditional expectation

are considered in a later chapter.

1.10 Correlation and covariance

Let X and Y be random variables on the same probability space with finite

second moments. Three important related quantities are:

the correlation: E[XY ]

the covariance: Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

the correlation coefficient: ρXY =
Cov(X,Y )√

Var(X)Var(Y )
.
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A fundamental inequality is Schwarz’s inequality:

| E[XY ] | ≤
√
E[X2]E[Y 2]. (1.14)

Furthermore, if E[Y 2] 6= 0, equality holds if and only if P (X = cY ) = 1 for some

constant c. Schwarz’s inequality (1.14) is equivalent to the L2 triangle inequality

for random variables:

E[(X + Y )2]
1
2 ≤ E[X2]

1
2 + E[Y 2]

1
2 . (1.15)

Schwarz’s inequality can be proved as follows. If P{Y = 0} = 1 the inequality is

trivial, so suppose E[Y 2] > 0. By the inequality (a + b)2 ≤ 2a2 + 2b2 it follows

that E[(X − λY )2] < ∞ for any constant λ. Take λ = E[XY ]/E[Y 2] and note

that

0 ≤ E[(X − λY )2] = E[X2]− 2λE[XY ] + λ2E[Y 2]

= E[X2]− E[XY ]2

E[Y 2]
,

which is clearly equivalent to the Schwarz inequality. If P (X = cY ) = 1 for some

c then equality holds in (1.14), and conversely, if equality holds in (1.14) then

P (X = cY ) = 1 for c = λ.

Application of Schwarz’s inequality to X −E[X] and Y −E[Y ] in place of X

and Y yields that

| Cov(X,Y ) | ≤
√

Var(X)Var(Y ).

Furthermore, if Var(Y ) 6= 0 then equality holds if and only if X = aY + b for

some constants a and b. Consequently, if Var(X) and Var(Y ) are not zero, so

that the correlation coefficient ρXY is well defined, then | ρXY |≤ 1 with equality

if and only if X = aY + b for some constants a, b.

The following alternative expressions for Cov(X,Y ) are often useful in calcu-

lations:

Cov(X,Y ) = E[X(Y − E[Y ])] = E[(X − E[X])Y ] = E[XY ]− E[X]E[Y ].

In particular, if either X or Y has mean zero then E[XY ] = Cov(X,Y ).

Random variables X and Y are called orthogonal if E[XY ] = 0 and are

called uncorrelated if Cov(X,Y ) = 0. If X and Y are independent then they

are uncorrelated. The converse is far from true. Independence requires a large

number of equations to be true, namely FXY (x, y) = FX(x)FY (y) for every real

value of x and y. The condition of being uncorrelated involves only a single

equation to hold.

Covariance generalizes variance, in that Var(X) = Cov(X,X). Covariance is

linear in each of its two arguments:

Cov(X + Y,U + V ) = Cov(X,U) + Cov(X,V ) + Cov(Y,U) + Cov(Y, V )

Cov(aX + b, cY + d) = acCov(X,Y ).

for constants a, b, c, d. For example, consider the sum Sm = X1 + · · ·+Xm, such
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that X1, · · · , Xm are (pairwise) uncorrelated with E[Xi] = µ and Var(Xi) = σ2

for 1 ≤ i ≤ m. Then E[Sm] = mµ and

Var(Sm) = Cov(Sm, Sm)

=
∑
i

Var(Xi) +
∑
i,j:i 6=j

Cov(Xi, Xj)

= mσ2.

Therefore, Sm−mµ√
mσ2

has mean zero and variance one.

1.11 Transformation of random vectors

A random vector X of dimension m has the form

X =


X1

X2

...

Xm

 ,

where X1, . . . , Xm are random variables. The joint distribution of X1, . . . , Xm

can be considered to be the distribution of the vectorX. For example, ifX1, . . . , Xm

are jointly continuous, the joint pdf fX1X2···Xm(x1, . . . , xm) can as well be written

as fX(x), and be thought of as the pdf of the random vector X.

Let X be a continuous type random vector on Rm. Let g be a one-to-one

mapping from Rm to Rm. Think of g as mapping x-space (here x is lower case,

representing a coordinate value) into y-space. As x varies over Rn, y varies over

the range of g. All the while, y = g(x) or, equivalently, x = g−1(y).

Suppose that the Jacobian matrix of derivatives ∂y
∂x (x) is continuous in x and

nonsingular for all x. By the inverse function theorem of vector calculus, it follows

that the Jacobian matrix of the inverse mapping (from y to x) exists and satisfies
∂x
∂y (y) = ( ∂y∂x (x))−1. Use | K | for a square matrix K to denote |det(K)|.

proposition 1.5 Under the above assumptions, Y is a continuous type ran-

dom vector and for y in the range of g:

fY (y) =
fX(x)

| ∂y∂x (x) |
= fX(x)

∣∣∣∣∂x∂y (y)

∣∣∣∣ .
Example 1.15 Let U , V have the joint pdf:

fUV (u, v) =

{
u+ v 0 ≤ u, v ≤ 1

0 else

and let X = U2 and Y = U(1 + V ). Let’s find the pdf fXY . The vector (U, V )

in the u− v plane is transformed into the vector (X,Y ) in the x− y plane under
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a mapping g that maps u, v to x = u2 and y = u(1 + v). The image in the x− y
plane of the square [0, 1]2 in the u− v plane is the set A given by

A = {(x, y) : 0 ≤ x ≤ 1, and
√
x ≤ y ≤ 2

√
x}.

See Figure 1.13 The mapping from the square is one to one, for if (x, y) ∈ A then

xu

v

1

1 1

2
y

Figure 1.13 Transformation from the u− v plane to the x− y plane.

(u, v) can be recovered by u =
√
x and v = y√

x
− 1. The Jacobian determinant is∣∣∣∣ ∂x

∂u
∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =

∣∣∣∣ 2u 0

1 + v u

∣∣∣∣ = 2u2.

Therefore, using the transformation formula and expressing u and V in terms

of x and y yields

fXY (x, y) =

{ √
x+( y√

x
−1)

2x if (x, y) ∈ A
0 else

.

Example 1.16 Let U and V be independent continuous type random variables.

Let X = U + V and Y = V . Let us find the joint density of X,Y and the

marginal density of X. The mapping

g :
(
u v

)
→
(
u v

)
=
(
u+ v v

)
is invertible, with inverse given by u = x − y and v = y. The absolute value of

the Jacobian determinant is given by∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =

∣∣∣∣ 1 1

0 1

∣∣∣∣ = 1.

Therefore

fXY (x, y) = fUV (u, v) = fU (x− y)fV (y).

The marginal density of X is given by

fX(x) =

∫ ∞
−∞

fXY (x, y)dy =

∫ ∞
−∞

fU (x− y)fV (y)dy.
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That is fX = fU ∗ fV .

Example 1.17 Let X1 and X2 be independent N(0, σ2) random variables, and

let X = (X1, X2)T denote the two-dimensional random vector with coordinates

X1 and X2. Any point of x ∈ R2 can be represented in polar coordinates by the

vector (r, θ)T such that r = ‖x‖ = (x2
1 + x2

2)
1
2 and θ = tan−1(x2

x1
) with values

r ≥ 0 and 0 ≤ θ < 2π. The inverse of this mapping is given by

x1 = r cos(θ)

x2 = r sin(θ).

We endeavor to find the pdf of the random vector (R,Θ)T , the polar coordinates

of X. The pdf of X is given by

fX(x) = fX1
(x1)fX2

(x2) =
1

2πσ2
e−

r2

2σ2 .

The range of the mapping is the set r > 0 and 0 < θ ≤ 2π. On the range,∣∣∣∣∣∣∣∣∣
∂x

∂

(
r

θ

)
∣∣∣∣∣∣∣∣∣ =

∣∣∣∣ ∂x1

∂r
∂x1

∂θ
∂x2

∂r
∂x2

∂θ

∣∣∣∣ =

∣∣∣∣ cos(θ) −r sin(θ)

sin(θ) r cos(θ)

∣∣∣∣ = r.

Therefore for (r, θ)T in the range of the mapping,

fR,Θ(r, θ) = fX(x)

∣∣∣∣∣∣∣∣∣
∂x

∂

(
r

θ

)
∣∣∣∣∣∣∣∣∣ =

r

2πσ2
e−

r2

2σ2 .

Of course fR,Θ(r, θ) = 0 off the range of the mapping. The joint density factors

into a function of r and a function of θ, so R and Θ are independent. Moreover,

R has the Rayleigh density with parameter σ2, and Θ is uniformly distributed

on [0, 2π].

Problems

1.1 Simple events A register contains 8 random binary digits which are mu-

tually independent. Each digit is a zero or a one with equal probability. (a)

Describe an appropriate probability space (Ω,F , P ) corresponding to looking at

the contents of the register.

(b) Express each of the following four events explicitly as subsets of Ω, and find

their probabilities:

E1=“No two neighboring digits are the same”

E2=“Some cyclic shift of the register contents is equal to 01100110”

E3=“The register contains exactly four zeros”
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E4=“There is a run of at least six consecutive ones”

(c) Find P (E1|E3) and P (E2|E3).

1.2 A ballot problem Suppose there is an election with two candidates and six

ballots turned in, such that four of the ballots are for the winning candidate

and two of the ballots are for the other candidate. The ballots are opened and

counted one at a time, in random order, with all orders equally likely. Find the

probability that from the time the first ballot is counted until all the ballots

are counted, the winning candidate has the majority of the ballots counted.

(“Majority” means there are strictly more votes for the winning candidate than

for the other candidate.)

1.3 Ordering of three random variables Suppose X,Y, and U are mutually in-

dependent, such that X and Y are each exponentially distributed with some

common parameter λ > 0, and U is uniformly distributed on the interval [0, 1].

Express P{X < U < Y } in terms of λ. Simplify your answer.

1.4 Independent vs. mutually exclusive (a) Suppose that an event E is inde-

pendent of itself. Show that either P (E) = 0 or P (E) = 1.

(b) Events A and B have probabilities P (A) = 0.3 and P (B) = 0.4. What is

P (A∪B) if A and B are independent? What is P (A∪B) if A and B are mutually

exclusive?

(c) Now suppose that P (A) = 0.6 and P (B) = 0.8. In this case, could the events

A and B be independent? Could they be mutually exclusive?

1.5 Congestion at output ports Consider a packet switch with some number

of input ports and eight output ports. Suppose four packets simultaneously arrive

on different input ports, and each is routed toward an output port. Assume the

choices of output ports are mutually independent, and for each packet, each

output port has equal probability.

(a) Specify a probability space (Ω,F , P ) to describe this situation.

(b) Let Xi denote the number of packets routed to output port i for 1 ≤ i ≤ 8.

Describe the joint pmf of X1, . . . , X8.

(c) Find Cov(X1, X2).

(d) Find P{Xi ≤ 1 for all i}.
(e) Find P{Xi ≤ 2 for all i}.
1.6 Frantic search At the end of each day Professor Plum puts her glasses in

her drawer with probability .90, leaves them on the table with probability .06,

leaves them in her briefcase with probability 0.03, and she actually leaves them

at the office with probability 0.01. The next morning she has no recollection of

where she left the glasses. She looks for them, but each time she looks in a place

the glasses are actually located, she misses finding them with probability 0.1,

whether or not she already looked in the same place. (After all, she doesn’t have

her glasses on and she is in a hurry.)

(a) Given that Professor Plum didn’t find the glasses in her drawer after looking

one time, what is the conditional probability the glasses are on the table?

(b) Given that she didn’t find the glasses after looking for them in the drawer

and on the table once each, what is the conditional probability they are in the
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briefcase?

(c) Given that she failed to find the glasses after looking in the drawer twice,

on the table twice, and in the briefcase once, what is the conditional probability

she left the glasses at the office?

1.7 Conditional probability of failed device given failed attempts A particu-

lar webserver may be working or not working. If the webserver is not working,

any attempt to access it fails. Even if the webserver is working, an attempt to

access it can fail due to network congestion beyond the control of the webserver.

Suppose that the a priori probability that the server is working is 0.8. Suppose

that if the server is working, then each access attempt is successful with proba-

bility 0.9, independently of other access attempts. Find the following quantities.

(a) P ( first access attempt fails)

(b) P (server is working | first access attempt fails )

(c) P (second access attempt fails | first access attempt fails )

(d) P (server is working | first and second access attempts fail ).

1.8 Conditional probabilities–basic computations of iterative decoding

Suppose B1, . . . , Bn, Y1, . . . , Yn are discrete random variables with joint pmf

p(b1, . . . , bn, y1, . . . , yn) =

{
2−n

∏n
i=1 qi(yi|bi) if bi ∈ {0, 1} for 1 ≤ i ≤ n

0 else
,

where qi(yi|bi) as a function of yi is a pmf for bi ∈ {0, 1}. Finally, let B =

B1 ⊕ · · · ⊕Bn represent the modulo two sum of B1, · · · , Bn. Thus, the ordinary

sum of the n+ 1 random variables B1, . . . , Bn, B is even. Express P (B = 1|Y1 =

y1, · · · .Yn = yn) in terms of the yi and the functions qi. Simplify your answer.

(b) Suppose B and Z1, . . . , Zk are discrete random variables with joint pmf

p(b, z1, . . . , zk) =

{
1
2

∏k
j=1 rj(zj |b) if b ∈ {0, 1}

0 else
,

where rj(zj |b) as a function of zj is a pmf for b ∈ {0, 1} fixed. Express P (B =

1|Z1 = z1, . . . , Zk = zk) in terms of the zj and the functions rj .

1.9 Conditional lifetimes; memoryless property of the geometric distribution

(a) Let X represent the lifetime, rounded up to an integer number of years, of

a certain car battery. Suppose that the pmf of X is given by pX(k) = 0.2 if

3 ≤ k ≤ 7 and pX(k) = 0 otherwise. (i) Find the probability, P{X > 3}, that a

three year old battery is still working. (ii) Given that the battery is still working

after five years, what is the conditional probability that the battery will still be

working three years later? (i.e. what is P (X > 8|X > 5)?)

(b) A certain Illini basketball player shoots the ball repeatedly from half court

during practice. Each shot is a success with probability p and a miss with prob-

ability 1− p, independently of the outcomes of previous shots. Let Y denote the

number of shots required for the first success. (i) Express the probability that she

needs more than three shots for a success, P{Y > 3}, in terms of p. (ii) Given

that she already missed the first five shots, what is the conditional probability

that she will need more than three additional shots for a success? (i.e. what is
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P (Y > 8|Y > 5))?

(iii) What type of probability distribution does Y have?

1.10 Blue corners Suppose each corner of a cube is colored blue, independently

of the other corners, with some probability p. Let B denote the event that at least

one face of the cube has all four corners colored blue. (a) Find the conditional

probability of B given that exactly five corners of the cube are colored blue. (b)

Find P (B), the unconditional probability of B.

1.11 Distribution of the flow capacity of a network A communication network

is shown. The link capacities in megabits per second (Mbps) are given by C1 =

C3 = 5, C2 = C5 = 10 and C4=8, and are the same in each direction. Information

Source

1
2

3

4

5

Destination

flow from the source to the destination can be split among multiple paths. For

example, if all links are working, then the maximum communication rate is 10

Mbps: 5 Mbps can be routed over links 1 and 2, and 5 Mbps can be routed over

links 3 and 5. Let Fi be the event that link i fails. Suppose that F1, F2, F3, F4

and F5 are independent and P (Fi) = 0.2 for each i. Let X be defined as the

maximum rate (in Mbits per second) at which data can be sent from the source

node to the destination node. Find the pmf pX .

1.12 Recognizing cumulative distribution functions Which of the following are

valid CDF’s? For each that is not valid, state at least one reason why. For each

that is valid, find P{X2 > 5}.

F1(x) =

{
e−x

2

4 x < 0

1− e−x
2

4 x ≥ 0
F2(x) =


0 x < 0

0.5 + e−x 0 ≤ x < 3

1 x ≥ 3

F3(x) =


0 x ≤ 0

0.5 + x
20 0 < x ≤ 10

1 x ≥ 10

.

1.13 A CDF of mixed type Let X have the CDF shown.

1 20

F
X

1.0

0.5
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(a) Find P{X ≤ 0.8}.
(b) Find E[X].

(c) Find Var(X).

1.14 CDF and characteristic function of a mixed type random variable

Let X = (U − 0.5)+, where U is uniformly distributed over the interval [0, 1].

That is, X = U − 0.5 if U − 0.5 ≥ 0, and X = 0 if U − 0.5 < 0.

(a) Find and carefully sketch the CDF FX . In particular, what is FX(0)?

(b) Find the characteristic function ΦX(u) for real values of u.

1.15 Poisson and geometric random variables with conditioning Let Y be a

Poisson random variable with mean µ > 0 and let Z be a geometrically dis-

tributed random variable with parameter p with 0 < p < 1. Assume Y and Z

are independent.

(a) Find P{Y < Z}. Express your answer as a simple function of µ and p.

(b) Find P (Y < Z|Z = i) for i ≥ 1. (Hint: This is a conditional probability for

events.)

(c) Find P (Y = i|Y < Z) for i ≥ 0. Express your answer as a simple function of

p, µ and i. (Hint: This is a conditional probability for events.)

(d) Find E[Y |Y < Z], which is the expected value computed according to the

conditional distribution found in part (c). Express your answer as a simple func-

tion of µ and p.

1.16 Conditional expectation for uniform density over a triangular region

Let (X,Y ) be uniformly distributed over the triangle with coordinates (0, 0), (1, 0),

and (2, 1).

(a) What is the value of the joint pdf inside the triangle?

(b) Find the marginal density of X, fX(x). Be sure to specify your answer for

all real values of x.

(c) Find the conditional density function fY |X(y|x). Be sure to specify which

values of x the conditional density is well defined for, and for such x specify

the conditional density for all y. Also, for such x briefly describe the conditional

density of y in words.

(d) Find the conditional expectation E[Y |X = x]. Be sure to specify which values

of x this conditional expectation is well defined for.

1.17 Transformation of a random variable LetX be exponentially distributed

with mean λ−1. Find and carefully sketch the distribution functions for the ran-

dom variables Y = exp(X) and Z = min(X, 3).

1.18 Density of a function of a random variable SupposeX is a random vari-

able with probability density function

fX(x) =

{
2x 0 ≤ x ≤ 1

0 else
.

(a) Find P (X ≥ 0.4|X ≤ 0.8).

(b) Find the density function of Y defined by Y = − log(X).

1.19 Moments and densities of functions of a random variable Suppose the
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length L and width W of a rectangle are independent and each uniformly dis-

tributed over the interval [0, 1]. Let C = 2L+ 2W (the length of the perimeter)

and A = LW (the area). Find the means, variances, and probability densities of

C and A.

1.20 Functions of independent exponential random variables LetX1 andX2

be independent random variables, with Xi being exponentially distributed with

parameter λi. (a) Find the pdf of Z = min{X1, X2}. (b) Find the pdf of R = X1

X2
.

1.21 Using the Gaussian Q function Express each of the given probabilities

in terms of the standard Gaussian complementary CDF Q.

(a) P{X ≥ 16}, where X has the N(10, 9) distribution.

(b) P{X2 ≥ 16}, where X has the N(10, 9) distribution.

(c) P{|X − 2Y | > 1}, where X and Y are independent, N(0, 1) random vari-

ables. (Hint: Linear combinations of independent Gaussian random variables are

Gaussian.)

1.22 Gaussians and the Q function LetX and Y be independent,N(0, 1) ran-

dom variables.

(a) Find Cov(3X + 2Y,X + 5Y + 10).

(b) Express P{X + 4Y ≥ 2} in terms of the Q function.

(c) Express P{(X − Y )2 > 9} in terms of the Q function.

1.23 Correlation of histogram values Suppose that n fair dice are indepen-

dently rolled. Let

Xi =

{
1 if a 1 shows on the ith roll

0 else
Yi =

{
1 if a 2 shows on the ith roll

0 else
.

Let X denote the sum of the Xi’s, which is simply the number of 1’s rolled. Let

Y denote the sum of the Yi’s, which is simply the number of 2’s rolled. Note that

if a histogram is made recording the number of occurrences of each of the six

numbers, then X and Y are the heights of the first two entries in the histogram.

(a) Find E[X1] and Var(X1).

(b) Find E[X] and Var(X).

(c) Find Cov(Xi, Yj) if 1 ≤ i, j ≤ n (Hint: Does it make a difference if i = j?)

(d) Find Cov(X,Y ) and the correlation coefficient ρ(X,Y ).

(e) Find E[Y |X = x] for any integer x with 0 ≤ x ≤ n. Note that your answer

should depend on x and n, but otherwise your answer is deterministic.

1.24 Working with a joint density Suppose X and Y have joint density func-

tion fX,Y (x, y) = c(1 + xy) if 2 ≤ x ≤ 3 and 1 ≤ y ≤ 2, and fX,Y (x, y) = 0

otherwise. (a) Find c. (b) Find fX and fY . (c) Find fX|Y .

1.25 A function of jointly distributed random variables Suppose (U, V ) is uni-

formly distributed over the square with corners (0,0), (1,0), (1,1), and (0,1), and

let X = UV . Find the CDF and pdf of X.

1.26 Density of a difference Let X and Y be independent, exponentially dis-

tributed random variables with parameter λ, such that λ > 0. Find the pdf of

Z = |X − Y |.
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1.27 Working with a two dimensional density Let the random variablesX and

Y be jointly uniformly distributed over the region shown.

0
0 1 2 3

1

(a) Determine the value of fX,Y on the region shown.

(b) Find fX , the marginal pdf of X.

(c) Find the mean and variance of X.

(d) Find the conditional pdf of Y given that X = x, for 0 ≤ x ≤ 1.

(e) Find the conditional pdf of Y given that X = x, for 1 ≤ x ≤ 2.

(f) Find and sketch E[Y |X = x] as a function of x. Be sure to specify which

range of x this conditional expectation is well defined for.

1.28 Some characteristic functions Find the mean and variance of random

variables with the following characteristic functions: (a) Φ(u) = exp(−5u2 +2ju)

(b) Φ(u) = (eju − 1)/ju, and (c) Φ(u) = exp(λ(eju − 1)).

1.29 Uniform density over a union of two square regions Let the random vari-

ables X and Y be jointly uniformly distributed on the region {0 ≤ u ≤ 1, 0 ≤
v ≤ 1} ∪ {−1 ≤ u < 0,−1 ≤ v < 0}. (a) Determine the value of fXY on the

region shown.

(b) Find fX , the marginal pdf of X.

(c) Find the conditional pdf of Y given that X = a, for 0 < a ≤ 1.

(d) Find the conditional pdf of Y given that X = a, for −1 ≤ a < 0.

(e) Find E[Y |X = a] for |a| ≤ 1.

(f) What is the correlation coefficient of X and Y ?

(g) Are X and Y independent?

(h) What is the pdf of Z = X + Y ?

1.30 A transformation of jointly continuous random variables Suppose (U, V )

has joint pdf

fU,V (u, v) =

{
9u2v2 if 0 ≤ u ≤ 1 & 0 ≤ v ≤ 1

0 else
.

Let X = 3U and Y = UV . (a) Find the joint pdf of X and Y , being sure to

specify where the joint pdf is zero.

(b) Using the joint pdf of X and Y , find the conditional pdf, fY |X(y|x), of Y

given X. (Be sure to indicate which values of x the conditional pdf is well defined

for, and for each such x specify the conditional pdf for all real values of y.)

1.31 Transformation of densities Let U and V have the joint pdf:

fUV (u, v) =

{
c(u− v)2 0 ≤ u, v ≤ 1

0 else

for some constant c. (a) Find the constant c. (b) SupposeX = U2 and Y = U2V 2.
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Describe the joint pdf fX,Y (x, y) of X and Y . Be sure to indicate where the joint

pdf is zero.

1.32 Opening a bicycle combination lock A certain bicycle combination lock

has 104 possible combinations, ranging from 0000 to 9999. Suppose the combi-

nation required to open the lock takes any one of the possible values with equal

probability. Suppose it takes two seconds to try opening the lock with a given

combination. Find the mean and standard deviation of the amount of time, each

to within a minute, of how long it would take to open the lock by cycling through

the combinations without repetition. (Hint: You can approximate the random

amount of time required by a continuous type random variable.)

1.33 Transformation of joint densities AssumeX and Y are independent, each

with the exponential pdf with parameter λ > 0. Let W = X − Y and Z =

X2 + X − Y. Find the joint pdf of (W,Z). Be sure to specify its support (i.e.

where it is not zero).

1.34 Computing some covariances SupposeX,Y, and Z are random variables,

each with mean zero and variance 20, such that Cov(X,Y ) = Cov(X,Z) = 10

and Cov(Y,Z) = 5. (a) Find Cov(X + Y,X − Y ). (b) Find Cov(3X+Z,3X+Y).

(c) Find E[(X + Y )2].

1.35 Conditional densities and expectations Suppose that random variables

X and Y have the joint pdf:

fXY (u, v) =

{
4u2, 0 < v < u < 1

0, elsewhere
.

(a) Find E[XY ]. (b) Find fY (v). Be sure to specify it for all values of v. (c)

Find fX|Y (u|v). Be sure to specify where it is undefined, and where it is zero.

(d) Find E[X2|Y = v] for 0 < v < 1.

1.36 Jointly distributed variables Let U and V be independent random vari-

ables, such that U is uniformly distributed over the interval [0, 1], and V has the

exponential probability density function

(a) Calculate E[ V
2

1+U ].

(b) Calculate P{U ≤ V }.
(c) Find the joint probability density function of Y and Z, where Y = U2 and

Z = UV .

1.37* (Why not every set has a length) Suppose a length (actually, “one-

dimensional volume” would be a better name) of any subset A ⊂ R could be

defined, so that the following axioms are satisfied:

L0: 0 ≤ length(A) ≤ ∞ for any A ⊂ R
L1: length([a, b]) = b− a for a < b

L2: length(A) = length(A + y), for any A ⊂ R and y ∈ R, where A + y

represents the translation of A by y, defined by A+ y = {x+ y : x ∈ A}
L3: If A = ∪∞i=1Bi such that B1, B2, · · · are disjoint, then length(A) =∑∞

i=1 length(Bi).

The purpose of this problem is to show that the above supposition leads to

a contradiction. Let Q denote the set of rational numbers, Q = {p/q : p, q ∈
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Z, q 6= 0}. (a) Show that the set of rational numbers can be expressed as Q =

{q1, q2, . . .}, which means that Q is countably infinite. Say that x, y ∈ R are

equivalent, and write x ∼ y, if x − y ∈ Q. (b) Show that ∼ is an equivalence

relation, meaning it is reflexive (a ∼ a for all a ∈ R), symmetric (a ∼ b implies

b ∼ a), and transitive (a ∼ b and b ∼ c implies a ∼ c). For any x ∈ R, let Qx =

Q+x. (c) Show that for any x, y ∈ R, either Qx = Qy or Qx∩Qy = ∅. Sets of the

form Qx are called equivalence classes of the equivalence relation ∼. (d) Show

thatQx∩[0, 1] 6= ∅ for all x ∈ R, or in other words, each equivalence class contains

at least one element from the interval [0, 1]. Let V be a set obtained by choosing

exactly one element in [0, 1] from each equivalence class (by accepting that V is

well defined, you’ll be accepting what is called the Axiom of Choice). So V is a

subset of [0, 1]. Suppose q′1, q
′
2, . . . is an enumeration of all the rational numbers

in the interval [−1, 1], with no number appearing twice in the list. Let Vi = V +q′i
for i ≥ 1. (e) Verify that the sets Vi are disjoint, and [0, 1] ⊂ ∪∞i=1Vi ⊂ [−1, 2].

Since the Vi’s are translations of V , they should all have the same length as V . If

the length of V is defined to be zero, then [0, 1] would be covered by a countable

union of disjoint sets of length zero, so [0, 1] would also have length zero. If the

length of V were strictly positive, then the countable union would have infinite

length, and hence the interval [−1, 2] would have infinite length. Either way there

is a contradiction.

1.38* (On sigma-algebras, random variables, and measurable functions) Prove

the seven statements lettered (a)-(g) in what follows.

Definition. Let Ω be an arbitrary set. A nonempty collection F of subsets of Ω

is defined to be an algebra if: (i) Ac ∈ F whenever A ∈ F and (ii) A ∪ B ∈ F
whenever A,B ∈ F .

(a) If F is an algebra then ∅ ∈ F , Ω ∈ F , and the union or intersection of any

finite collection of sets in F is in F .

Definition. F is called a σ-algebra if F is an algebra such that whenever

A1, A2, ... are each in F , so is the union, ∪Ai.
(b) If F is a σ-algebra and B1, B2, . . . are in F , then so is the intersection, ∩Bi.
(c) Let U be an arbitrary nonempty set, and suppose that Fu is a σ-algebra of

subsets of Ω for each u ∈ U . Then the intersection ∩u∈UFu is also a σ-algebra.

(d) The collection of all subsets of Ω is a σ-algebra.

(e) If Fo is any collection of subsets of Ω then there is a smallest σ-algebra con-

taining Fo (Hint: use (c) and (d).)

Definitions. B(R) is the smallest σ-algebra of subsets of R which contains all

sets of the form (−∞, a]. Sets in B(R) are called Borel sets. A real-valued ran-

dom variable on a probability space (Ω,F , P ) is a real-valued function X on Ω

such that {ω : X(ω) ≤ a} ∈ F for any a ∈ R.

(f) If X is a random variable on (Ω,F , P ) and A ∈ B(R) then {ω : X(ω) ∈
A} ∈ F . (Hint: Fix a random variable X. Let D be the collection of all subsets

A of B(R) for which the conclusion is true. It is enough (why?) to show that D
contains all sets of the form (−∞, a] and that D is a σ-algebra of subsets of R.

You must use the fact that F is a σ-algebra.)
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Remark. By (f), P{ω : X(ω) ∈ A}, or P{X ∈ A} for short, is well defined for

A ∈ B(R).

Definition. A function g mapping R to R is called Borel measurable if {x :

g(x) ∈ A} ∈ B(R) whenever A ∈ B(R).

(g) If X is a real-valued random variable on (Ω,F , P ) and g is a Borel measurable

function, then Y defined by Y = g(X) is also a random variable on (Ω,F , P ).



2 Convergence of a Sequence of
Random Variables

Convergence to limits is a central concept in the theory of calculus. Limits are

used to define derivatives and integrals. So to study integrals and derivatives

of random functions it is natural to begin by examining what it means for a

sequence of random variables to converge. Convergence of sequences of random

variables is also central to important tools in probability theory, such as the law

of large numbers and central limit theorem. See the Appendix for a review of

the definition of convergence for a sequence of numbers.

2.1 Four definitions of convergence of random variables

Recall that a random variable X is a function on Ω for some probability space

(Ω,F , P ). A sequence of random variables (Xn(ω) : n ≥ 1) is hence a sequence

of functions. There are many possible definitions for convergence of a sequence

of random variables. One idea is to require Xn(ω) to converge for each fixed ω.

However, at least intuitively, what happens on an event of probability zero is not

important. Thus, we use the following definition.

definition 2.1 A sequence of random variables (Xn : n ≥ 1) converges almost

surely to a random variable X, if all the random variables are defined on the

same probability space, and P{limn→∞Xn = X} = 1. Almost sure convergence

is denoted by limn→∞Xn = X a.s. or Xn
a.s.→ X.

Conceptually, to check almost sure convergence, one can first find the set

{ω : limn→∞Xn(ω) = X(ω)} and then see if it has probability one.

We shall construct some examples using the standard unit-interval probability

space defined in Example 1.2. This particular choice of (Ω,F , P ) is useful for

generating examples, because random variables, being functions on Ω, can be

simply specified by their graphs. For example, consider the random variable X

pictured in Figure 2.1. The probability mass function for such X is given by

P{X = 1} = P{X = 2} = 1
4 and P{X = 3} = 1

2 . Figure 2.1 is a bit ambiguous,

in that it is not clear what the values of X are at the jump points, ω = 1/4 or

ω = 1/2. However, each of these points has probability zero, so the distribution

of X is the same no matter how X is defined at those points.
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Figure 2.1 A random variable on (Ω,F , P ).

Example 2.1 Let (Xn : n ≥ 1) be the sequence of random variables on the

standard unit-interval probability space defined by Xn(ω) = ωn, illustrated in

Figure 2.2. This sequence converges for all ω ∈ Ω, with the limit

4

0 1
0

1

!

X (    )!

0 1
0

1

!

X (    )!

0 1
0

1

!

X (    )!

0 1
0

1

!

X (    )!1 2 3

Figure 2.2 Xn(ω) = ωn on the standard unit-interval probability space.

lim
n→∞

Xn(ω) =

{
0 if 0 ≤ ω < 1

1 if ω = 1.
.

The single point set {1} has probability zero, so it is also true (and simpler to

say) that (Xn : n ≥ 1) converges a.s. to zero. In other words, if we let X be the

zero random variable, defined by X(ω) = 0 for all ω, then Xn
a.s.→ X.

Example 2.2 (Moving, shrinking rectangles) Let (Xn : n ≥ 1) be the sequence

of random variables on the standard unit-interval probability space, as shown in

Figure 2.3. The variable X1 is identically one. The variables X2 and X3 are one

on intervals of length 1
2 . The variables X4, X5, X6, and X7 are one on intervals

of length 1
4 . In general, each n ≥ 1 can be written as n = 2k + j where k =

bln2 nc and 0 ≤ j < 2k. The variable Xn is one on the length 2−k interval

(j2−k, (j + 1)2−k].

To investigate a.s. convergence, fix an arbitrary value for ω. Then for each

k ≥ 1, there is one value of n with 2k ≤ n < 2k+1 such that Xn(ω) = 1, and

Xn(ω) = 0 for all other n. Therefore, limn→∞Xn(ω) does not exist. That is,
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Figure 2.3 A sequence of random variables on (Ω,F , P ).

{ω : limn→∞Xn exists} = ∅, so of course, P{limn→∞Xn exists} = 0. Thus, Xn

does not converge in the a.s. sense.

However, for large n, P{Xn = 0} is close to one. This suggests that Xn

converges to the zero random variable in some weaker sense.

Example 2.2 motivates us to consider the following weaker notion of conver-

gence of a sequence of random variables.

definition 2.2 A sequence of random variables (Xn) converges to a random

variable X in probability if all the random variables are defined on the same

probability space, and for any ε > 0, limn→∞ P{|X−Xn| ≥ ε} = 0. Convergence

in probability is denoted by limn→∞Xn = X p., or Xn
p.→ X.

Convergence in probability requires that |X −Xn| be small with high proba-

bility (to be precise, less than or equal to ε with probability that converges to

one as n → ∞), but on the small probability event that |X −Xn| is not small,

it can be arbitrarily large. For some applications that is unacceptable. Roughly

speaking, the next definition of convergence requires that |X−Xn| be small with

high probability for large n, and even if it is not small, the average squared value

has to be small enough.

definition 2.3 A sequence of random variables (Xn) converges to a random

variable X in the mean square sense if all the random variables are defined on the

same probability space, E[X2
n] < +∞ for all n, and limn→∞E[(Xn −X)2] = 0.

Mean square convergence is denoted by

limn→∞Xn = X m.s. or Xn
m.s.→ X.
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Although it isn’t explicitly stated in the definition of m.s. convergence, the

limit random variable must also have a finite second moment:

proposition 2.4 If Xn
m.s.→ X, then E[X2] < +∞.

Proof Suppose Xn
m.s.→ X. By definition, E[X2

n] <∞ for all n. Also, there exists

some no so E[(X−Xn)2] < 1 for all n ≥ no. The L2 triangle inequality for random

variables, (1.15), yields E[(X∞)2]
1
2 ≤ E[(X∞ −Xno)

2]
1
2 + E[X2

no ]
1
2 < +∞.

Example 2.3 (More moving, shrinking rectangles) This example is along the

same lines as Example 2.2, using the standard unit-interval probability space.

Each random variable of the sequence (Xn : n ≥ 1) is defined as indicated in

Figure 2.4, where the value an > 0 is some constant depending on n. The graph

a

X (    )!

!

1/n0 1

n

n

Figure 2.4 A sequence of random variables corresponding to moving, shrinking
rectangles.

of Xn for n ≥ 1 has height an over some subinterval of Ω of length 1
n . We don’t

explicitly identify the location of the interval, but we require that for any fixed

ω, Xn(ω) = an for infinitely many values of n, and Xn(ω) = 0 for infinitely many

values of n. Such a choice of the locations of the intervals is possible because the

sum of the lengths of the intervals,
∑∞
n=1

1
n , is infinite.

Of course Xn
a.s.→ 0 if the deterministic sequence (an) converges to zero. How-

ever, if there is a constant ε > 0 such that an ≥ ε for all n (for example if an = 1

for all n), then {ω : limn→∞Xn(ω) exists} = ∅, just as in Example 2.2. The

sequence converges to zero in probability for any choice of the constants (an),

because for any ε > 0,

P{|Xn − 0| ≥ ε} ≤ P{Xn 6= 0} =
1

n
→ 0.

Finally, to investigate mean square convergence, note that E[|Xn − 0|2] =
a2n
n .

Hence, Xn
m.s.→ 0 if and only if the sequence of constants (an) is such that
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limn→∞
a2n
n = 0. For example, if an = ln(n) for all n, then Xn

m.s.→ 0, but if

an =
√
n, then (Xn) does not converge to zero in the m.s. sense. (Proposition

2.7 below shows that a sequence can have only one limit in the a.s., p., or m.s.

senses, so the fact Xn
p.→ 0, implies that zero is the only possible limit in the

m.s. sense. So if
a2n
n 6→ 0, then (Xn) doesn’t converge to any random variable in

the m.s. sense.)

Example 2.4 (Anchored, shrinking rectangles) Let (Xn : n ≥ 1) be a sequence

of random variables defined on the standard unit-interval probability space, as

indicated in Figure 2.5, where the value an > 0 is some constant depending on

1/n

X (    )!

!

0 1

na

n

Figure 2.5 A sequence of random variables corresponding to anchored, shrinking
rectangles.

n. That is, Xn(ω) is equal to an if 0 ≤ ω ≤ 1/n, and to zero otherwise. For any

nonzero ω in Ω, Xn(ω) = 0 for all n such that n > 1/ω. Therefore, Xn
a.s.→ 0.

Whether the sequence (Xn) converges in p. or m.s. sense for this example

is exactly the same as in Example 2.3. That is, for convergence in probability

or mean square sense, the locations of the shrinking intervals of support don’t

matter. So Xn
p.→ 0. And Xn

m.s.→ 0 if and only if
a2n
n → 0.

It is shown in Proposition 2.7 below that either a.s. or m.s. convergence imply

convergence in probability. Example 2.4 shows that a.s. convergence, like conver-

gence in probability., can allow |Xn(ω)−X(ω)| to be extremely large for ω in a

small probability set. So neither convergence in probability, nor a.s. convergence,

imply m.s. convergence, unless an additional assumption is made to control the

difference |Xn(ω)−X(ω)| everywhere on Ω.

Example 2.5 (Rearrangements of rectangles) Let (Xn : n ≥ 1) be a sequence

of random variables defined on the standard unit-interval probability space. The

first three random variables in the sequence are indicated in Figure 2.6. Suppose

that the sequence is periodic, with period three, so that Xn+3 = Xn for all

n ≥ 1. Intuitively speaking, the sequence of random variables persistently jumps
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Figure 2.6 A sequence of random variables obtained by rearrangement of rectangles.

around. Obviously it does not converge in the a.s. sense. The sequence does not

settle down to converge, even in the sense of convergence in probability, to any

one random variable. This can be proved as follows. Suppose for the sake of

contradiction that Xn
p.→ X for some random variable. Then for any ε > 0 and

δ > 0, if n is sufficiently large, P{|Xn−X| ≥ ε} ≤ δ. But because the sequence is

periodic, it must be that P{|Xn−X| ≥ ε} ≤ δ for 1 ≤ n ≤ 3. Since δ is arbitrary

it must be that P{|Xn −X| ≥ ε} = 0 for 1 ≤ n ≤ 3. Since ε is arbitrary it must

be that P{X = Xn} = 1 for 1 ≤ n ≤ 3. Hence, P{X1 = X2 = X3} = 1, which is

a contradiction. Thus, the sequence does not converge in probability. A similar

argument shows it does not converge in the m.s. sense, either.

Even though the sequence fails to converge in a.s., m.s., or p. senses, it can

be observed that all of the Xn’s have the same probability distribution. The

variables are only different in that the places they take their possible values are

rearranged.

Example 2.5 suggests that it would be useful to have a notion of convergence

that just depends on the distributions of the random variables. One idea for

a definition of convergence in distribution is to require that the sequence of

CDFs FXn(x) converge as n→∞ for all n. The following example shows such a

definition could give unexpected results in some cases.

Example 2.6 Let U be uniformly distributed on the interval [0, 1], and for n ≥
1, let Xn = (−1)nU

n . Let X denote the random variable such that X = 0 for all ω.

It is easy to verify that Xn
a.s.→ X and Xn

p.→ X. Does the CDF of Xn converge

to the CDF of X? The CDF of Xn is graphed in Figure 2.7. The CDF FXn(x)

converges to 0 for x < 0 and to one for x > 0. However, FXn(0) alternates

between 0 and 1 and hence does not converge to anything. In particular, it

doesn’t converge to FX(0). Thus, FXn(x) converges to FX(x) for all x except

x = 0.

Recall that the distribution of a random variable X has probability mass 4
at some value xo, i.e. P{X = xo} = 4 > 0, if and only if the CDF has a jump
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Figure 2.7 CDF of Xn = (−1)n

n
.

of size 4 at xo: F (xo) − F (xo−) = 4. Example 2.6 illustrates the fact that if

the limit random variable X has such a point mass, then even if Xn is very close

to X, the value FXn(x) need not converge. To overcome this phenomenon, we

adopt a definition of convergence in distribution which requires convergence of

the CDFs only at the continuity points of the limit CDF. Continuity points are

defined for general functions in Appendix 11.3. Since CDFs are right-continuous

and nondecreasing, a point x is a continuity point of a CDF F if and only if

there is no jump of F at X: i.e. if FX(x) = FX(x−).

definition 2.5 A sequence (Xn : n ≥ 1) of random variables converges in

distribution to a random variable X if

lim
n→∞

FXn(x) = FX(x) at all continuity points x of FX .

Convergence in distribution is denoted by limn→∞Xn = X d. or Xn
d.→ X.

One way to investigate convergence in distribution is through the use of char-

acteristic functions.

proposition 2.6 Let (Xn) be a sequence of random variables and let X be a

random variable. Then the following are equivalent:

(i) Xn
d.→ X

(ii) E[f(Xn)]→ E[f(X)] for any bounded continuous function f .

(iii) ΦXn(u) → ΦX(u) for each u ∈ R (i.e. pointwise convergence of charac-

teristic functions).

The relationships among the four types of convergence discussed in this sec-

tion are given in the following proposition, and are pictured in Figure 2.8. The

definitions use differing amounts of information about the random variables

(Xn : n ≥ 1) and X involved. Convergence in the a.s. sense involves joint proper-

ties of all the random variables. Convergence in the p. or m.s. sense involves only

pairwise joint distributions–namely those of (Xn, X) for all n. Convergence in

distribution involves only the individual distributions of the random variables to

have a convergence property. Convergence in the a.s., m.s., and p. senses require

the variables to all be defined on the same probability space. For convergence in
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distribution, the random variables need not be defined on the same probability

space.
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Figure 2.8 Relationships among four types of convergence of random variables.

proposition 2.7 (a) If Xn
a.s.→ X then Xn

p.→ X.

(b) If Xn
m.s.→ X then Xn

p.→ X.

(c) If P{|Xn| ≤ Y } = 1 for all n for some fixed random variable Y with E[Y 2] <

∞, and if Xn
p.→ X, then Xn

m.s.→ X.

(d) If Xn
p.→ X then Xn

d.→ X.

(e) Suppose Xn → X in the p., m.s., or a.s. sense and Xn → Y in the p., m.s.,

or a.s. sense. Then P{X = Y } = 1. That is, if differences on sets of probability

zero are ignored, a sequence of random variables can have only one limit (if p.,

m.s., and/or a.s. senses are used).

(f) Suppose Xn
d.→ X and Xn

d.→ Y. Then X and Y have the same distribution.

Proof (a) Suppose Xn
a.s.→ X and let ε > 0. Define a sequence of events An by

An = {ω :| Xn(ω)−X(ω) |< ε}.

We only need to show that P (An)→ 1. Define Bn by

Bn = {ω :| Xk(ω)−X(ω) |< ε for all k ≥ n}.

Note that Bn ⊂ An and B1 ⊂ B2 ⊂ · · · so limn→∞ P (Bn) = P (B) where

B =
⋃∞
n=1Bn. Clearly

B ⊃ {ω : lim
n→∞

Xn(ω) = X(ω)},

so 1 = P (B) = limn→∞P (Bn). Since P (An) is squeezed between P (Bn) and 1,

limn→∞ P (An) = 1, so Xn
p.→ X.

(b) Suppose Xn
m.s.→ X and let ε > 0. By the Markov inequality applied to

|X −Xn|2,

P{| X −Xn |≥ ε} ≤
E[| X −Xn |2]

ε2
. (2.1)

The right side of (2.1), and hence the left side of (2.1), converges to zero as n

goes to infinity. Therefore Xn
p.→ X as n→∞.
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(c) Suppose Xn
p.→ X. Then for any ε > 0,

P{| X |≥ Y + ε} ≤ P{| X −Xn |≥ ε} → 0,

so that P{| X |≥ Y + ε} = 0 for every ε > 0. Thus, P{| X |≤ Y } = 1, so that

P{| X −Xn |2≤ 4Y 2} = 1. Therefore, with probability one, for any ε > 0,

| X −Xn |2 ≤ 4Y 2I{|X−Xn|≥ε} + ε2

so

E[| X −Xn |2] ≤ 4E[Y 2I{|X−Xn|≥ε}] + ε2.

In the special case that P{Y = L} = 1 for a constant L, the term E[Y 2I{|X−Xn|≥ε}]

is equal to L2P{|X −Xn| ≥ ε}, and by the hypotheses, P{|X −Xn| ≥ ε} → 0.

Even if Y is random, since E[Y 2] < ∞ and P{|X − Xn| ≥ ε} → 0, it still fol-

lows that E[Y 2I{|X−Xn|≥ε}] → 0 as n → ∞, by Corollary 11.13. So, for n large

enough, E[|X −Xn|2] ≤ 2ε2. Since ε was arbitrary, Xn
m.s.→ X.

(d) Assume Xn
p.→ X. Select any continuity point x of FX . It must be proved

that limn→∞ FXn(x) = FX(x). Let ε > 0. Then there exists δ > 0 so that

FX(x) ≤ FX(x− δ) + ε
2 . (See Figure 2.9.) Now

!
X

x!x!

X
F (x! )

F (x)

Figure 2.9 A CDF at a continuity point.

{X ≤ x− δ} = {X ≤ x− δ, Xn ≤ x} ∪ {X ≤ x− δ, Xn > x}
⊂ {Xn ≤ x} ∪ {|X −Xn| ≥ δ}

so

FX(x− δ) ≤ FXn(x) + P{| Xn −X |≥ δ}.

For all n sufficiently large, P{| Xn−X |≥ δ} ≤ ε
2 . This and the choice of δ yield,

for all n sufficiently large, FX(x) ≤ FXn(x) + ε. Similarly, for all n sufficiently

large, FX(x) ≥ FXN (x)− ε. So for all n sufficiently large, |FXn(x)−FX(x)| ≤ ε.
Since ε was arbitrary, limn→∞ FXn(x) = FX(x).

(e) By parts (a) and (b), already proved, we can assume that Xn
p.→ X and

Xn
p.→ Y. Let ε > 0 and δ > 0, and select N so large that P{|Xn −X| ≥ ε} ≤ δ

and P{|Xn − Y | ≥ ε} ≤ δ for all n ≥ N . By the triangle inequality, |X − Y | ≤
|XN −X|+ |XN − Y |. Thus,

{|X − Y | ≥ 2ε} ⊂ {|XN −X| ≥ ε} ∪ {|YN −X| ≥ ε} so that

P{|X − Y | ≥ 2ε} ≤ P{|XN −X| ≥ ε} + P{|XN − Y | ≥ ε} ≤ 2δ. We’ve proved
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that

P{|X − Y | ≥ 2ε} ≤ 2δ. Since δ was arbitrary, it must be that P{|X − Y | ≥
2ε} = 0. Since ε was arbitrary, it must be that P{|X − Y | = 0} = 1.

(f) Suppose Xn
d.→ X and Xn

d.→ Y. Then FX(x) = FY (y) whenever x is

a continuity point of both x and y. Since FX and FY are nondecreasing and

bounded, they can have only finitely many discontinuities of size greater than

1/n for any n, so that the total number of discontinuities is at most countably

infinite. Hence, in any nonempty interval, there is a point of continuity of both

functions. So for any x ∈ R, there is a strictly decreasing sequence of numbers

converging to x, such that xn is a point of continuity of both FX and FY . So

FX(xn) = FY (xn) for all n. Taking the limit as n → ∞ and using the right-

continuity of CDFs, we have FX(x) = FY (x).

Example 2.7 Suppose X0 is a random variable with P{X0 ≥ 0} = 1. Suppose

Xn = 6+
√
Xn−1 for n ≥ 1. For example, if for some ω it happens that X0(ω) =

12, then

X1(ω) = 6 +
√

12 = 9.465 . . .

X2(ω) = 6 +
√

9.46 = 9.076 . . .

X3(ω) = 6 +
√

9.076 = 9.0127 . . . .

Examining Figure 2.10, it is clear that for any ω with X0(ω) > 0, the sequence

of numbers Xn(ω) converges to 9. Therefore, Xn
a.s.→ 9 The rate of convergence

can be bounded as follows.

6

x=y

6+  x

6+ x
3

x

y

9

90
0

Figure 2.10 Graph of the functions 6 +
√
x and 6 + x

3
.

Note that for each x ≥ 0, | 6 +
√
x− 9 | ≤ | 6 + x

3 − 9 |. Therefore,

| Xn(ω)− 9 | ≤ | 6 +
Xn−1(ω)

3
− 9 | = 1

3
| Xn−1(ω)− 9 |

so that by induction on n,

| Xn(ω)− 9 | ≤ 3−n | X0(ω)− 9 | . (2.2)
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Since Xn
a.s.→ 9 it follows that Xn

p.→ 9.

Finally, we investigate m.s. convergence under the assumption that E[X2
0 ] <

+∞. By the inequality (a+ b)2 ≤ 2a2 + 2b2, it follows that

E[(X0 − 9)2] ≤ 2(E[X2
0 ] + 81). (2.3)

Squaring and taking expectations on each side of (2.10) and using (2.3) thus

yields

E[| Xn − 9 |2] ≤ 2 · 3−2n{E[X2
0 ] + 81}.

Therefore, Xn
m.s.→ 9.

Example 2.8 Let W0,W1, . . . be independent, normal random variables with

mean 0 and variance 1. Let X−1 = 0 and

Xn = (.9)Xn−1 +Wn n ≥ 0.

In what sense does Xn converge as n goes to infinity? For fixed ω, the sequence

of numbers X0(ω), X1(ω), . . . might appear as in Figure 2.11.

kX

k

Figure 2.11 A typical sample sequence of X.

Intuitively speaking, Xn persistently moves. We claim that Xn does not con-

verge in probability (so also not in the a.s. or m.s. senses). Here is a proof

of the claim. Examination of a table for the normal distribution yields that

P{Wn ≥ 2} = P{Wn ≤ −2} ≥ 0.02. Then

P{| Xn −Xn−1 |≥ 2} ≥ P{Xn−1 ≥ 0,Wn ≤ −2}+ P{Xn−1 < 0,Wn ≥ 2}
= P{Xn−1 ≥ 0}P{Wn ≤ −2}+ P{Xn−1 < 0}P{Wn ≥ 2}
= P{Wn ≥ 2} ≥ 0.02.

Therefore, for any random variable X,

P{| Xn −X |≥ 1}+ P{| Xn−1 −X |≥ 1}
≥ P{| Xn −X |≥ 1 or | Xn−1 −X |≥ 1}
≥ P{| Xn −Xn−1 |≥ 2} ≥ 0.02,

so P{| Xn − X |≥ 1} does not converge to zero as n → ∞. So Xn does not

converge in probability to any random variable X. The claim is proved.

Although Xn does not converge in probability, or in the a.s. or m.s.) senses,



2.1 Four definitions of convergence of random variables 53

it nevertheless seems to asymptotically settle into an equilibrium. To probe this

point further, let’s find the distribution of Xn for each n.

X0 = W0 is N(0, 1)

X1 = (.9)X0 +W1 is N(0, 1.81)

X2 = (.9)X1 +W2 is N(0, (.81)(1.81 + 1)).

In general, Xn is N(0, σ2
n) where the variances satisfy σ2

n = (0.81)σ2
n−1 + 1

so σ2
n → σ2

∞ where σ2
∞ = 1

0.19 = 5.263. Therefore, the CDF of Xn converges

everywhere to the CDF of any random variable X which has the N(0, σ2
∞) dis-

tribution. So Xn
d.→ X for any such X.

The previous example involved convergence in distribution of Gaussian random

variables. The limit random variable was also Gaussian. In fact, we close this

section by showing that limits of Gaussian random variables are always Gaussian.

Recall that X is a Gaussian random variable with mean µ and variance σ2

if either σ2 > 0 and FX(c) = Φ( c−µσ ) for all c, where Φ is the CDF of the

standard N(0, 1) distribution, or σ2 = 0, in which case FX(c) = I{c≥µ} and

P{X = µ} = 1.

proposition 2.8 Suppose Xn is a Gaussian random variable for each n, and

that Xn → X∞ as n → ∞, in any one of the four senses, a.s., m.s., p., or d.

Then X∞ is also a Gaussian random variable.

Proof Since convergence in the other senses implies convergence in distribution,

we can assume that the sequence converges in distribution. Let µn and σ2
n denote

the mean and variance of Xn. The first step is to show that the sequence σ2
n is

bounded. Intuitively, if it weren’t bounded, the distribution of Xn would get too

spread out to converge. Since FX∞ is a valid CDF, there exists a value L so

large that FX∞(−L) < 1
3 and FX∞(L) > 2

3 . By increasing L if necessary, we

can also assume that L and −L are continuity points of FX∞ . So there exists

no such that, whenever n ≥ no, FXn(−L) ≤ 1
3 and FXn(L) ≥ 2

3 . Therefore, for

n ≥ no, P{|Xn| ≤ L} ≥ FXn( 2
3 ) − FXn( 1

3 ) ≥ 1
3 . For σ2

n fixed, the probability

P{|Xn| ≤ L} is maximized by µn = 0, so no matter what the value of µn is,

2Φ( Lσn ) − 1 ≥ P{|Xn| ≤ L}. Therefore, for n ≥ no, Φ( Lσn ) ≥ 2
3 , or equivalently,

σn ≤ L/Φ−1( 2
3 ), where Φ−1 is the inverse of Φ. The first no − 1 terms of the

sequence (σ2
n) are finite. Therefore, the whole sequence (σ2

n) is bounded.

Constant random variables are considered to be Gaussian random variables–

namely degenerate ones with zero variance. So assume without loss of generality

that X∞ is not a constant random variable. Then there exists a value co so that

FX∞(co) is strictly between zero and one. Since FX∞ is right-continuous, the

function must lie strictly between zero and one over some interval of positive

length, with left endpoint co. The function can only have countably many points

of discontinuity, so it has infinitely many points of continuity such that the
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function value is strictly between zero and one. Let c1 and c2 be two distinct

such points, and let p1 and p2 denote the values of FX∞ at those two points,

and let bi = Φ−1(pi) for i = 1, 2. It follows that limn→∞
ci−µn
σn

= bi for i = 1, 2.

The limit of the difference of the sequences is the difference of the limits, so

limn→∞
c1−c2
σn

= b1 − b2. Since c1 − c2 6= 0 and the sequence (σn) is bounded, it

follows that (σn) has a finite limit, σ∞, and therefore also (µn) has a finite limit,

µ∞. Therefore, the CDFs FXn converge pointwise to the CDF for the N(µ∞, σ
2
∞)

distribution. Thus, X∞ has the N(µ∞, σ
2
∞) distribution.

2.2 Cauchy criteria for convergence of random variables

It is important to be able to show that a limit exists even if the limit value is not

known. For example, it is useful to determine if the sum of an infinite series of

numbers is convergent without needing to know the value of the sum. One useful

result for this purpose is that if (xn : n ≥ 1) is monotone nondecreasing, i.e. x1 ≤
x2 ≤ · · · , and if it satisfies xn ≤ L for all n for some finite constant L, then the

sequence is convergent. This result carries over immediately to random variables:

if (Xn : n ≥ 1) is a sequence of random variables such P{Xn ≤ Xn+1} = 1 for

all n and if there is a random variable Y such that P{Xn ≤ Y } = 1 for all n,

then (Xn) converges a.s.

For deterministic sequences that are not monotone, the Cauchy criteria gives

a simple yet general condition that implies convergence to a finite limit. A deter-

ministic sequence (xn : n ≥ 1) is said to be a Cauchy sequence if limm,n→∞ |xm−
xn| = 0. This means that, for any ε > 0, there exists N sufficiently large, such

that |xm − xn| < ε for all m,n ≥ N . If the sequence (xn) has a finite limit

x∞, then the triangle inequality for distances between numbers, |xm − xn| ≤
|xm − x∞| + |xn − x∞|, implies that the sequence is a Cauchy sequence. More

useful is the converse statement, called the Cauchy criteria for convergence, or

the completeness property of R: If (xn) is a Cauchy sequence then (xn) converges

to a finite limit as n → ∞. The following proposition gives similar criteria for

convergence of random variables.

proposition 2.9 (Cauchy criteria for random variables) Let (Xn) be a se-

quence of random variables on a probability space (Ω,F , P ).

(a) Xn converges a.s. to some random variable if and only if

P{ω : lim
m,n→∞

|Xm(ω)−Xn(ω)| = 0} = 1.

(b) Xn converges m.s. to some random variable if and only if (Xn) is a Cauchy

sequence in the m.s. sense, meaning E[X2
n] < +∞ for all n and

lim
m,n→∞

E[(Xm −Xn)2] = 0. (2.4)
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(c) Xn converges p. to some random variable if and only if for every ε > 0,

lim
m,n→∞

P{|Xm −Xn| ≥ ε} = 0. (2.5)

Proof (a) For any ω fixed, (Xn(ω) : n ≥ 1) is a sequence of numbers. So by

the Cauchy criterion for convergence of a sequence of numbers, the following

equality of sets holds:

{ω : lim
n→∞

Xn(ω) exists and is finite} = {ω : lim
m,n→∞

|Xm(ω)−Xn(ω)| = 0}.

Thus, the set on the left has probability one (i.e. X converges a.s. to a random

variable) if and only if the set on the right has probability one. Part (a) is proved.

(b) First the “only if” part is proved. Suppose Xn
m.s.→ X∞. By the L2 triangle

inequality for random variables,

E[(Xn −Xm)2]
1
2 ≤ E[(Xm −X∞)2]

1
2 + E[(Xn −X∞)2]

1
2 . (2.6)

Since Xn
m.s.→ X∞. the right side of (2.6) converges to zero as m,n→∞, so that

(2.4) holds. The “only if” part of (b) is proved.

Moving to the proof of the “if” part, suppose (2.4) holds. Choose the sequence

k1 < k2 < . . . recursively as follows. Let k1 be so large that E[(Xn−Xk1)2] ≤ 1/2

for all n ≥ k1. Once k1, . . . , ki−1 are selected, let ki be so large that ki > ki−1

and E[(Xn −Xki)
2] ≤ 2−i for all n ≥ ki. It follows from this choice of the ki’s

that E[(Xki+1
−Xki)

2] ≤ 2−i for all i ≥ 1. Let Sn = |Xk1 |+
∑n−1
i=1 |Xki+1

−Xki |.
Note that |Xki | ≤ Sn for 1 ≤ i ≤ k by the triangle inequality for differences of

real numbers. By the L2 triangle inequality for random variables (1.15),

E[S2
n]

1
2 ≤ E[X2

k1 ]
1
2 +

n−1∑
i=1

E[(Xki+1
−Xki)

2]
1
2 ≤ E[X2

k1 ]
1
2 + 1.

Since Sn is monotonically increasing, it converges a.s. to a limit S∞. Note that

|Xki | ≤ S∞ for all i ≥ 1. By the monotone convergence theorem, E[S2
∞] =

limn→∞E[S2
n] ≤ (E[X2

k1
]
1
2 + 1)2. So, S∞ is in L2(Ω,F , P ). In particular, S∞

is finite a.s., and for any ω such that S∞(ω) is finite, the sequence of numbers

(Xki(ω) : i ≥ 1) is a Cauchy sequence. (See Example 11.3 in the appendix.) By

completeness of R, for ω in that set, the limit X∞(ω) exists. Let X∞(ω) = 0 on

the zero probability event that (Xki(ω) : i ≥ 1) does not converge. Summarizing,

we have limi→∞Xki = X∞ a.s. and |Xki | ≤ S∞ where S∞ ∈ L2(Ω,F , P ). It

therefore follows from Proposition 2.7(c) that Xki
m.s.→ X∞.

The final step is to prove that the entire sequence (Xn) converges in the m.s.

sense toX∞. For this purpose, let ε > 0. Select i so large that E[(Xn−Xki)
2] < ε2

for all n ≥ ki, and E[(Xki −X∞)2] ≤ ε2. Then, by the L2 triangle inequality, for

any n ≥ ki,

E[(Xn −X∞)2]
1
2 ≤ E(Xn −Xki)

2]
1
2 + E[(Xki −X∞)2]

1
2 ≤ 2ε.

Since ε was arbitrary, Xn
m.s.→ X∞. The proof of (b) is complete.
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(c) First the “only if” part is proved. Suppose Xn
p.→ X∞. Then for any ε > 0,

P{|Xm −Xn| ≥ 2ε} ≤ P{|Xm −X∞| ≥ ε}+ P{|Xm −X∞| ≥ ε} → 0

as m,n→∞, so that (2.5) holds. The “only if” part is proved.

Moving to the proof of the “if” part, suppose (2.5) holds. Select an increasing

sequence of integers ki so that P{|Xn −Xm| ≥ 2−i} ≤ 2−i for all m,n ≥ ki. It

follows, in particular, that P{|Xki+1 −Xki | ≥ 2−i} ≤ 2−i. Since the sum of the

probabilities of these events is finite, the probability that infinitely many of the

events is true is zero, by the Borel-Cantelli lemma (specifically, Lemma 1.3(a)).

Thus, P{|Xki+1
− Xki | ≤ 2−i for all large enough i} = 1. Thus, for all ω is a

set with probability one, (Xki(ω) : i ≥ 1) is a Cauchy sequence of numbers. By

completeness of R, for ω in that set, the limit X∞(ω) exists. Let X∞(ω) = 0

on the zero probability event that (Xki(ω) : i ≥ 1) does not converge. Then,

Xki
a.s.→ X∞. It follows that Xki

p.→ X∞ as well.

The final step is to prove that the entire sequence (Xn) converges in the p. sense

to X∞. For this purpose, let ε > 0. Select i so large that P{||Xn−Xki || ≥ ε} < ε

for all n ≥ ki, and P{|Xki −X∞| ≥ ε} < ε. Then P{|Xn −X∞| ≥ 2ε} ≤ 2ε for

all n ≥ ki. Since ε was arbitrary, Xn
p.→ X∞. The proof of (c) is complete.

The following is a corollary of Proposition 2.9(c) and its proof.

corollary 2.10 If Xn
p.→ X∞, then there is a subsequence (Xki : i ≥ 1) such

that limi→∞Xki = X∞ a.s.

Proof By Proposition 2.9(c), the sequence satisfies (2.9). By the proof of Propo-

sition 2.9(c) there is a subsequence (Xki) that converges a.s. By uniqueness of

limits in the p. or a.s. senses, the limit of the subsequence is the same random

variable, X∞ (up to differences on a set of measure zero).

Proposition 2.9(b), the Cauchy criteria for mean square convergence, is used

extensively in these notes. The remainder of this section concerns a more conve-

nient form of the Cauchy criteria for m.s. convergence.

proposition 2.11 (Correlation version of the Cauchy criterion for m.s. con-

vergence) Let (Xn) be a sequence of random variables with E[X2
n] < +∞ for

each n. Then there exists a random variable X such that Xn
m.s.→ X if and only

if the limit limm,n→∞E[XnXm] exists and is finite. Furthermore, if Xn
m.s.→ X,

then limm,n→∞E[XnXm] = E[X2].

Proof The “if” part is proved first. Suppose limm,n→∞E[XnXm] = c for a finite

constant c. Then

Eb(Xn −Xm)2c = E[X2
n]− 2E[XnXm] + E[X2

m]

→ c− 2c+ c = 0 as m,n→∞.

Thus, Xn is Cauchy in the m.s. sense, so Xn
m.s.→ X for some random variable

X.
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To prove the “only if” part, suppose Xn
m.s.→ X. Observe next that

E[XmXn] = E[(X + (Xm −X))(X + (Xn −X))]

= E[X2 + (Xm −X)X +X(Xn −X) + (Xm −X)(Xn −X)].

By the Cauchy-Schwarz inequality,

E[| (Xm −X)X |] ≤ E[(Xm −X)2]
1
2E[X2]

1
2 → 0

E[| (Xm −X)(Xn −X) |] ≤ E[(Xm −X)2]
1
2E[(Xn −X)2]

1
2 → 0

and similarly E[| X(Xn − X) |] → 0. Thus E[XmXn] → E[X2]. This estab-

lishes both the “only if” part of the proposition and the last statement of the

proposition. The proof of the proposition is complete.

corollary 2.12 Suppose Xn
m.s.→ X and Yn

m.s.→ Y . Then

E[XnYn]→ E[XY ].

Proof By the inequality (a+b)2 ≤ 2a2 +2b2, it follows that Xn+Yn
m.s.→ X+Y

as n→∞. Proposition 2.11 therefore implies that E[(Xn+Yn)2]→ E[(X+Y )2],

E[X2
n]→ E[X2], and E[Y 2

n ]→ E[Y 2]. Since XnYn = ((Xn+Yn)2−X2
n−Y 2

n )/2,

the corollary follows.

corollary 2.13 Suppose Xn
m.s.→ X. Then E[Xn]→ E[X].

Proof Corollary 2.13 follows from Corollary 2.12 by taking Yn = 1 for all n.

Example 2.9 This example illustrates the use of Proposition 2.11. LetX1, X2, . . .

be mean zero random variables such that

E[XiXj ] =

{
1 if i = j

0 else
.

Does the series
∑∞
k=1

Xk
k converge in the mean square sense to a random variable

with a finite second moment? Let Yn =
∑n
k=1

Xk
k . The question is whether Yn

converges in the mean square sense to a random variable with finite second

moment. The answer is yes if and only if limm,n→∞E[YmYn] exists and is finite.

Observe that

E[YmYn] =

min(m,n)∑
k=1

1

k2
→

∞∑
k=1

1

k2
as m,n→∞.

This sum is smaller than 1+
∫∞

1
1
x2 dx = 2 <∞.1 Therefore, by Proposition 2.11,

the series
∑∞
k=1

Xk
k indeed converges in the m.s. sense.

1 In fact, the sum is equal to π2

6
, but the technique of comparing the sum to an integral to

show the sum is finite is the main point here.
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2.3 Limit theorems for sums of independent random variables

Sums of many independent random variables often have distributions that can

be characterized by a small number of parameters. For engineering applications,

this represents a low complexity method for describing the random variables. An

analogous tool is the Taylor series approximation. A continuously differentiable

function f can be approximated near zero by the first order Taylor’s approxima-

tion

f(x) ≈ f(0) + xf ′(0)

A second order approximation, in case f is twice continuously differentiable, is

f(x) ≈ f(0) + xf ′(0) +
x2

2
f ′′(0)

Bounds on the approximation error are given by Taylor’s theorem, found in

Appendix 11.4. In essence, Taylor’s approximation lets us represent the function

by the numbers f(0), f ′(0) and f ′′(0). We shall see that the law of large numbers

and central limit theorem can be viewed not just as analogies of the first and

second order Taylor’s approximations, but actually as consequences of them.

lemma 2.14 Let (zn : n ≥ 1) be a sequence of real or complex numbers with

limit z. Then
(
1 + zn

n

)n → ez as n→∞.

Proof The basic idea is to note that (1 + s)n = exp(n ln(1 + s)), and apply

a power series expansion of ln(1 + s) about the point s = 0. The details are

given next. Since the sequence (zn) converges to a finite limit, | znn | ≤
1
2 for all

sufficiently large n, so it suffices to consider ln(1 + s) for complex s with |s| ≤ 1
2 .

Note that the kth derivative of ln(1 + s) evaluated at s = 0 is (−1)(k−1)(k − 1)!

for k ≥ 1. Since the function ln(1 + s) is analytic in an open region containing

|s| ≤ 1
2 , its power series expansion converges absolutely:

ln(1 + s) =

∞∑
k=1

sk(−1)(k+1)

k
.

Therefore, for |s| ≤ 1
2 ,

| ln(1 + s)− s| =
∣∣∣∣ ∞∑
k=2

sk(−1)(k+1)

k

∣∣∣∣ ≤ |s|2 ∞∑
k=2

2−k

k
≤ |s|

2

4
.

So, for |s| ≤ 1
2 , ln(1+s) = s+|s|2h(s), where h is a function such that |h(s)| ≤ 1

4 .

Thus, for n sufficiently large,(
1 +

zn
n

)n
= exp

(
n ln

(
1 +

zn
n

))
= exp

(
zn +

|zn|2h(zn/n)

n

)
,

and, by continuity of the exponential function, the conclusion of the lemma

follows.
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A sequence of random variables (Xn) is said to be independent and identically

distributed (iid) if the Xi’s are mutually independent and identically distributed.

proposition 2.15 (Law of large numbers) Suppose that X1, X2, . . . is a se-

quence of random variables such that each Xi has finite mean m. Let Sn =

X1 + · · ·+Xn. Then

(a) Sn
n

m.s.→ m. (hence also Sn
n

p.→ m and Sn
n

d.→ m.) if for some constant c,

Var(Xi) ≤ c for all i, and Cov(Xi, Xj) = 0 i 6= j (i.e. if the variances

are bounded and the Xi’s are uncorrelated).

(b) Sn
n

p.→ m if X1, X2, . . . are iid. (This version is the weak law of large

numbers.)

(c) Sn
n

a.s.→ m if X1, X2, . . . are iid. (This version is the strong law of large

numbers.)

We give a proof of (a) and (b), but prove (c) only under an extra condition.

Suppose the conditions of (a) are true. Then

E

[(
Sn
n
−m

)2
]

= Var

(
Sn
n

)
=

1

n2
Var(Sn)

=
1

n2

∑
i

∑
j

Cov(Xi, Xj) =
1

n2

∑
i

Var(Xi) ≤
c

n
.

Therefore Sn
n

m.s.→ m.

Turn next to part (b). If in addition to the conditions of (b) it is assumed

that Var(X1) < +∞, then the conditions of part (a) are true. Since mean square

convergence implies convergence in probability, the conclusion of part (b) follows.

An extra credit problem shows how to use the same approach to verify (b) even

if Var(X1) = +∞.

Here a second approach to proving (b) is given. The characteristic function of
Xi
n is given by

E

[
exp

(
juXi

n

)]
= E

[
exp

(
j
(u
n

)
Xi

)]
= ΦX

(u
n

)
,

where ΦX denotes the characteristic function of X1. Since the characteristic

function of the sum of independent random variables is the product of the char-

acteristic functions,

ΦSn
n

(u) =
(

ΦX

(u
n

))n
.

Since E[X1] = m it follows that ΦX is differentiable with ΦX(0) = 1, Φ′X(0) =

jm and Φ′ is continuous. By Taylor’s theorem (Theorem 11.5) applied separately

to the real and imaginary parts of ΦX , for any u fixed,

ΦX

(u
n

)
= 1 +

u

n
(Re(Φ′X(un)) + jIm(Φ′X(vn))) ,

for some un and vn between 0 and u
n for all n. Since Φ′(un)→ jm and Φ′(vn)→
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jm as n → ∞, it follows that Re(Φ′X(un)) + jIm(Φ′X(vn)) → jm as n → ∞.
So Lemma 2.14 yields ΦX(un )n → exp(jum) as n → ∞. Note that exp(jum) is

the characteristic function of a random variable equal to m with probability one.

Since pointwise convergence of characteristic functions to a valid characteristic

function implies convergence in distribution, it follows that Sn
n

d.→ m. However,

convergence in distribution to a constant implies convergence in probability, so

(b) is proved.

Part (c) is proved under the additional assumption that E[X4
1 ] < +∞. With-

out loss of generality we assume that EX1 = 0. Consider expanding S4
n. There are

n terms of the form X4
i and 3n(n−1) terms of the form X2

iX
2
j with 1 ≤ i, j ≤ n

and i 6= j. The other terms have the form X3
iXj , X

2
iXjXk or XiXjXkXl for

distinct i, j, k, l, and these terms have mean zero. Thus,

E[S4
n] = nE[X4

1 ] + 3n(n− 1)E[X2
1 ]2.

Let Y =
∑∞
n=1(Snn )4. The value of Y is well defined but it is a priori possible

that Y (ω) = +∞ for some ω. However, by the monotone convergence theorem,

the expectation of the sum of nonnegative random variables is the sum of the

expectations, so that

E[Y ] =

∞∑
n=1

E

[(
Sn
n

)4
]

=

∞∑
n=1

nE[X4
1 ] + 3n(n− 1)E[X2

1 ]2

n4
< +∞,

Therefore, P{Y < +∞} = 1. However, {Y < +∞} is a subset of the event of

convergence

{w : Sn(w)
n → 0 as n → ∞}, so the event of convergence also has probability

one. Thus, part (c) under the extra fourth moment condition is proved.

proposition 2.16 (Central Limit Theorem) Suppose that X1, X2, . . . are

i.i.d., each with mean µ and variance σ2. Let Sn = X1 + · · · + Xn. Then the

normalized sum

Sn − nµ√
n

converges in distribution to the N(0, σ2) distribution as n→∞.

Proof Without loss of generality, assume that µ = 0. Then the characteristic

function of the normalized sum Sn√
n

is given by ΦX( u√
n

)n, where ΦX denotes

the characteristic function of X1. Since X1 has mean 0 and finite second mo-

ment σ2, it follows that ΦX is twice differentiable with ΦX(0) = 1, Φ′X(0) = 0,

Φ′′X(0) = −σ2, and Φ′′X is continuous. By Taylor’s theorem (Theorem 11.5) ap-

plied separately to the real and imaginary parts of ΦX , for any u fixed,

ΦX

(
u√
n

)
= 1 +

u2

2n
(Re(Φ′′X(un)) + jIm(Φ′′X(vn))) ,

for some un and vn between 0 and u√
n

for all n. Note that un → 0 and vn → 0

as n → ∞, so Φ′′(un) → −σ2 and Φ′′(vn) → −σ2 as n → ∞. It follows that
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Re(Φ′′X(un))+ jIm(Φ′′X(vn))→ −σ2 as n→∞. Lemma 2.14 yields ΦX( u√
n

)n →
exp(−u

2σ2

2 ) as n→∞. Since pointwise convergence of characteristic functions to

a valid characteristic function implies convergence in distribution, the proposition

is proved.

2.4 Convex functions and Jensen’s inequality

Let ϕ be a function on R with values in R ∪ {+∞} such that ϕ(x) < ∞ for at

least one value of x. Then ϕ is said to be convex if for any a, b and λ with a < b

and 0 ≤ λ ≤ 1

ϕ(aλ+ b(1− λ)) ≤ λϕ(a) + (1− λ)ϕ(b).

This means that the graph of ϕ on any interval [a, b] lies below the line segment

equal to ϕ at the endpoints of the interval.

proposition 2.17 Suppose f is a function with domain R. (a) If f is contin-

uously differentiable, f is convex if and only if f ′ is nondecreasing. (b) If f is

twice continuously differentiable, f is convex if and only if f ′′(v) ≥ 0 for all v.

Proof (a) (if) Suppose f is continuously differentiable. Given s ≤ t, define

Ds,t = λf(s) + (1− λ)f(t)− f(λs+ (1− λ)t). We claim that

Ds,t = (1− λ)

∫ t

s

(f ′(x)− f ′(λs+ (1− λ)x) dx. (2.7)

To verify (2.7), fix s and note that (2.7) is true if t = s, for then both sides are

zero, and the derivative with respect to t of each side of (2.7) is the same, equal

to (1− λ) (f ′(t)− f ′(λs+ (1− λ)t)) . If f ′ is nondecreasing, then the integrand

in (2.7) is nonnegative, so Ds,t ≥ 0, so f is convex.

(only if) Turning to the “only if” part of (a), suppose f is convex, and let s < t.

For any h > 0 small enough that s < s+ h < t < t+ h,

f(s+ h)(t− s+ h) ≤ (t− s)f(s) + hf(t+ h) (2.8)

f(t)(t− s+ h) ≤ hf(s) + (t− s)f(t+ h) (2.9)

by the convexity of f. Combining (2.8) and (2.9) by summing the left hand sides

and right hand sides, rearranging, and multiplying by a positive constant, yields

f(s+ h)− f(s)

h
≤ f(t+ h)− f(t)

h
. (2.10)

Letting h → 0 in (2.10) yields f ′(s) ≤ f ′(t), so f ′ is nondecreasing. Part (a) is

proved.

(b) Suppose f is twice continuously differentiable. Part (b) follows from part (a)

and the fact f ′ is nondecreasing if and only if f ′′(v) ≥ 0 for all v.
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Examples of convex functions include:

ax2 + bx+ c for constants a, b, c with a ≥ 0,

eλx for λ constant,

ϕ(x) =

{
− lnx x > 0

+∞ x ≤ 0,
ψ(x) =


x lnx x > 0

0 x = 0

+∞ x < 0.

theorem 2.18 (Jensen’s inequality) Let ϕ be a convex function and let X be

a random variable such that E[X] is finite. Then E[ϕ(X)] ≥ ϕ(E[X]).

For example, Jensen’s inequality implies that E[X2] ≥ E[X]2, which also

follows from the fact Var(X) = E[X2]− E[X]2.

Proof Since ϕ is convex, there is a tangent to the graph of ϕ at E[X], meaning

there is a function L of the form L(x) = a + bx such that ϕ(x) ≥ L(x) for

all x and ϕ(E[X]) = L(E[X]). See the illustration in Figure 2.12. Therefore

E[ϕ(X)] ≥ E[L(X)] = L(E[X]) = ϕ(E[X]), which establishes the theorem.

(x)

L(x)
x

E[X]

φ

Figure 2.12 A convex function and a tangent linear function.

A function ϕ is concave if −ϕ is convex. If ϕ is concave, E[ϕ(X)] ≤ ϕ(E[X]).

2.5 Chernoff bound and large deviations theory

Let X1, X2, . . . be an iid sequence of random variables with finite mean µ, and

let Sn = X1 + · · ·+Xn. The weak law of large numbers implies that for fixed a

with a > µ, P{Snn ≥ a} → 0 as n → ∞. In case the Xi’s have finite variance,

the central limit theorem offers a refinement of the law of large numbers, by

identifying the limit of P{Snn ≥ an}, where (an) is a sequence that converges to

µ in the particular manner: an = µ+ c√
n

. For fixed c, the limit is not zero. One

can think of the central limit theorem, therefore, to concern “normal” deviations

of Sn from its mean. Large deviations theory, by contrast, addresses P{Snn ≥ a}
for a fixed, and in particular it identifies how quickly P{Snn ≥ a} converges to

zero as n → ∞. We shall first describe the Chernoff bound, which is a simple
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upper bound on P{Snn ≥ a}. Then Cramér’s theorem, to the effect that the

Chernoff bound is in a certain sense tight, is stated.

The moment generating function of X1 is defined by M(θ) = E[eθX1 ], and

lnM(θ) is called the log moment generating function. Since eθX1 is a positive

random variable, the expectation, and hence M(θ) itself, is well-defined for all

real values of θ, with possible value +∞. The Chernoff bound is simply given as

P

{
Sn
n
≥ a

}
≤ exp(−n[θa− lnM(θ)]) for θ ≥ 0. (2.11)

The bound (2.11), like the Chebychev inequality, is a consequence of Markov’s

inequality applied to an appropriate function. For θ ≥ 0:

P

{
Sn
n
≥ a

}
= P{eθ(X1+···+Xn−na) ≥ 1}

≤ E[eθ(X1+···+Xn−na)]

= E[eθX1 ]ne−nθa = exp(−n[θa− lnM(θ)]).

To make the best use of the Chernoff bound we can optimize the bound by

selecting the best θ. Thus, we wish to select θ ≥ 0 to maximize aθ − lnM(θ).

In general the log moment generating function lnM is convex. Note that

lnM(0) = 0. Let us suppose that M(θ) is finite for some θ > 0. Then

d lnM(θ)

dθ

∣∣∣∣
θ=0

=
E[X1e

θX1 ]

E[eθX1 ]

∣∣∣∣
θ=0

= E[X1].

The sketch of a typical case is shown in Figure 2.13. Figure 2.13 also shows the

ln M(  )

!

a!

l(a)

!

Figure 2.13 A log moment generating function and a line of slope a.

line of slope a. Because of the assumption that a > E[X1], the line lies strictly

above lnM(θ) for small enough θ and below lnM(θ) for all θ < 0. Therefore,

the maximum value of θa− lnM(θ) over θ ≥ 0 is equal to l(a), defined by

l(a) = sup
−∞<θ<∞

θa− lnM(θ). (2.12)

Thus, the Chernoff bound in its optimized form, is

P

{
Sn
n
≥ a

}
≤ exp(−nl(a)) a > E[X1].
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There does not exist such a clean lower bound on the large deviation prob-

ability P{Snn ≥ a}, but by the celebrated theorem of Cramér stated next, the

Chernoff bound gives the right exponent.

theorem 2.19 (Cramér’s theorem) Suppose E[X1] is finite, and that E[X1] <

a. Then for ε > 0 there exists a number nε such that

P

{
Sn
n
≥ a

}
≥ exp(−n(l(a) + ε)) (2.13)

for all n ≥ nε. Combining this bound with the Chernoff inequality yields

lim
n→∞

1

n
lnP

{
Sn
n
≥ a

}
= −l(a).

In particular, if l(a) is finite (equivalently if P{X1 ≥ a} > 0) then

P

{
Sn
n
≥ a

}
= exp(−n(l(a) + εn)),

where (εn) is a sequence with εn ≥ 0 and limn→∞ εn = 0.

Similarly, if a < E[X1] and l(a) is finite, then

P

{
Sn
n
≤ a

}
= exp(−n(l(a) + εn)),

where εn is a sequence with εn ≥ 0 and limn→∞ εn = 0. Informally, we can write

for n large:

P

{
Sn
n
∈ da

}
≈ e−nl(a)da.

Proof The lower bound (2.13) is proved here under the additional assumption

that X1 is a bounded random variable: P{|X1| ≤ C} = 1 for some constant C;

this assumption can be removed by a truncation argument covered in a homework

problem. Also, to avoid trivialities, suppose P{X1 > a} > 0. The assumption

that X1 is bounded and the monotone convergence theorem imply that the func-

tion M(θ) is finite and infinitely differentiable over θ ∈ R. Given θ ∈ R, let Pθ
denote a new probability measure on the same probability space that X1, X2, . . .

are defined on such that for any n and any event of the form {(X1, . . . , Xn) ∈ B},

Pθ{(X1, . . . , Xn) ∈ B} =
E
[
I{(X1,...,Xn)∈B}e

θSn
]

M(θ)n
.

In particular, if Xi has pdf f for each i under the original probability measure

P , then under the new probability measure Pθ, each Xi has pdf fθ defined by

fθ(x) = f(x)eθx

M(θ) , and the random variables X1, X2, . . . are independent under Pθ.

The pdf fθ is called the tilted version of f with parameter θ, and Pθ is similarly

called the tilted version of P with parameter θ. It is not difficult to show that
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the mean and variance of the Xi’s under Pθ are given by:

Eθ[X1] =
E
[
X1e

θX1
]

M(θ)
= (lnM(θ))′

Varθ[X1] = Eθ[X
2
1 ]− Eθ[X1]2 = (lnM(θ))′′.

Under the assumptions we’ve made, X1 has strictly positive variance under Pθ
for all θ, so that lnM(θ) is strictly convex.

The assumption P{X1 > a} > 0 implies that (aθ − lnM(θ)) → −∞ as

θ →∞. Together with the fact that lnM(θ) is differentiable and strictly convex,

there thus exists a unique value θ∗ of θ that maximizes aθ − lnM(θ). So l(a) =

aθ∗ − lnM(θ∗). Also, the derivative of aθ − lnM(θ) at θ = θ∗ is zero, so that

Eθ∗ [X] = (lnM(θ))′
∣∣∣∣
θ=θ∗

= a. Observe that for any b with b > a,

P

{
Sn
n
≥ a

}
=

∫
{ω:na≤Sn}

1 dP

=

∫
{ω:na≤Sn}

M(θ∗)ne−θ
∗Sn

eθ
∗SndP

M(θ∗)n

= M(θ∗)n
∫
{ω:na≤Sn}

e−θ
∗SndPθ∗

≥M(θ∗)n
∫
{ω:na≤Sn≤nb}

e−θ
∗SndPθ∗

≥M(θ∗)ne−θ
∗nbPθ∗{na ≤ Sn ≤ nb}.

Now M(θ∗)ne−θ
∗nb = exp(−n(l(a)+θ∗(b−a)}), and by the central limit theorem,

Pθ∗{na ≤ Sn ≤ nb} → 1
2 as n → ∞ so Pθ∗{na ≤ Sn ≤ nb} ≥ 1/3 for n large

enough. Therefore, for n large enough,

P

{
Sn
n
≥ a

}
≥ exp

(
−n
(
l(a) + θ∗(b− a) +

ln 3

n

))
.

Taking b close enough to a, implies (2.13) for large enough n.

Example 2.10 Let X1, X2, . . . be independent and exponentially distributed

with parameter λ = 1. Then

lnM(θ) = ln

∫ ∞
0

eθxe−xdx =

{
− ln(1− θ) θ < 1

+∞ θ ≥ 1
.

See Figure 2.14.

Therefore, for any a ∈ R,

l(a) = max
θ
{aθ − lnM(θ)}

= max
θ<1
{aθ + ln(1− θ)}.
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Figure 2.14 lnM(θ) and l(a) for an Exp(1) random variable.

If a ≤ 0 then l(a) = +∞. On the other hand, if a > 0 then setting the derivative

of aθ + ln(1− θ) to 0 yields the maximizing value θ = 1− 1
a , and therefore

l(a) =

{
a− 1− ln(a) a > 0

+∞ a ≤ 0
.

The function l is shown in Figure 2.14.

Example 2.11 Let X1, X2, . . . be independent Bernoulli random variables with

parameter p satisfying 0 < p < 1. Thus Sn has the binomial distribution. Then

lnM(θ) = ln(peθ + (1 − p)), which has asymptotic slope 1 as θ → +∞ and

converges to a constant as θ → −∞. Therefore, l(a) = +∞ if a > 1 or if a < 0.

For 0 ≤ a ≤ 1, we find aθ − lnM(θ) is maximized by θ = ln(a(1−p)
p(1−a) ), leading to

l(a) =

{
a ln(ap ) + (1− a) ln( 1−a

1−p ) 0 ≤ a ≤ 1

+∞ else
.

See Figure 2.15.

ln M(  )
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Figure 2.15 lnM(θ) and l(a) for a Bernoulli distribution.

Problems

2.1 Limits and infinite sums for deterministic sequences (a) Using the defi-

nition of a limit, show that limθ→0 θ(1 + cos(θ)) = 0.

(b) Using the definition of a limit, show that limθ→0,θ>0
1+cos(θ)

θ = +∞.
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(c) Determine whether the following sum is finite, and justify your answer:∑∞
n=1

1+
√
n

1+n2 .

2.2 The limit of the product is the product of the limits Consider two (de-

terministic) sequences with finite limits: limn→∞ xn = x and limn→∞ yn = y.

(a) Prove that the sequence (yn) is bounded.

(b) Prove that limn→∞ xnyn = xy. (Hint: Note that xnyn − xy = (xn − x)yn +

x(yn − y) and use part (a)).

2.3 The reciprocal of the limit is the limit of the reciprocal Using the defi-

nition of convergence for deterministic sequences, prove that if (xn) is a sequence

with a nonzero finite limit x∞, then the sequence (1/xn) converges to 1/x∞.

2.4 Limits of some deterministic series Determine which of the following se-

ries are convergent (i.e. have partial sums converging to a finite limit). Justify

your answers.

(a)

∞∑
n=0

3n

n!
(b)

∞∑
n=1

(n+ 2) lnn

(n+ 5)3
(c)

∞∑
n=1

1

(ln(n+ 1))5
.

2.5 On convergence of deterministic sequences and functions (a) Let xn =
8n2+n

3n2 for n ≥ 1. Prove that limn→∞ xn = 8
3 .

(b) Suppose fn is a function on some set D for each n ≥ 1, and suppose f is also

a function on D. Then fn is defined to converge to f uniformly if for any ε > 0,

there exists an nε such that |fn(x)− f(x)| ≤ ε for all x ∈ D whenever n ≥ nε. A

key point is that nε does not depend on x. Show that the functions fn(x) = xn

on the semi-open interval [0, 1) do not converge uniformly to the zero function.

(c) The supremum of a function f on D, written supD f , is the least upper bound

of f . Equivalently, supD f satisfies supD f ≥ f(x) for all x ∈ D, and given any

c < supD f , there is an x ∈ D such that f(x) ≥ c. Show that | supD f−supD g| ≤
supD |f − g|. Conclude that if fn converges to f uniformly on D, then supD fn
converges to supD f .

2.6 Convergence of alternating series Suppose b0 ≥ b1 ≥ · · · and that bk → 0

as k → ∞. The purpose of this problem is to prove, using the Cauchy criteria,

that the infinite sum
∑∞
k=0(−1)kbk exists and is finite. By definition, the sum

is equal to the limit of the partial sums sn =
∑n
k=0(−1)kbk as n → ∞, so it is

to be proved that the sequence (sn) has a finite limit. Please work to make your

proof as simple and clean as possible.

(a) Show if m ≥ n then sm is contained in the interval with endpoints sn and

sn+1.

(b) Show that (sn) is a Cauchy sequence. In particular, given ε > 0, specify how

Nε can be selected so that |sn − sm| < ε whenever m ≥ Nε and n ≥ Nε.
2.7 On the Dirichlet criterion for convergence of a series Let (ak) be a se-

quence with ak ≥ 0 for all k ≥ 0 such that
∑∞
k=0 ak is finite, and let L be a finite

positive constant.

(a) Use the Cauchy criterion to show that if (dk) is a sequence with |dk| ≤ Lak
for all k then the series

∑∞
k=0 dk converges to a finite value.
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Let An =
∑∞
k=n ak. Then ak = Ak − Ak+1 and the assumptions above about

(ak) are equivalent to the condition that (Ak) is a nonincreasing sequence con-

verging to zero. Assume (Bk) is a sequence with |Bk| ≤ L for all k ≥ 0. Let

Sn =
∑n
k=0Ak(Bk −Bk−1), with the convention B−1 = 0.

(b) Prove the summation by parts formula: Sn = (
∑n
k=0 akBk) +An+1Bn.

(c) Prove
∑∞
k=0Ak(Bk −Bk−1) converges to a finite limit.

(Note: If Bn = 1 for n even and Bn = 0 for n odd, the result of this problem

provides an alternative proof of the result of the previous problem.)

2.8 Convergence of sequences of random variables Let Θ be uniformly dis-

tributed on the interval [0, 2π]. In which of the four senses (a.s., m.s., p., d.) do

each of the following two sequences converge? Identify the limits, if they exist,

and justify your answers.

(a) (Xn : n ≥ 1) defined by Xn = cos(nΘ).

(b) (Yn : n ≥ 1) defined by Yn = |1− Θ
π |
n.

2.9 Convergence of a random sequence Suppose Un for n ≥ 1 are indepen-

dent random variables, each uniformly distributed on the interval [0, 1]. Let

X0 = 0, and define Xn for n ≥ 1 by the following recursion:

Xn = max

{
Xn−1,

Xn−1 + Un
2

}
.

(a) Does limn→∞Xn exist in the a.s. sense?

(b) Does limn→∞Xn exist in the m.s. sense?

(c) Identify the random variable Z such that Xn → Z in probability as n→∞.
(Justify your answer.)

2.10 Convergence of random variables on (0,1 ] Let Ω = (0, 1], let F be the

Borel σ algebra of subsets of (0, 1], and let P be the probability measure on F
such that P ([a, b]) = b − a for 0 < a ≤ b ≤ 1. For the following sequences of

random variables on (Ω,F , P ), determine in which of the four senses (a.s., p.,

m.s, d.), if any, each of the following sequences of random variables converges.

Justify your answers.

(a) Xn(ω) = nω− bnωc, where bxc is the largest integer less than or equal to x.

(b) Xn(ω) = n2ω if 0 < ω < 1/n, and Xn(ω) = 0 otherwise.

(c) Xn(ω) = (−1)n

n
√
ω
.

(d) Xn(ω) = nωn.

(e) Xn(ω) = ω sin(2πnω). (Try at least for a heuristic justification.)

2.11 Convergence of some sequences of random variables Let V have the ex-

ponential distribution with parameter λ = 3. Determine which of the four

sense(s), a.s., m.s., p., or d., that each of the following three sequences of random

variables converges, to a finite limit random variable.

(a) Xn = cos
(
V
n

)
for n ≥ 1.

(b) Yn = V n

n for n ≥ 1.

(c) Zn =
(
1 + V

n

)n
for n ≥ 1.
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2.12 A Gaussian sequence SupposeW1,W2, · · · are independent Gaussian ran-

dom variables with mean zero and variance σ2 > 0. Define the sequence (Xn :

n ≥ 0) recursively by X0 = 0 and Xk+1 = Xk+Wk

2 . Determine in which one(s) of

the four senses, a.s., m.s., p., and d., the sequence (Xn) converges.

2.13 On the maximum of a random walk with negative drift Let X1, X2, . . .

be independent, identically distributed random variables with mean E[Xi] = −1.

Let S0 = 0, and for n ≥ 1, let Sn = X1 + · · ·+Xn. Let Z = max{Sn : n ≥ 0}.
(a) Show that Z is well defined with probability one, and P{Z < +∞} = 1.

(b) Does there exist a finite constant L, depending only on the above assump-

tions, such that E[Z] ≤ L? Justify your answer. (Hint: Z ≥ max{S0, S1} =

max{0, X1}.)
2.14 Convergence of a sequence of discrete random variables LetXn = X+

(1/n) where P{X = i} = 1/6 for i = 1, 2, 3, 4, 5 or 6, and let Fn denote the dis-

tribution function of Xn.

(a) For what values of x does Fn(x) converge to F (x) as n tends to infinity?

(b) At what values of x is FX(x) continuous?

(c) Does the sequence (Xn) converge in distribution to X?

2.15 Convergence in distribution to a nonrandom limit Let (Xn, n ≥ 1) be

a sequence of random variables and let X be a random variable such that

P{X = c} = 1 for some constant c. Prove that if limn→∞Xn = X d., then

limn→∞Xn = X p. That is, prove that convergence in distribution to a constant

implies convergence in probability to the same constant.

2.16 Convergence of a minimum Let U1, U2, . . . be a sequence of independent

random variables, with each variable being uniformly distributed over the inter-

val [0, 1], and let Xn = min{U1, . . . , Un} for n ≥ 1.

(a) Determine in which of the senses (a.s., m.s., p., d.) the sequence (Xn) con-

verges as n→∞, and identify the limit, if any. Justify your answers.

(b) Determine the value of the constant θ so that the sequence (Yn) defined by

Yn = nθXn converges in distribution as n→∞ to a nonzero limit, and identify

the limit distribution.

2.17 Convergence of a product Let U1, U2, . . . be a sequence of independent

random variables, with each variable being uniformly distributed over the inter-

val [0, 2], and let Xn = U1U2 · · ·Un for n ≥ 1.

(a) Determine in which of the senses (a.s., m.s., p., d.) the sequence (Xn) con-

verges as n→∞, and identify the limit, if any. Justify your answers.

(b) Determine the value of the constant θ so that the sequence (Yn) defined by

Yn = nθ ln(Xn) converges in distribution as n→∞ to a nonzero limit.

2.18 Limits of functions of random variables Let g and h be functions defined

as follows:

g(x) =


−1 if x ≤ −1

x if − 1 ≤ x ≤ 1

1 if x ≥ 1

h(x) =

{
−1 if x ≤ 0

1 if x > 0
.

Thus, g represents a clipper and h represents a hard limiter. Suppose (Xn : n ≥ 0)
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is a sequence of random variables, and that X is also a random variable, all on

the same underlying probability space. Give a yes or no answer to each of the four

questions below. For each yes answer, identify the limit and give a justification.

For each no answer, give a counterexample.

(a) If limn→∞Xn = X a.s., then does limn→∞ g(Xn) a.s. necessarily exist?

(b) If limn→∞Xn = X m.s., then does limn→∞ g(Xn) m.s. necessarily exist?

(c) If limn→∞Xn = X a.s., then does limn→∞ h(Xn) a.s. necessarily exist?

(d) If limn→∞Xn = X m.s., then does limn→∞ h(Xn) m.s. necessarily exist?

2.19 Sums of i.i.d. random variables, I A gambler repeatedly plays the fol-

lowing game: She bets one dollar and then there are three possible outcomes:

she wins two dollars back with probability 0.4, she gets just the one dollar back

with probability 0.1, and otherwise she gets nothing back. Roughly what is the

probability that she is ahead after playing the game one hundred times?

2.20 Sums of i.i.d. random variables, II Let X1, X2, . . . be independent ran-

dom variable with P{Xi = 1} = P{Xi = −1} = 0.5.

(a) Compute the characteristic function of the following random variables: X1,

Sn = X1 + · · ·+Xn, and Vn = Sn/
√
n.

(b) Find the pointwise limits of the characteristic functions of Sn and Vn as

n→∞.

(c) In what sense(s), if any, do the sequences (Sn) and (Vn) converge?

2.21 Sums of i.i.d. random variables, III Fix λ > 0. For each integer n > λ,

let X1,n, X2,n, . . . , Xn,n be independent random variables such that P [Xi,n =

1] = λ/n and P{Xi,n = 0} = 1− (λ/n). Let Yn = X1,n +X2,n + · · ·+Xn,n.

(a) Compute the characteristic function of Yn for each n.

(b) Find the pointwise limit of the characteristic functions as n→∞ tends. The

limit is the characteristic function of what probability distribution?

(c) In what sense(s), if any, does the sequence (Yn) converge?

2.22 Convergence and robustness of the sample median Suppose F is a CDF

such that there is a unique value c∗ such that F (c∗) = 0.5. Let X1, X2, . . .

be independent random variables with CDF F. For n ≥ 1, let Yn denote the

sample median of X1, . . . , X2n+1. That is, for given ω ∈ Ω, if the numbers

X1(ω), . . . , X2n+1(ω) are sorted in nondecreasing order, then Yn(ω) is the n+1st

number.

(a) Show that Yn converges almost surely (a.s.) as n→∞, and identify the limit.

(It follows that Yn also converges in the p. and d. senses.)

(b) Show that P{|Yn| ≥ c} ≤ 22n+1P{|X1| ≥ c}n+1 for all c > 0. This shows

the tails of the distribution of Yn are smaller than the tales of the distribution

represented by F. (Hint: The union bound is sufficient. Specifically, the event

{|Yn| ≥ c} is contained in the union of
(

2n+1
n+1

)
overlapping events (what are

they?), each having probability P{|X1| ≥ c}n+1, and
(

2n+1
n+1

)
≤ 22n+1. )

(c) Show that if F is the CDF for the Cauchy distribution, with pdf f(u) =
1

π(1+u2) , then E[|Y1||] < ∞. So E[Y1] is well defined, and by symmetry, is

equal to zero, even though E[X1] is not well defined. (Hint: Try finding a
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simple upper bound for P{|Yn| ≥ c} and use the area rule for expectation:

E[|Y1|] =
∫∞

0
P{|Y1| ≥ c}dc.)

2.23 On the growth of the maximum of n independent exponentials Suppose

that X1, X2, . . . are independent random variables, each with the exponential dis-

tribution with parameter λ = 1. For n ≥ 2, let Zn = max{X1,...,Xn}
ln(n) .

(a) Find a simple expression for the CDF of Zn.

(b) Show that (Zn) converges in distribution to a constant, and find the constant.

(Note: It follows immediately that Zn converges in p. to the same constant. It

can also be shown that (Zn) converges in the a.s. and m.s. senses to the same

constant.)

2.24 Normal approximation for quantization error Suppose each of 100 real

numbers are rounded to the nearest integer and then added. Assume the indi-

vidual roundoff errors are independent and uniformly distributed over the inter-

val [−0.5, 0.5]. Using the normal approximation suggested by the central limit

theorem, find the approximate probability that the absolute value of the sum of

the errors is greater than 5.

2.25 Limit behavior of a stochastic dynamical system Let W1,W2, . . . be a

sequence of independent, N(0, 0.5) random variables. Let X0 = 0, and define

X1, X2, . . . recursively by Xk+1 = X2
k + Wk. Determine in which of the senses

(a.s., m.s., p., d.) the sequence (Xn) converges as n→∞, and identify the limit,

if any. Justify your answer.

2.26 Applications of Jensen’s inequality Explain how each of the inequalties

below follows from Jensen’s inequality. Specifically, identify the convex function

and random variable used.

(a) E[ 1
X ] ≥ 1

E[X] , for a positive random variable X with finite mean.

(b) E[X4] ≥ E[X2]2, for a random variable X with finite second moment.

(c) D(f |g) ≥ 0, where f and g are positive probability densities on a set A, and

D is the divergence distance defined by D(f |g) =
∫
A
f(x) ln f(x)

g(x)dx. (The base

used in the logarithm is not relevant.)

2.27 Convergence analysis of successive averaging Let U1, U2, ... be indepen-

dent random variables, each uniformly distributed on the interval [0,1]. Let

X0 = 0 and X1 = 1, and for n ≥ 1 let Xn+1 = (1−Un)Xn +UnXn−1. Note that

given Xn−1 and Xn, the variable Xn+1 is uniformly distributed on the interval

with endpoints Xn−1 and Xn.

(a) Sketch a typical sample realization of the first few variables in the sequence.

(b) Find E[Xn] for all n.

(c) Show that Xn converges in the a.s. sense as n goes to infinity. Explain your

reasoning. (Hint: Let Dn = |Xn − Xn−1|. Then Dn+1 = UnDn, and if m > n

then |Xm −Xn| ≤ Dn.)

2.28 Understanding the Markov inequality Suppose X is a random variable

with E[X4] = 30.

(a) Derive an upper bound on P{|X| ≥ 10}. Show your work.

(b) (Your bound in (a) must be the best possible in order to get both parts (a)
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and (b) correct). Find a distribution for X such that the bound you found in

part (a) holds with equality.

2.29 Mean square convergence of a random series The sum of infinitely many

random variables, X1 + X2 + · · · is defined as the limit as n tends to infinity

of the partial sums X1 + X2 + · · · + Xn. The limit can be taken in the usual

senses (in probability, in distribution, etc.). Suppose that the Xi are mutually

independent with mean zero. Show that X1 +X2 + · · · exists in the mean square

sense if and only if the sum of the variances, Var(X1) + Var(X2) + · · · , is finite.

(Hint: Apply the Cauchy criteria for mean square convergence.)

2.30 Portfolio allocation Suppose that you are given one unit of money (for

example, a million dollars). Each day you bet a fraction α of it on a coin toss.

If you win, you get double your money back, whereas if you lose, you get half of

your money back. Let Wn denote the wealth you have accumulated (or have left)

after n days. Identify in what sense(s) the limit limn→∞Wn exists, and when it

does, identify the value of the limit

(a) for α = 0 (pure banking),

(b) for α = 1 (pure betting),

(c) for general α.

(d) What value of α maximizes the expected wealth, E[Wn]? Would you recom-

mend using that value of α?

(e) What value of α maximizes the long term growth rate of Wn (Hint: Consider

ln(Wn) and apply the LLN.)

2.31 A large deviation Let X1, X2, ... be independent, N(0,1) random vari-

ables. Find the constant b such that

P{X2
1 +X2

2 + . . .+X2
n ≥ 2n} = exp(−n(b+ εn)),

where εn → 0 as n → ∞. What is the numerical value of the approximation

exp(−nb) if n = 100.

2.32 Some large deviations Let U1, U2, . . . be a sequence of independent ran-

dom variables, each uniformly distributed on the interval [0, 1].

(a) For what values of c ≥ 0 does there exist b with b > 0 (depending on c) so

that P{U1 + · · ·+ Un ≥ cn} ≤ e−bn for all n ≥ 1?

(b) For what values of c ≥ 0 does there exist b with b > 0 (depending on c) so

that P{U1 + · · ·+ Un ≥ c(Un+1 + · · ·+ U2n)} ≤ e−bn for all n ≥ 1?

2.33 Sums of independent Cauchy random variables Let X1, X2, . . . be inde-

pendent, each with the standard Cauchy density function. The standard Cauchy

density and its characteristic function are given by f(x) = 1
π(1+x2) and Φ(u) =

exp(−|u|). Let Sn = X1 +X2 + · · ·+Xn.

(a) Find the characteristic function of Sn
nθ

for a constant θ.

(b) Does Sn
n converge in distribution as n→∞? Justify your answer, and if the

answer is yes, identify the limiting distribution.

(c) Does Sn
n2 converge in distribution as n→∞? Justify your answer, and if the

answer is yes, identify the limiting distribution.
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(d) Does Sn√
n

converge in distribution as n→∞? Justify your answer, and if the

answer is yes, identify the limiting distribution.

2.34 A rapprochement between the CLT and large deviations LetX1, X2, . . .

be independent, identically distributed random variables with mean zero, vari-

ance σ2, and probability density function f . Suppose the moment generating

function M(θ) is finite for θ in an open interval I containing zero.

(a) Show that for θ ∈ I, (lnM(θ))′′ is the variance for the “tilted” density func-

tion fθ defined by fθ(x) = f(x) exp(θx−lnM(θ)). In particular, since (lnM(θ))′′

is nonnegative, lnM is a convex function. (The interchange of expectation and

differentiation with respect to θ can be justified for θ ∈ I. You needn’t give

details.)

Let b > 0 and let Sn = X1 + · · ·+Xn for n any positive integer. By the central

limit theorem, P (Sn ≥ b
√
n) → Q(b/σ) as n → ∞. An upper bound on the Q

function is given byQ(u) =
∫∞
u

1√
2π
e−s

2/2ds ≤
∫∞
u

s
u
√

2π
e−s

2/2ds = 1
u
√

2π
e−u

2/2.

This bound is a good approximation if u is moderately large. Thus, Q(b/σ) ≈
σ

b
√

2π
e−b

2/2σ2

if b/σ is moderately large.

(b) The large deviations upper bound yields P{Sn ≥ b
√
n} ≤ exp(−n`(b/

√
n)).

Identify the limit of the large deviations upper bound as n → ∞, and compare

with the approximation given by the central limit theorem. (Hint: Approximate

lnM near zero by its second order Taylor’s approximation.)

2.35 Chernoff bound for Gaussian and Poisson random variables (a) Let X

have the N(µ, σ2) distribution. Find the optimized Chernoff bound on P{X ≥
E[X] + c} for c ≥ 0.

(b) Let Y have the Poi(λ) distribution. Find the optimized Chernoff bound on

P{Y ≥ E[Y ] + c} for c ≥ 0.

(c) (The purpose of this problem is to highlight the similarity of the answers

to parts (a) and (b).) Show that your answer to part (b) can be expressed as

P{Y ≥ E[Y ] + c} ≤ exp(− c2

2λψ( cλ )) for c ≥ 0, where ψ(u) = 2g(1 + u)/u2, with

g(s) = s(ln s−1)+1. (Note: Y has variance λ, so the essential difference between

the normal and Poisson bounds is the ψ term. The function ψ is strictly positive

and strictly decreasing on the interval [−1,+∞), with ψ(−1) = 2 and ψ(0) = 1.

Also, uψ(u) is strictly increasing in u over the interval [−1,+∞). )

2.36 Large deviations of a mixed sum Let X1, X2, . . . have the Exp(1) dis-

tribution, and Y1, Y2, . . . have the Poi(1) distribution. Suppose all these ran-

dom variables are mutually independent. Let 0 ≤ f ≤ 1, and suppose Sn =

X1 + · · · + Xnf + Y1 + · · · + Y(1−f)n. Define l(f, a) = limn→∞
1
n lnP{Snn ≥ a}

for a > 1. Cramérs theorem can be extended to show that l(f, a) can be com-

puted by replacing the probability P{Snn ≥ a} by its optimized Chernoff bound.

(For example, if f = 1/2, we simply view Sn as the sum of the n
2 i.i.d. random

variables, X1 +Y1, . . . , Xn
2

+Yn
2

.) Compute l(f, a) for f ∈ {0, 1
3 ,

2
3 , 1} and a = 4.

2.37 Large deviation exponent for a mixture distribution Problem 2.36 con-

cerns an example such that 0 < f < 1 and Sn is the sum of n independent

random variables, such that a fraction f of the random variables have a CDF
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FY and a fraction 1 − f have a CDF FZ . It is shown in the solutions that the

large deviations exponent for Sn
n is given by:

l(a) = max
θ
{θa− fMY (θ)− (1− f)MZ(θ)} ,

where MY (θ) and MZ(θ) are the log moment generating functions for FY and

FZ respectively.

Consider the following variation. Let X1, X2, . . . , Xn be independent, and iden-

tically distributed, each with CDF given by FX(c) = fFY (c) + (1 − f)FZ(c).

Equivalently, each Xi can be generated by flipping a biased coin with probabil-

ity of heads equal to f , and generating Xi using CDF FY if heads shows and

generating Xi with CDF FZ if tails shows. Let S̃n = X1 + · · · + Xn, and let l̃

denote the large deviations exponent for S̃n
n .

(a) Express the function l̃ in terms of f , MY , and MZ .

(b) Determine which is true and give a proof: l̃(a) ≤ l(a) for all a, or l̃(a) ≥ l(a)

for all a. Can you also offer an intuitive explanation?

2.38 Bennett’s inequality and Bernstein’s inequality This problem illustrates

that the proof of the Chernoff inequality is very easy to extend in many direc-

tions. Suppose it is known that X1, X2, . . . are independent with mean zero. Also,

suppose that for some known positive constants L and d2
i for i ≥ 1, Var(Xi) ≤ d2

i

and P{|Xi| ≤ L} = 1.

(a) Prove for θ > 0 that E[eθXi ] ≤ exp
(
d2i
L2 (eθL − 1− θL)

)
. (Hint: Use the

Taylor series expansion of eu about u = 0, the fact |Xi|k ≤ |Xi|2Lk−2 for k ≥ 2,

and the fact 1 + y ≤ ey for all y.)

(b) For α > 0, find θ that maximizes

θα−
∑n
i=1 d

2
i

L2
(eθL − 1− θL).

(c) Prove Bennett’s inequality: For α > 0,

P

{
n∑
i=1

Xi ≥ α

}
≤ exp

(
−
∑n
i=1 d

2
i

L2
ϕ

(
αL∑
i d

2
i

)
,

)
,

where ϕ(u) = (1 + u) ln(1 + u)− u.
(d) Show that ϕ(u)/(u2/2)→ 1 as u→ 0 with u ≥ 0. (Hint: Expand ln(1 +u)

in a Taylor series about u = 0.)

(e) Using the fact ϕ(u) ≥ u2

2(1+u
3 ) for u > 0 (you needn’t prove it), prove

Bernstein’s inequality:

P

{
n∑
i=1

Xi ≥ α

}
≤ exp

(
−

1
2α

2∑n
i=1 d

2
i + αL

3

)
.

2.39 Bernstein’s inequality in various asymptotic regimes In the special case

that the Xi’s are independent and identically distributed with variance σ2 (and

mean zero and there exists L such that P{|X1| ≤ L} = 1) Berntein’s inequality

becomes P {Sn ≥ α} ≤ exp
(
−

1
2α

2

nσ2+αL
3

)
. See how the bound behaves for each
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of the following asymptotic regimes as n→∞:

(a) The values of σ2 and L are fixed, and α = θ
√
n for some fixed θ. (i.e. the

central limit theorem regime)

(b) The values of σ2 and L are fixed, and α = cn for some fixed c. (i.e. the large

deviations regime)

(c) The values of L and α are fixed and σ2 = γ
n for some constant γ. (This

regime is similar to the convergence of the binomial distribution with p = λ
n to

the Poisson distribution; the distribution of the X’s depends on n.)

2.40 The sum of products of a sequence of uniform random variables

Let A1, A2, . . . be a sequence of independent random variables, with

P (Ai = 1) = P (Ai = 1
2 ) = 1

2 for all i. Let Bk = A1 · · ·Ak.

(a) Does limk→∞Bk exist in the m.s. sense? Justify your answer.

(b) Does limk→∞Bk exist in the a.s. sense? Justify your answer.

(c) Let Sn = B1 + . . .+Bn. Show that limm,n→∞E[SmSn] = 35
3 , which implies

that limn→∞ Sn exists in the m.s. sense.

(d) Find the mean and variance of the limit random variable.

(e) Does limn→∞ Sn exist in the a.s. sense? Justify your answer.

2. 41* Distance measures (metrics) for random variables For random vari-

ables X and Y , define

d1(X,Y ) = E[| X − Y | /(1+ | X − Y |)]
d2(X,Y ) = min{ε ≥ 0 : FX(x+ ε) + ε ≥ FY (x) and FY (x+ ε) + ε ≥ FX(x) for all x}
d3(X,Y ) = (E[(X − Y )2])1/2,

where in defining d3(X,Y ) it is assumed that E[X2] and E[Y 2] are finite.

(a) Show that di is a metric for i = 1, 2 or 3. Clearly di(X,X) = 0 and

di(X,Y ) = di(Y,X). Verify in addition the triangle inequality. (The

only other requirement of a metric is that di(X,Y ) = 0 only if X = Y .

For this to be true we must think of the metric as being defined on

equivalence classes of random variables.)

(b) Let X1, X2, . . . be a sequence of random variables and let Y be a random

variable. Show that Xn converges to Y

(i) in probability if and only if d1(X,Y ) converges to zero,

(ii) in distribution if and only if d2(X,Y ) converges to zero,

(iii) in the mean square sense if and only if d3(X,Y ) converges to zero

(assume E[Y 2] <∞).

(Hint for (i): It helps to establish that

d1(X,Y )− ε/(1 + ε) ≤ P{| X − Y |≥ ε} ≤ d1(X,Y )(1 + ε)/ε.

The “only if” part of (ii) is a little tricky. The metric d2 is called the

Levy metric.

2.42* Weak Law of Large Numbers Let X1, X2, . . . be a sequence of random

variables which are independent and identically distributed. Assume that E[Xi]
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exists and is equal to zero for all i. If Var(Xi) is finite, then Chebychev’s inequal-

ity easily establishes that (X1 + · · · + Xn)/n converges in probability to zero.

Taking that result as a starting point, show that the convergence still holds even

if Var(Xi) is infinite. (Hint: Use “truncation” by defining Uk = XkI{| Xk |≥ c}
and Vk = XkI{| Xk |< c} for some constant c. E[| Uk |] and E[Vk] don’t depend

on k and converge to zero as c tends to infinity. You might also find the previous

problem helpful.

2.43* Completing the proof of Cramer’s theorem Prove Theorem 2.19 with-

out the assumption that the random variables are bounded. To begin, select a

large constant C and let X̃i denote a random variable with the conditional dis-

tribution of Xi given that |Xi| ≤ C. Let S̃n = X̃1 + · · · + X̃n and let l̃ denote

the large deviations exponent for X̃i. Then

P

{
Sn
n
≥ n

}
≥ P{|X1| ≤ C}nP

{
S̃n
n
≥ n

}
.

One step is to show that l̃(a) converges to l(a) as C → ∞. It is equivalent to

showing that if a pointwise monotonically increasing sequence of convex functions

converges pointwise to a nonnegative convex function that is strictly positive

outside some bounded set, then the minima of the convex functions converges to

a nonnegative value.



3 Random Vectors and Minimum
Mean Squared Error Estimation

Many of the concepts of random processes apply to the case there is only a fi-

nite number of observation times, leading to random vectors. In particular, we

begin this chapter by seeing how the distribution of a random vector can be

simplified by a linear change in coordinates–this same technique will be used

in more general contexts in later chapters. This chapter also presents the geo-

metric framework for estimation with the minimum mean squared error perfor-

mance criterion, in which means and covariances of random variables come to the

forefront. The framework includes the orthogonality principle that characterizes

projections, and innovations sequences, in which new information is in a sense

purified in order to simplify recursive estimation. We shall see that the multi-

dimensional Gaussian distribution is particularly suitable for modeling systems

with linear processing. An introduction to Kalman filtering, a flexible framework

for estimation and tracking, is given, with an emphasis on the central role of the

innovations sequence. The reader is encouraged to review the section on matrices

in the appendix before reading this chapter.

3.1 Basic definitions and properties

A random vector X of dimension m has the form

X =


X1

X2

...

Xm

 ,

where the Xi’s are random variables all on the same probability space. The

expectation of X (also called the mean of X) is the vector E[X] defined by

E[X] =


E[X1]

E[X2]
...

E[Xm].


Suppose Y is another random vector on the same probability space as X, with

dimension n. The cross correlation matrix of X and Y is the m × n matrix
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E[XY T ], which has ijth entry E[XiYj ]. The cross covariance matrix of X and

Y , denoted by Cov(X,Y ), is the matrix with ijth entry Cov(Xi, Yj). Note that

the correlation matrix is the matrix of correlations, and the covariance matrix is

the matrix of covariances.

In the particular case that n = m and Y = X, the cross correlation matrix

of X with itself, is simply called the correlation matrix of X, and is written as

E[XXT ], and it has ijth entry E[XiXj ]. The cross covariance matrix of X with

itself, Cov(X,X), has ijth entry Cov(Xi, Xj). This matrix is called the covariance

matrix of X, and it is also denoted by Cov(X). So the notations Cov(X) and

Cov(X,X) are interchangeable. While the notation Cov(X) is more concise, the

notation Cov(X,X) is more suggestive of the way the covariance matrix scales

when X is multiplied by a constant.

Elementary properties of expectation, correlation, and covariance for vectors

follow immediately from similar properties for ordinary scalar random variables.

These properties include the following (here A and C are nonrandom matrices

and b and d are nonrandom vectors).

1. E[AX + b] = AE[X] + b

2. Cov(X,Y )=E[X(Y−E[Y ])T ]=E[(X−E[X])Y T ]=E[XY T ]−(E[X])(E[Y ])T

3. E[(AX)(CY )T ] = AE[XY T ]CT

4. Cov(AX + b, CY + d) = ACov(X,Y )CT

5. Cov(AX + b) = ACov(X)AT

6. Cov(W +X,Y + Z) = Cov(W,Y ) + Cov(W,Z) + Cov(X,Y ) + Cov(X,Z).

In particular, the second property above shows the close connection between

correlation matrices and covariance matrices. In particular, if the mean vector

of either X or Y is zero, then the cross correlation and cross covariance matrices

are equal.

Not every square matrix is a correlation matrix. For example, the diagonal

elements must be nonnegative. Also, Schwarz’s inequality (see Section 1.10) must

be respected, so that |Cov(Xi, Xj)| ≤
√

Cov(Xi, Xi)Cov(Xj , Xj). Additional

inequalities arise for consideration of three or more random variables at a time.

Of course a square diagonal matrix is a correlation matrix if and only if its

diagonal entries are nonnegative, because only vectors with independent entries

need be considered. But if an m×m matrix is not diagonal, it is not a priori clear

whether there are m random variables with all m(m+1)/2 correlations matching

the entries of the matrix. The following proposition neatly resolves these issues.

proposition 3.1 Correlation matrices and covariance matrices are symmet-

ric positive semidefinite matrices. Conversely, if K is a symmetric positive semidef-

inite matrix, then K is the covariance matrix and correlation matrix for some

mean zero random vector X.

Proof If K is a correlation matrix, then K = E[XXT ] for some random vector
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X. Given any vector α, αTX is a scaler random variable, so

αTKα = E[αTXXTα] = E[(αTX)(XTα)] = E[(αTX)2] ≥ 0.

Similarly, if K = Cov(X,X) then for any vector α,

αTKα = αTCov(X,X)α = Cov(αTX,αTX) = Var(αTX) ≥ 0.

The first part of the proposition is proved.

For the converse part, suppose that K is an arbitrary symmetric positive

semidefinite matrix. Let λ1, . . . , λm and U be the corresponding set of eigen-

values and orthonormal matrix formed by the eigenvectors. (See Section 11.7

in the appendix.) Let Y1, . . . , Ym be independent, mean 0 random variables

with Var(Yi) = λi, and let Y be the random vector Y = (Y1, . . . , Ym)T . Then

Cov(Y, Y ) = Λ, where Λ is the diagonal matrix with the λi’s on the diagonal.

Let X = UY . Then E[X] = 0 and

Cov(X,X) = Cov(UY,UY ) = UΛUT = K.

Therefore, K is both the covariance matrix and the correlation matrix of X.

The characteristic function ΦX of X is the function on Rm defined by

ΦX(u) = E[exp(juTX)].

3.2 The orthogonality principle for minimum mean square error
estimation

Let X be a random variable with some known distribution. Suppose X is not

observed but that we wish to estimate X. If we use a constant b to estimate X,

the estimation error will be X− b. The mean square error (MSE) is E[(X− b)2].

Since E[X − E[X]] = 0 and E[X]− b is constant,

E[(X − b)2] = E[((X − E[X]) + (E[X]− b))2]

= E[(X − E[X])2 + 2(X − E[X])(E[X]− b) + (E[X]− b)2]

= Var(X) + (E[X]− b)2.

From this expression it is easy to see that the mean square error is minimized

with respect to b if and only if b = E[X]. The minimum possible value is Var(X).

Random variables X and Y are called orthogonal if E[XY ] = 0. Orthogonality

is denoted by “X ⊥ Y .”

The essential fact E[X−E[X]] = 0 is equivalent to the following condition: X−
E[X] is orthogonal to constants: (X − E[X]) ⊥ c for any constant c. Therefore,

the choice of constant b yielding the minimum mean square error is the one that

makes the error X − b orthogonal to all constants. This result is generalized by

the orthogonality principle, stated next.

Fix some probability space and let L2(Ω,F , P ) be the set of all random vari-

ables on the probability space with finite second moments. Let X be a random
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variable in L2(Ω,F , P ), and let V be a collection of random variables on the

same probability space as X such that

V.1 V ⊂ L2(Ω,F , P )

V.2 V is a linear class: If Z1 ∈ V and Z2 ∈ V and a1, a2 are constants, then

a1Z1 + a2Z2 ∈ V
V.3 V is closed in the mean square sense: If Z1, Z2, . . . is a sequence of elements

of V and if Zn → Z∞ m.s. for some random variable Z∞, then Z∞ ∈ V.

That is, V is a closed linear subspace of L2(Ω,F , P ). The problem of interest is

to find Z∗ in V to minimize the mean square error, E[(X −Z)2], over all Z ∈ V.

That is, Z∗ is the random variable in V that is closest to X in the minimum

mean square error (MMSE) sense. We call it the projection of X onto V and

denote it as ΠV(X).

Estimating a random variable by a constant corresponds to the case that V
is the set of constant random variables: the projection of a random variable X

onto the set of constant random variables is E[X]. The orthogonality principle

stated next is illustrated in Figure 3.1.

*

Z

Z

X

e

0
V

Figure 3.1 Illustration of the orthogonality principle.

theorem 3.2 (The orthogonality principle) Let V be a closed, linear subspace

of L2(Ω,F , P ), and let X ∈ L2(Ω,F , P ), for some probability space (Ω,F , P ).

(a) (Existence and uniqueness) There exists a unique element Z∗ (also denoted

by ΠV(X)) in V so that E[(X − Z∗)2] ≤ E[(X − Z)2] for all Z ∈ V.

(Here, we consider two elements Z and Z ′ of V to be the same if P{Z =

Z ′} = 1).

(b) (Characterization) Let W be a random variable. Then W = Z∗ if and only

if the following two conditions hold:

(i) W ∈ V
(ii) (X −W ) ⊥ Z for all Z in V.
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(c)(Error expression) The minimum mean square error (MMSE) is given by

E[(X − Z∗)2] = E[X2]− E[(Z∗)2].

Proof The proof of (a) is given in an extra credit homework problem. The

technical condition V.3 on V is essential for the proof of existence. Here parts

(b) and (c) are proved.

To establish the “if” half of (b), suppose W satisfies (i) and (ii) and let Z be an

arbitrary element of V. Then W − Z ∈ V because V is a linear class. Therefore,

(X −W ) ⊥ (W − Z), which implies that

E[(X − Z)2] = E[(X −W +W − Z)2]

= E[(X −W )2 + 2(X −W )(W − Z) + (W − Z)2]

= E[(X −W )2] + E[(W − Z)2].

Thus E[(X−W )2] ≤ E[(X−Z)2]. Since Z is an arbitrary element of V, it follows

that W = Z∗, and the “if” half of (b) is proved.

To establish the “only if” half of (b), note that Z∗ ∈ V by the definition of

Z∗. Let Z ∈ V and let c ∈ R. Then Z∗+ cZ ∈ V, so that E[(X − (Z∗+ cZ))2] ≥
E[(X − Z∗)2]. But

E[(X − (Z∗ + cZ))2] = E[(X − Z∗)− cZ)2]

= E[(X − Z∗)2]− 2cE[(X − Z∗)Z] + c2E[Z2],

so that

−2cE[(X − Z∗)Z] + c2E[Z2] ≥ 0. (3.1)

As a function of c the left side of (3.1) is a parabola with value zero at c =

0. Hence its derivative with respect to c at 0 must be zero, which yields that

(X − Z∗) ⊥ Z. The “only if” half of (b) is proved.

The expression of (c) is proved as follows. Since X − Z∗ is orthogonal to all

elements of V, including Z∗ itself,

E[X2] = E[((X − Z∗) + Z∗)2] = E[(X − Z∗)2] + E[(Z∗)2].

This proves (c).

The following propositions give some properties of the projection mapping ΠV ,

with proofs based on the orthogonality principle.

proposition 3.3 (Linearity of projection) Suppose V is a closed linear sub-

space of L2(Ω,F , P ), X1 and X2 are in L2(Ω,F , P ), and a1 and a2 are constants.

Then

ΠV(a1X1 + a2X2) = a1ΠV(X1) + a2ΠV(X2). (3.2)

Proof By the characterization part of the orthogonality principle ( (b) of Theo-

rem 3.2), the projection ΠV(a1X1 +a2X2) is characterized by two properties. So,

to prove (3.2), it suffices to show that a1ΠV1(X1)+a2ΠV2(X2) satisfies these two

properties. First, we must check that a1ΠV1(X1) + a2ΠV2(X2) ∈ V. This follows
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immediately from the fact that ΠV(Xi) ∈ V, for i = 1, 2, and V is a linear sub-

space, so the first property is checked. Second, we must check that e ⊥ Z, where

e = a1X1 + a2X2 − (a1ΠV(X1) + a2ΠV(X2)), and Z is an arbitrary element of

V. Now e = a1e1 + a2e2, where ei = Xi − ΠV(Xi) for i = 1, 2, and ei ⊥ Z for

i = 1, 2. So E[eZ] = a1E[e1Z] + a2E[e2Z] = 0, or equivalently, e ⊥ Z. Thus, the

second property is also checked, and the proof is complete.

proposition 3.4 (Projections onto nested subspaces) Suppose V1 and V2 are

closed linear subspaces of L2(Ω,F , P ) such that V2 ⊂ V1. Then for any X ∈
L2(Ω,F , P ), ΠV2(X) = ΠV2ΠV1(X). (In words, the projection of X onto V2 can

be found by first projecting X onto V1, and then projecting the result onto V2.)

Furthermore,

E[(X −ΠV2(X))2] = E[(X −ΠV1(X))2] + E[(ΠV1(X)−ΠV2(X))2]. (3.3)

In particular, E[(X −ΠV2(X))2] ≥ E[(X −ΠV1(X))2].

Proof By the characterization part of the orthogonality principle (Theorem

3.2(b)), the projection ΠV2(X) is characterized by two properties. So, to prove

ΠV2(X) = ΠV2ΠV1(X), it suffices to show that ΠV2ΠV1(X) satisfies the two prop-

erties. First, we must check that ΠV2ΠV1(X) ∈ V2. This follows immediately from

the fact that ΠV2(X) maps into V2, so the first property is checked. Second, we

must check that e ⊥ Z, where e = X−ΠV2ΠV1(X), and Z is an arbitrary element

of V2. Now e = e1 +e2, where e1 = X−ΠV1(X) and e2 = ΠV1(X)−ΠV2ΠV1(X).

By the characterization of ΠV1(X), e1 is perpendicular to any random variable

in V1. In particular, e1 ⊥ Z, because Z ∈ V2 ⊂ V1. The characterization of the

projection of ΠV1(X) onto V2 implies that e2 ⊥ Z. Since ei ⊥ Z for i = 1, 2, it

follows that e ⊥ Z. Thus, the second property is also checked, so it is proved

that ΠV2(X) = ΠV2ΠV1(X).

As mentioned above, e1 is perpendicular to any random variable in V1, which

implies that e1 ⊥ e2. Thus, E[e2] = E[e2
1] + E[e2

2], which is equivalent to

(3.3). Therefore, (3.3) is proved. The last inequality of the proposition fol-

lows, of course, from (3.3). The inequality is also equivalent to the inequality

minW∈V2 E[(X −W )2] ≥ minW∈V1 E[(X −W )2], and this inequality is true be-

cause the minimum of a set of numbers cannot increase if more numbers are

added to the set.

The following proposition is closely related to the use of linear innovations

sequences, discussed in Sections 3.5 and 3.6.

proposition 3.5 (Projection onto the span of orthogonal subspaces) Suppose

V1 and V2 are closed linear subspaces of L2(Ω,F , P ) such that V1 ⊥ V2, which

means that E[Z1Z2] = 0 for any Z1 ∈ V1 and Z2 ∈ V2. Let V = V1 ⊕ V2 =

{Z1+Z2 : Zi ∈ Vi} denote the span of V1 and V2. Then for any X ∈ L2(Ω,F , P ),

ΠV(X) = ΠV1(X) + ΠV2(X). The minimum mean square error satisfies

E[(X −ΠV(X))2] = E[X2]− E[(ΠV1(X))2]− E[(ΠV2(X))2].



3.3 Conditional expectation and linear estimators 83

Proof The space V is also a closed linear subspace of L2(Ω,F , P ) (see a starred

homework problem). By the characterization part of the orthogonality principle

(Theorem 3.2(b)), the projection ΠV(X) is characterized by two properties. So

to prove ΠV(X) = ΠV1(X) + ΠV2(X), it suffices to show that ΠV1(X) + ΠV2(X)

satisfies these two properties. First, we must check that ΠV1(X) + ΠV2(X) ∈ V.

This follows immediately from the fact that ΠVi(X) ∈ Vi, for i = 1, 2, so the

first property is checked. Second, we must check that e ⊥ Z, where e = X −
(ΠV1(X)+ΠV2(X)), and Z is an arbitrary element of V. Now any such Z can be

written as Z = Z1 + Z2 where Zi ∈ Vi for i = 1, 2. Observe that ΠV2(X) ⊥ Z1

because ΠV2(X) ∈ V2 and Z1 ∈ V1. Therefore,

E[eZ1] = E[(X − (ΠV1(X) + ΠV2(X))Z1]

= E[(X −ΠV1(X))Z1] = 0,

where the last equality follows from the characterization of ΠV1(X). So, e ⊥ Z1,

and similarly e ⊥ Z2, so e ⊥ Z. Thus, the second property is also checked, so

ΠV(X) = ΠV1(X) + ΠV2(X) is proved.

Since ΠVi(X) ∈ Vi for i = 1, 2, ΠV1(X) ⊥ ΠV2(X). Therefore, E[(ΠV(X))2] =

E[(ΠV1(X))2] + E[(ΠV2(X))2], and the expression for the MMSE in the propo-

sition follows from the error expression in the orthogonality principle.

3.3 Conditional expectation and linear estimators

In many applications, a random variable X is to be estimated based on ob-

servation of a random variable Y . Thus, an estimator is a function of Y . In

applications, the two most frequently considered classes of functions of Y used

in this context are essentially all functions, leading to the best unconstrained

estimator, or all linear functions, leading to the best linear estimator. These two

possibilities are discussed in this section.

3.3.1 Conditional expectation as a projection

Suppose a random variable X is to be estimated using an observed random vector

Y of dimension m. Suppose E[X2] < +∞. Consider the most general class of

estimators based on Y , by setting

V = {g(Y ) : g : Rm → R, E[g(Y )2] < +∞}. (3.4)

There is also the implicit condition that g is Borel measurable so that g(Y ) is

a random variable. The projection of X onto this class V is the unconstrained

minimum mean square error (MMSE) estimator of X given Y .

Let us first proceed to identify the optimal estimator by conditioning on the

value of Y , thereby reducing this example to the estimation of a random variable
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by a constant, as discussed at the beginning of Section 3.2. For technical reasons

we assume for now that X and Y have a joint pdf. Then, conditioning on Y ,

E[(X − g(Y ))2] =

∫
Rm

E[(X − g(Y ))2|Y = y]fY (y)dy,

where

E[(X − g(Y ))2|Y = y] =

∫ ∞
−∞

(x− g(y))2fX|Y (x|y)dx.

Since the mean is the MMSE estimator of a random variable among all constants,

for each fixed y, the minimizing choice for g(y) is

g∗(y) = E[X|Y = y] =

∫ ∞
−∞

xfX|Y (x|y)dx. (3.5)

Therefore, the optimal estimator in V is g∗(Y ) which, by definition, is equal to

the random variable E[X|Y ].

What does the orthogonality principle imply for this example? It implies that

there exists an optimal estimator g∗(Y ) which is the unique element of V such

that

(X − g∗(Y )) ⊥ g(Y )

for all g(Y ) ∈ V. If X,Y have a joint pdf then we can check that E[X|Y ] satisfies

the required condition. Indeed,

E[(X − E[X|Y ])g(Y )] =

∫ ∫
(x− E[X|Y = y])g(y)fX|Y (x|y)fY (y)dxdy

=

∫ {∫
(x− E[X|Y = y])fX|Y (x|y)dx

}
g(y)fY (y)dy

= 0,

because the expression within the braces is zero.

In summary, if X and Y have a joint pdf (and similarly if they have a joint

pmf) then the MMSE estimator of X given Y is E[X|Y ]. Even if X and Y don’t

have a joint pdf or joint pmf, we define the conditional expectation E[X|Y ] to

be the MMSE estimator of X given Y. By the orthogonality principle E[X|Y ]

exists as long as E[X2] <∞, and it is the unique function of Y such that

E[(X − E[X|Y ])g(Y )] = 0

for all g(Y ) in V.

Estimation of a random variable has been discussed, but often we wish to

estimate a random vector. A beauty of the MSE criteria is that it easily extends

to estimation of random vectors, because the MSE for estimation of a random

vector is the sum of the MSEs of the coordinates:

E[‖ X − g(Y ) ‖2] =

m∑
i=1

E[(Xi − gi(Y ))2].
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Therefore, for most sets of estimators V typically encountered, finding the MMSE

estimator of a random vector X decomposes into finding the MMSE estimators

of the coordinates of X separately.

Suppose a random vector X is to be estimated using estimators of the form

g(Y), where here g maps Rn into Rm. Assume E[‖X‖2] < +∞ and seek an

estimator to minimize the MSE. As seen above, the MMSE estimator for each

coordinate Xi is E[Xi|Y ], which is also the projection of Xi onto the set of

unconstrained estimators based on Y , defined in (3.4). So the optimal estimator

g∗(Y ) of the entire vector X is given by

g∗(Y ) = E[X|Y ] =


E[X1|Y ]

E[X2|Y ]
...

E[Xm|Y ]

 .

Let the estimation error be denoted by e, e = X −E[X|Y ]. (Even though e is a

random vector we use lower case for it for an obvious reason.)

The mean of the error is given by Ee = 0. As for the covariance of the error,

note that E[Xj |Y ] is in V for each j, so ei ⊥ E[Xj |Y ] for each i, j. Since Eei = 0,

it follows that Cov(ei, E[Xj |Y ]) = 0 for all i, j. Equivalently, Cov(e, E[X|Y ]) = 0.

Using this and the fact X = E[X|Y ] + e yields

Cov(X) = Cov(E[X|Y ] + e)

= Cov(E[X|Y ]) + Cov(e) + Cov(E[X|Y ], e) + Cov(e, E[X|Y ])

= Cov(E[X|Y ]) + Cov(e).

Thus, Cov(e) = Cov(X)− Cov(E[X|Y ]).

In practice, computation of E[X|Y ] (for example, using (3.5) in case a joint

pdf exists) may be too complex or may require more information about the

joint distribution of X and Y than is available. For both of these reasons, it

is worthwhile to consider classes of estimators that are constrained to smaller

sets of functions of the observations. A widely used set is the set of all linear

functions, leading to linear estimators, described next.

3.3.2 Linear estimators

Let X and Y be random vectors with E[‖X‖2] < +∞ and E[‖Y ‖2] < +∞. Seek

estimators of the form AY + b to minimize the MSE. Such estimators are called

linear estimators because each coordinate of AY + b is a linear combination of

Y1, Y2, . . . , Ym and 1. Here “1” stands for the random variable that is always

equal to 1.

To identify the optimal linear estimator we shall apply the orthogonality prin-

ciple for each coordinate of X with

V = {c0 + c1Y1 + c2Y2 + . . .+ cnYn : c0, c1, . . . , cn ∈ R}.
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Let e denote the estimation error e = X − (AY + b). We must select A and b so

that ei ⊥ Z for all Z ∈ V. Equivalently, we must select A and b so that

ei ⊥ 1 all i

ei ⊥ Yj all i, j.

The condition ei ⊥ 1, which means Eei = 0, implies that E[eiYj ] = Cov(ei, Yj).

Thus, the required orthogonality conditions on A and b become Ee = 0 and

Cov(e, Y ) = 0. The condition Ee = 0 requires that b = E[X] − AE[Y ], so

we can restrict our attention to estimators of the form E[X] + A(Y − E[Y ]),

so that e = X − E[X] − A(Y − E[Y ]). The condition Cov(e, Y ) = 0 becomes

Cov(X,Y ) − ACov(Y, Y ) = 0. If Cov(Y, Y ) is not singular, then A must be

given by A = Cov(X,Y )Cov(Y, Y )−1. In this case the optimal linear estimator,

denoted by Ê[X|Y ], is given by

Ê[X|Y ] = E[X] + Cov(X,Y )Cov(Y, Y )−1(Y − E[Y ]). (3.6)

Proceeding as in the case of unconstrained estimators of a random vector, we

find that the covariance of the error vector satisfies

Cov(e) = Cov(X)− Cov(Ê[X|Y ]),

which by (3.6) yields

Cov(e) = Cov(X)− Cov(X,Y )Cov(Y, Y )−1Cov(Y,X). (3.7)

3.3.3 Comparison of the estimators

As seen above, the expectation E[X], the MMSE linear estimator Ê[X|Y |, and

the conditional expectation E[X|Y ], are all instances of projection mappings ΠV ,

for V consisting of constants, linear estimators based on Y , or unconstrained esti-

mators based on Y , respectively. Hence, the orthogonality principle, and Propo-

sitions 3.3-3.5 all apply to these estimators.

Proposition 3.3 implies that these estimators are linear functions of X. In

particular,

E[a1X1 + a2X2|Y ] = a1E[X1|Y ] + a2E[X2|Y ], and the same is true with “E”

replaced by “Ê.”

Proposition 3.4, regarding projections onto nested subspaces, implies an or-

dering of the mean square errors:

E[(X − E[X|Y ])2] ≤ E[(X − Ê[X|Y ])2] ≤ Var(X).

Furthermore, it implies that the best linear estimator of X based on Y is

equal to the best linear estimator of the estimator E[X|Y ]: that is, Ê[X|Y ] =

Ê[E[X|Y ]|Y ]. It follows, in particular, that E[X|Y ] = Ê[X|Y ] if and only if

E[X|Y ] has the linear form, AX + b. Similarly, E[X], the best constant estima-

tor of X, is also the best constant estimator of Ê[X|Y ] or of E[X|Y ]. That is,

E[X] = E[Ê[X|Y ]] = E[E[X|Y ]]. In fact, E[X] = E[Ê[E[X|Y ]|Y ]].
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Proposition 3.4 also implies relations among estimators based on different sets

of observations. For example, suppose X is to be estimated and Y1 and Y2 are

both possible observations. The space of unrestricted estimators based on Y1

alone is a subspace of the space of unrestricted estimators based on both Y1

and Y2. Therefore, Proposition 3.4 implies that E[E[X|Y1, Y2]|Y1] = E[X|Y1], a

property that is sometimes called the tower property of conditional expectation.

The same relation holds true for the same reason for the best linear estimators:

Ê[Ê[X|Y1, Y2]|Y1] = Ê[X|Y1].

Example 3.1 Let X,Y be jointly continuous random variables with the pdf

fXY (x, y) =

{
x+ y 0 ≤ x, y ≤ 1

0 else
.

Let us find E[X|Y ] and Ê[X|Y ]. To find E[X|Y ] we first identify fY (y) and

fX|Y (x|y).

fY (y) =

∫ ∞
−∞

fXY (x, y)dx =

{
1
2 + y 0 ≤ y ≤ 1

0 else
.

Therefore, fX|Y (x|y) is defined only for 0 ≤ y ≤ 1, and for such y it is given by

fX|Y (x|y) =

{
x+y
1
2 +y

0 ≤ x ≤ 1

0 else
.

So for 0 ≤ y ≤ 1,

E[X|Y = y] =

∫ 1

0

xfX|Y (x|y)dx =
2 + 3y

3 + 6y
.

Therefore, E[X|Y ] = 2+3Y
3+6Y . To find Ê[X|Y ] we compute E[X] = E[Y ] = 7

12 ,

Var(Y ) = 11
144 and Cov(X,Y ) = − 1

144 so Ê[X|Y ] = 7
12 −

1
11 (Y − 7

12 ).

Example 3.2 Suppose that Y = XU , where X and U are independent random

variables, X has the Rayleigh density

fX(x) =

{
x
σ2 e
−x2/2σ2

x ≥ 0

0 else

and U is uniformly distributed on the interval [0, 1]. We find Ê[X|Y ] and E[X|Y ].
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To compute Ê[X|Y ] we find

E[X] =

∫ ∞
0

x2

σ2
e−x

2/2σ2

dx =
1

σ

√
π

2

∫ ∞
−∞

x2

√
2πσ2

e−x
2/2σ2

dx = σ

√
π

2

E[Y ] = E[X]E[U ] =
σ

2

√
π

2

E[X2] = 2σ2

Var(Y ) = E[Y 2]− E[Y ]2 = E[X2]E[U2]− E[X]2E[U ]2 = σ2

(
2

3
− π

8

)
Cov(X,Y ) = E[U ]E[X2]− E[U ]E[X]2 =

1

2
Var(X) = σ2

(
1− π

4

)
.

Thus

Ê[X|Y ] = σ

√
π

2
+

(1− π
4 )

( 2
3 −

π
8 )

(
Y − σ

2

√
π

2

)
.

To find E[X|Y ] we first find the joint density and then the conditional density.

Now

fXY (x, y) = fX(x)fY |X(y|x)

=

{
1
σ2 e
−x2/2σ2

0 ≤ y ≤ x
0 else

fY (y) =

∫ ∞
−∞

fXY (x, y)dx =

{ ∫∞
y

1
σ2 e
−x2/2σ2

dx =
√

2π
σ Q

(
y
σ

)
y ≥ 0

0 y < 0
,

where Q is the complementary CDF for the standard normal distribution. So for

y ≥ 0

E[X|Y = y] =

∫ ∞
−∞

xfXY (x, y)dx/fY (y)

=

∫∞
y

x
σ2 e
−x2/2σ2

dx
√

2π
σ Q( yσ )

=
σ exp(−y2/2σ2)√

2πQ( yσ )
.

Thus,

E[X|Y ] =
σ exp(−Y 2/2σ2)√

2πQ(Yσ )
.

Example 3.3 Suppose that Y is a random variable and f is a Borel measurable

function such that E[f(Y )2] < ∞. Let us show that E[f(Y )|Y ] = f(Y ). By

definition, E[f(Y )|Y ] is the random variable of the form g(Y ) which is closest to

f(Y ) in the mean square sense. If we take g(Y ) = f(Y ), then the mean square

error is zero. No other estimator can have a smaller mean square error. Thus,

E[f(Y )|Y ] = f(Y ). Similarly, if Y is a random vector with E[||Y ||2] < ∞, and

if A is a matrix and b a vector, then Ê[AY + b|Y ] = AY + b.
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3.4 Joint Gaussian distribution and Gaussian random vectors

Recall that a random variable X is Gaussian (or normal) with mean µ and

variance σ2 > 0 if X has pdf

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

As a degenerate case, we say X is Gaussian with mean µ and variance 0 if

P{X = µ} = 1. Equivalently, X is Gaussian with mean µ and variance σ2 ≥ 0

if its characteristic function is given by

ΦX(u) = exp

(
−u

2σ2

2
+ jµu

)
.

lemma 3.6 Suppose X1, X2, . . . , Xn are independent Gaussian random vari-

ables. Then any linear combination a1X1 + · · · + anXn is a Gaussian random

variable.

Proof By an induction argument on n, it is sufficient to prove the lemma for

n = 2. Also, if X is a Gaussian random variable, then so is aX for any constant

a, so we can assume without loss of generality that a1 = a2 = 1. It remains

to prove that if X1 and X2 are independent Gaussian random variables, then

the sum X = X1 +X2 is also a Gaussian random variable. Let µi = E[Xi] and

σ2
i = Var(Xi). Then the characteristic function of X is given by

ΦX(u) = E[ejuX ] = E[ejuX1ejuX2 ] = E[ejuX1 ]E[ejuX2 ]

= exp

(
−u

2σ2
1

2
+ jµ1u

)
exp

(
−u

2σ2
2

2
+ jµ2u

)
= exp

(
−u

2σ2

2
+ jµu

)
.

where µ = µ1 +µ2 and σ2 = σ2
1 +σ2

2 . Thus, X is a N(µ, σ2) random variable.

Let (Xi : i ∈ I) be a collection of random variables indexed by some set I,

which possibly has infinite cardinality. A finite linear combination of (Xi : i ∈ I)

is a random variable of the form

a1Xi1 + a2Xi2 + · · · + anXin ,

where n is finite, ik ∈ I for each k, and ak ∈ R for each k.

definition 3.7 A collection (Xi : i ∈ I) of random variables has a joint

Gaussian distribution (and the random variables Xi : i ∈ I themselves are said

to be jointly Gaussian) if every finite linear combination of (Xi : i ∈ I) is a

Gaussian random variable. A random vector X is called a Gaussian random

vector if its coordinate random variables are jointly Gaussian. A collection of

random vectors is said to have a joint Gaussian distribution if all of the coordinate

random variables of all of the vectors are jointly Gaussian.

We write that X is a N(µ,K) random vector if X is a Gaussian random vector

with mean vector µ and covariance matrix K.
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proposition 3.8 (a) If (Xi : i ∈ I) has a joint Gaussian distribution, then

each of the random variables itself is Gaussian.

(b) If the random variables Xi : i ∈ I are each Gaussian and if they are indepen-

dent, which means that Xi1 , Xi2 , . . . , Xin are independent for any finite

number of indices i1, i2, . . . , in, then (Xi : i ∈ I) has a joint Gaussian

distribution.

(c) (Preservation of joint Gaussian property under linear combinations and lim-

its) Suppose

(Xi : i ∈ I) has a joint Gaussian distribution. Let (Yj : j ∈ J) denote a

collection of random variables such that each Yj is a finite linear com-

bination of (Xi : i ∈ I), and let (Zk : k ∈ K) denote a set of random

variables such that each Zk is a limit in probability (or in the m.s. or

a.s. senses) of a sequence from (Yj : j ∈ J). Then (Yj : j ∈ J) and

(Zk : k ∈ K) each have a joint Gaussian distribution.

(c′) (Alternative version of (c)) Suppose (Xi : i ∈ I) has a joint Gaussian

distribution. Let Z denote the smallest set of random variables that con-

tains (Xi : i ∈ I), is a linear class, and is closed under taking limits in

probability. Then Z has a joint Gaussian distribution.

(d) The characteristic function of a N(µ,K) random vector is given by ΦX(u) =

E[eju
TX ] = eju

Tµ− 1
2u

TKu.

(e) If X is a N(µ,K) random vector and K is a diagonal matrix (i.e. Cov(Xi, Xj) =

0 for i 6= j, or equivalently, the coordinates of X are uncorrelated) then

the coordinates X1, . . . , Xm are independent.

(f) A N(µ,K) random vector X such that K is nonsingular has a pdf given by

fX(x) =
1

(2π)
m
2 |K| 12

exp

(
− (x− µ)TK−1(x− µ)

2

)
. (3.8)

Any random vector X such that Cov(X) is singular does not have a pdf.

(g) If X and Y are jointly Gaussian vectors, then they are independent if and

only if Cov(X,Y ) = 0.

Proof (a) Suppose (Xi : i ∈ I) has a joint Gaussian distribution, so that all

finite linear combinations of the Xi’s are Gaussian random variables. Each Xi

for i ∈ I is itself a finite linear combination of all the variables (with only one

term). So each Xi is a Gaussian random variable.

(b) Suppose the variables Xi : i ∈ I are mutually independent, and each is

Gaussian. Then any finite linear combination of (Xi : i ∈ I) is the sum of finitely

many independent Gaussian random variables (by Lemma 3.6), and is hence also

a Gaussian random variable. So (Xi : i ∈ I) has a joint Gaussian distribution.

(c) Suppose the hypotheses of (c) are true. Let V be a finite linear combination

of (Yj : j ∈ J) : V = b1Yj1 + b2Yj2 + · · · + bnYjn . Each Yj is a finite linear

combination of (Xi : i ∈ I), so V can be written as a finite linear combination
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of (Xi : i ∈ I):

V = b1(a11Xi11 + · · · a1k1Xi1k1
) + · · ·+ bn(an1Xin1

+ · · ·+ anknXinkn
).

Therefore V is thus a Gaussian random variable. Thus, any finite linear com-

bination of (Yj : j ∈ J) is Gaussian, so that (Yj : j ∈ J) has a joint Gaussian

distribution.

LetW be a finite linear combination of (Zk : k ∈ K):W = a1Zk1+· · ·+amZkm .

By assumption, for 1 ≤ l ≤ m, there is a sequence (jl,n : n ≥ 1) of indices from

J such that Yjl,n
d.→ Zkl as n → ∞. Let Wn = a1Yj1,n + · · · + amYjm,n . Each

Wn is a Gaussian random variable, because it is a finite linear combination of

(Yj : j ∈ J). Also,

|W −Wn| ≤
m∑
l=1

al|Zkl − Yjl,n |. (3.9)

Since each term on the right-hand side of (3.9) converges to zero in probability, it

follows that Wn
p.→W as n→∞. Since limits in probability of Gaussian random

variables are also Gaussian random variables (Proposition 2.8), it follows that W

is a Gaussian random variable. Thus, an arbitrary finite linear combination W

of (Zk : k ∈ K) is Gaussian, so, by definition, (Zk : k ∈ K) has a joint Gaussian

distribution.

(c′) Suppose (Xi : i ∈ I) has a joint Gaussian distribution. Using the notation

of (c), let (Yj : j ∈ J) denote the set of all finite linear combinations of (Xi : i ∈ I)

and let (Zk : k ∈ K) denote the set of all random variables that are limits in

probability of random variables in (Yj ; j ∈ I). We will show that Z = (Zk :

k ∈ K), which together with (c) already proved, will establish (c′). We begin by

establishing that (Zk : k ∈ K) satisfies the three properties required of Z :

(i) (Zk : k ∈ K) contains (Xi : i ∈ I),

(ii) (Zk : k ∈ K) is a linear class,

(iii) (Zk : k ∈ K) is closed under taking limits in probability.

Property (i) follows from the fact that for any io ∈ I, the random variable Xio

is trivially a finite linear combination of (Xi : i ∈ I), and it is trivially the

limit in probability of the sequence with all entries equal to itself. Property (ii)

is true because a linear combination of the form a1Zk1 + a2Zk2 is the limit in

probability of a sequence of random variables of the form a1Yjn,1 + a2Yjn,2 , and,

since (Yj : j ∈ J) is a linear class, a1Yjn,1 + a2Yjn2
is a random variable from

(Yj : j ∈ J) for each n. To prove (iii), suppose Zkn
p.→ Z∞ as n → ∞ for some

sequence k1, k2, . . . from K. By passing to a subsequence if necessary, it can be

assumed that P{|Z∞ −Zkn | ≥ 2−(n+1)} ≤ 2−(n+1) for all n ≥ 1. Since each Zkn
is the limit in probability of a sequence of random variables from (Yj : j ∈ J),

for each n there is a jn ∈ J so that P{|Zkn − Yjn | ≥ 2−(n+1)} ≤ 2−(n+1). Since

|Z∞−Yjn | ≤ |Z∞−Zkn |+|Zkn−Yjn |, it follows that P{|Z∞−Yjn | ≥ 2−n} ≤ 2−n.

So Yjn
p→ Z∞. Therefore, Z∞ is a random variable in (Zk : k ∈ K), so (Zk : k ∈
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K) is closed under convergence in probability. In summary, (Zk : k ∈ K) has

properties (i)-(iii). Any set of random variables with these three properties must

contain (Yj : j ∈ J), and hence must contain (Zk : k ∈ K). So (Zk : k ∈ K)

is indeed the smallest set of random variables with properties (i)-(iii). That is,

(Zk : k ∈ K) = Z, as claimed.

(d) Let X be a N(µ,K) random vector. Then for any vector u with the same

dimension as X, the random variable uTX is Gaussian with mean uTµ and

variance given by

Var(uTX) = Cov(uTX,uTX) = uTKu.

Thus, we already know the characteristic function of uTX. But the characteristic

function of the vector X evaluated at u is the characteristic function of uTX

evaluated at 1:

ΦX(u) = E[eju
TX ] = E[ej(u

TX)] = ΦuTX(1) = eju
Tµ− 1

2u
TKu,

which establishes (d) of the proposition.

(e) If X is a N(µ,K) random vector and K is a diagonal matrix, then

ΦX(u) =

m∏
i=1

exp

(
juiµi −

kiiu
2
i

2

)
=

∏
i

Φi(ui),

where kii denotes the ith diagonal element of K, and Φi is the characteristic

function of a N(µi, kii) random variable. By uniqueness of distribution for a

given joint characteristic function, it follows that X1, . . . , Xm are independent

random variables.

(f) Let X be a N(µ,K) random vector. Since K is positive semidefinite it can

be written as K = UΛUT where U is orthonormal (so UUT = UTU = I) and Λ

is a diagonal matrix with the nonnegative eigenvalues λ1, λ2, . . . , λm of K along

the diagonal. (See Section 11.7 of the appendix.) Let Y = UT (X − µ). Then Y

is a Gaussian vector with mean 0 and covariance matrix given by Cov(Y, Y ) =

Cov(UTX,UTX) = UTKU = Λ. In summary, we have X = UY + µ, and Y is

a vector of independent Gaussian random variables, the ith one being N(0, λi).

Suppose further that K is nonsingular, meaning det(K) 6= 0. Since det(K) =

λ1λ2 · · ·λm this implies that λi > 0 for each i, so that Y has the joint pdf

fY (y) =

m∏
i=1

1√
2πλi

exp

(
− y2

i

2λi

)
=

1

(2π)
m
2
√

det(K)
exp

(
−y

TΛ−1y

2

)
.

Since |det(U)| = 1 and UΛ−1UT = K−1, the joint pdf for the N(µ,K) random

vector X is given by

fX(x) = fY (UT (x− µ)) =
1

(2π)
m
2 |K| 12

exp

(
− (x− µ)TK−1(x− µ)

2

)
.

Now suppose, instead, that X is any random vector with some mean µ and a
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singular covariance matrix K. That means that detK = 0, or equivalently that

λi = 0 for one of the eigenvalues of K, or equivalently, that there is a vector

α such that αTKα = 0 (such an α is an eigenvector of K for eigenvalue zero).

But then 0 = αTKα = αTCov(X,X)α = Cov(αTX,αTX) = Var(αTX). There-

fore, P{αTX = αTµ} = 1. That is, with probability one, X is in the subspace

{x ∈ Rm : αT (x− µ) = 0}. Therefore, X does not have a pdf.

(g) Suppose X and Y are jointly Gaussian vectors and uncorrelated

(i.e. Cov(X,Y ) = 0). Let Z denote the dimension m+n vector with coordinates

X1, . . . , Xm, Y1, . . . , Yn. Since Cov(X,Y ) = 0, the covariance matrix of Z is block

diagonal:

Cov(Z) =

(
Cov(X) 0

0 Cov(Y )

)
.

Therefore, for u ∈ Rm and v ∈ Rn,

ΦZ

((
u

v

))
= exp

(
−1

2

(
u

v

)T
Cov(Z)

(
u

v

)
+ j

(
u

v

)T
EZ

)
= ΦX(u)ΦY (v).

Such factorization implies that X and Y are independent. The if part of (g) is

proved. Conversely, if X and Y are jointly Gaussian and independent of each

other, then the characteristic function of the joint density must factor, which

implies that Cov(Z) is block diagonal as above. That is, Cov(X,Y ) = 0.

Recall that in general, if X and Y are two random vectors on the same proba-

bility space, then the mean square error for the MMSE linear estimator Ê[X|Y |
is greater than or equal to the mean square error for the best unconstrained

estimator, E[X|Y |. The tradeoff, however, is that E[X|Y | can be much more

difficult to compute than Ê[X|Y |, which is determined entirely by first and sec-

ond moments. As shown in the next proposition, if X and Y are jointly Gaussian,

the two estimators coincide. That is, the MMSE unconstrained estimator of Y

is linear. We also know that E[X|Y = y] is the mean of the conditional mean

of X given Y = y. The proposition identifies not only the conditional mean, but

the entire conditional distribution of X given Y = y, for the case X and Y are

jointly Gaussian.

proposition 3.9 Let X and Y be jointly Gaussian vectors and y ∈ R. The

conditional distribution of X given Y = y is N(Ê[X|Y = y],Cov(e)). In partic-

ular, the conditional mean E[X|Y = y] is equal to Ê[X|Y = y]. That is, if X

and Y are jointly Gaussian, E[X|Y ] = Ê[X|Y ].

If Cov(Y ) is nonsingular,

E[X|Y = y]

= Ê[X|Y = y]− E[X] + Cov(X,Y )Cov(Y )−1(y − E[Y ]) (3.10)

Cov(e) = Cov(X)− Cov(X,Y )Cov(Y )−1Cov(Y,X), (3.11)
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and if Cov(e) is nonsingular,

fX|Y (x|y) =
1

(2π)
m
2 |Cov(e)| 12

· exp

(
−1

2

(
x− Ê[X|Y = y]

)T
Cov(e)−1

(
x− Ê[X|Y = y]

))
. (3.12)

Proof Consider the MMSE linear estimator Ê[X|Y ] of X given Y , and let e

denote the corresponding error vector: e = X − Ê[X|Y ]. Recall that, by the

orthogonality principle, Ee = 0 and Cov(e, Y ) = 0. Since Y and e are ob-

tained from X and Y by linear transformations, they are jointly Gaussian. Since

Cov(e, Y ) = 0, the random vectors e and Y are also independent. For the next

part of the proof, the reader should keep in mind that if a is a deterministic

vector of some dimension m, and Z is a N(0,K) random vector, for a matrix K

that is not a function of a, then Z + a has the N(a,K) distribution.

Focus on the following rearrangement of the definition of e:

X = e+ Ê[X|Y ]. (3.13)

(Basically, the whole proof of the proposition hinges on (3.13).) Since Ê[X|Y ] is

a function of Y and since e is independent of Y with distribution N(0,Cov(e)),

the following key observation can be made. Given Y = y, the conditional distri-

bution of e is the N(0,Cov(e)) distribution, which does not depend on y, while

Ê[X|Y = y] is completely determined by y. So, given Y = y, X can be viewed

as the sum of the N(0,Cov(e)) vector e and the determined vector Ê[X|Y = y].

So the conditional distribution of X given Y = y is N(Ê[X|Y = y],Cov(e)). In

particular, E[X|Y = y], which in general is the mean of the conditional distri-

bution of X given Y = y, is therefore the mean of the N(Ê[X|Y = y],Cov(e))

distribution. Hence E[X|Y = y] = Ê[X|Y = y]. Since this is true for all y,

E[X|Y ] = Ê[X|Y ].

Equations (3.10) and (3.11), respectively, are just the equations (3.6) and (3.7)

derived for the MMSE linear estimator, Ê[X|Y ], and its associated covariance of

error. Equation (3.12) is just the formula (3.8) for the pdf of a N(µ,K) vector,

with µ = Ê[X|Y = y] and K = Cov(e).

Example 3.4 Suppose X and Y are jointly Gaussian mean zero random vari-

ables such that the vector

(
X

Y

)
has covariance matrix

(
4 3

3 9

)
. Let us

find simple expressions for the two random variables E[X2|Y ] and P (X ≥
c|Y ). Note that if W is a random variable with the N(µ, σ2) distribution, then

E[W 2] = µ2 + σ2 and P{W ≥ c} = Q( c−µσ ), where Q is the standard Gaus-

sian complementary CDF. The idea is to apply these facts to the conditional

distribution of X given Y . Given Y = y, the conditional distribution of X is

N(Cov(X,Y )

Var(Y )
y,Cov(X) − Cov(X,Y )2

Var(Y )
), or N(y3 , 3). Therefore, E[X2|Y = y] =
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(y3 )2 +3 and P (X ≥ c|Y = y) = Q( c−(y/3)√
3

). Applying these two functions to the

random variable Y yields E[X2|Y ] = (Y3 )2 + 3 and P (X ≥ c|Y ) = Q( c−(Y/3)√
3

).

3.5 Linear innovations sequences

Let X,Y1, . . . , Yn be random vectors with finite second moments, all on the same

probability space. In general, computation of the joint projection Ê[X|Y1, . . . , Yn]

is considerably more complicated than computation of the individual projections

Ê[X|Yi], because it requires inversion of the covariance matrix of all the Y ’s.

However, if E[Yi] = 0 for all i and E[YiY
T
j ] = 0 for i 6= j (i.e., all coordinates of

Yi are orthogonal to constants and to all coordinates of Yj for i 6= j), then

Ê[X|Y1, . . . , Yn] = X +

n∑
i=1

Ê[X −X|Yi], (3.14)

where we write X for E[X]. The orthogonality principle can be used to prove

(3.14) as follows. It suffices to prove that the right side of (3.14) satisfies the two

properties that together characterize the left side of (3.14). First, the right side

is a linear combination of 1, Y1, . . . , Yn. Secondly, let e denote the error when the

right side of (3.14) is used to estimate X:

e = X −X −
n∑
i=1

Ê[X −X|Yi].

It must be shown that E[e(Y T1 c1 + Y T2 c2 + · · · + Y Tn cn + b)] = 0 for any con-

stant vectors c1, . . . , cn and constant b. It is enough to show that E[e] = 0 and

E[eY Tj ] = 0 for all j. But Ê[X −X|Yi] has the form BiYi, because X −X and

Yi have mean zero. Thus, E[e] = 0. Furthermore,

E[eY Tj ] = E
[(
X − Ê[X|Yj ]

)
Y Tj

]
−
∑
i:i 6=j

E[BiYiY
T
j ].

Each term on the right side of this equation is zero, so E[eY Tj ] = 0, and (3.14)

is proved.

If 1, Y1, Y2, . . . , Yn have finite second moments but are not orthogonal, then

(3.14) doesn’t directly apply. However, by orthogonalizing this sequence we can

obtain a sequence 1, Ỹ1, Ỹ2, . . . , Ỹn that can be used instead. Let Ỹ1 = Y1−E[Y1],

and for k ≥ 2 let

Ỹk = Yk − Ê[Yk|Y1, . . . , Yk−1]. (3.15)

Then E[Ỹi] = 0 for all i and E[ỸiỸ
T
j ] = 0 for i 6= j. In addition, by induction

on k, we can prove that the set of all random variables obtained by linear trans-

formation of 1, Y1, . . . , Yk is equal to the set of all random variables obtained by

linear transformation of 1, Ỹ1, . . . , Ỹk.
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Thus, for any random vector X with all components having finite second

moments,

Ê[X|Y1, . . . , Yn] = Ê[X|Ỹ1, . . . , Ỹn] = X +

n∑
i=1

Ê[X −X|Ỹi]

= X +

n∑
i=1

Cov(X, Ỹi)Cov(Ỹi)
−1Ỹi.

(Since E[Ỹi] = 0 for i ≥ 1, Cov(X, Ỹi) = E[XỸ Ti ] and Cov(Ỹi) = E[ỸiỸ
T
i ].)

Moreover, this same result can be used to compute the innovations sequence

recursively: Ỹ1 = Y1 − E[Y1], and

Ỹk = Yk − E[Yk]−
k−1∑
i=1

Cov(X, Ỹi)Cov(Ỹi)
−1Ỹi k ≥ 2.

The sequence Ỹ1, Ỹ2, . . . , Ỹn is called the linear innovations sequence for Y1, Y2, . . . , Yn.

3.6 Discrete-time Kalman filtering

Kalman filtering is a state-space approach to the problem of estimating one

random sequence from another. Recursive equations are found that are useful

in many real-time applications. For notational convenience, because there are so

many matrices in this section, lower case letters are used for random vectors. All

the random variables involved are assumed to have finite second moments. The

state sequence x0, x1, . . ., is to be estimated from an observed sequence y0, y1, . . ..

These sequences of random vectors are assumed to satisfy the following state and

observation equations.

State: xk+1 = Fkxk + wk k ≥ 0

Observation: yk = HT
k xk + vk k ≥ 0.

It is assumed that

• x0, v0, v1, . . . , w0, w1, . . . are pairwise uncorrelated.

• Ex0 = x0, Cov(x0) = P0, Ewk = 0, Cov(wk) = Qk, Evk = 0, Cov(vk) = Rk.

• Fk, Hk, Qk, Rk for k ≥ 0; P0 are known matrices.

• x0 is a known vector.

See Figure 3.2 for a block diagram of the state and observation equations. The

evolution of the state sequence x0, x1, . . . is driven by the random vectors w0,

w1, . . ., while the random vectors v0, v1, . . . , represent observation noise.

Let xk = E[xk] and Pk = Cov(xk). These quantities are recursively determined

for k ≥ 1 by

xk+1 = Fkxk and Pk+1 = FkPkF
T
k +Qk, (3.16)
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Figure 3.2 Block diagram of the state and observations equations.

where the initial conditions x0 and P0 are given as part of the state model.

The idea of the Kalman filter equations is to recursively compute conditional

expectations in a similar way.

Let yk = (y0, y1, . . . , yk) represent the observations up to time k. Define for

nonnegative integers i, j

x̂i|j = Ê[xi|yj ]

and the associated covariance of error matrices

Σi|j = Cov(xi − x̂i|j).

The goal is to compute x̂k+1|k for k ≥ 0. The Kalman filter equations will first

be stated, then briefly discussed, and then derived. The Kalman filter equations

are given by

x̂k+1|k =
[
Fk −KkH

T
k

]
x̂k|k−1 +Kkyk (3.17)

= Fkx̂k|k−1 +Kk

[
yk −HT

k x̂k|k−1

]
,

with the initial condition x̂0|−1 = x0, where the gain matrix Kk is given by

Kk = FkΣk|k−1Hk

[
HT
k Σk|k−1Hk +Rk

]−1
. (3.18)

and the covariance of error matrices are recursively computed by

Σk+1|k = Fk

[
Σk|k−1 − Σk|k−1Hk

(
HT
k Σk|k−1Hk +Rk

)−1
HT
k Σk|k−1

]
FTk +Qk,

(3.19)

with the initial condition Σ0|−1 = P0. See Figure 3.3 for the block diagram.

We comment briefly on the Kalman filter equations, before deriving them.

First, observe what happens if Hk is the zero matrix, Hk = 0, for all k. Then

the Kalman filter equations reduce to (3.16) with x̂k|k−1 = xk, Σk|k−1 = Pk
and Kk = 0. Taking Hk = 0 for all k is equivalent to having no observations

available.

In many applications, the sequence of gain matrices can be computed ahead

of time according to (3.18) and (3.19). Then as the observations become avail-

able, the estimates can be computed using only (3.17). In some applications the
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Figure 3.3 Block diagram of the Kalman filter.

matrices involved in the state and observation models, including the covariance

matrices of the vk’s and wk’s, do not depend on k. The gain matrices Kk could

still depend on k due to the initial conditions, but if the model is stable in some

sense, then the gains converge to a constant matrix K, so that in steady state the

filter equation (3.17) becomes time invariant: x̂k+1|k = (F −KHT )x̂k|k−1 +Kyk.

In other applications, particularly those involving feedback control, the ma-

trices in the state and/or observation equations might not be known until just

before they are needed.

The Kalman filter equations are now derived. Roughly speaking, there are two

considerations for computing x̂k+1|k once x̂k|k−1 is computed: (1) the information

update, accounting for the availability of the new observation yk, enabling the

calculation of x̂k|k, and (2) the time update, accounting for the change in state

from xk to xk+1.

Information update: The observation yk is not totally new because it can be

predicted in part from the previous observations, or simply by its mean in the

case k = 0. Specifically, we consider ỹk = yk − Ê[yk|yk−1] to be the new part

of the observation yk. Here, ỹ0, ỹ1, . . . is the linear innovation sequence for the

observation sequence y0, y1, . . ., as defined in Section 3.5 (with the minor differ-

ence that here the vectors are indexed from time k = 0 on, rather than from

time k = 1). Let ỹk−1 = (ỹ0, ỹ1, . . . , ỹk−1). Since the linear span of the random

variables in (1, yk−1, yk) is the same as the linear span of the random variables

in (1, yk−1, ỹk), for the purposes of incorporating the new observation we can

pretend that ỹk is the new observation rather than yk. From the observation

equation, the fact E[vk] = 0, and the fact wk is orthogonal to all the random

variables of yk−1, it follows that

Ê[yk|yk−1] = Ê
[
HT
k xk + wk|yk−1

]
= HT

k x̂k|k−1,

so ỹk = yk −HT
k x̂k|k−1. Since (1, yk−1, yk) and (1, ỹk−1, ỹk) have the same span

and the random variables in ỹk−1 are orthogonal to the random variables in ỹk,
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and all these random variables have mean zero,

x̂k|k = Ê
[
xk|ỹk−1, ỹk

]
= Ê

[
xk|ỹk−1

]
+ Ê

[
xk − xk|ỹk−1, ỹk

]
= x̂k|k−1 + Cov(xk, ỹ

k)Cov(ỹk)−1ỹk. (3.20)

Furthermore, use of the new observation ỹk reduces the covariance of error for

predicting xk from Σk|k−1 by the covariance matrix of the innovative part of the

estimator:

Σk|k = Σk|k−1 − Cov(xk, ỹ
k)Cov(ỹk)−1Cov(ỹk, xk). (3.21)

Time update: In view of the state update equation and the fact that wk is

uncorrelated with the random variables of yk and has mean zero,

x̂k+1|k = Ê[Fkxk + wk|yk]

= FkÊ[xk|yk] + Ê[wk|yk−1]

= Fkx̂k|k. (3.22)

Thus, the time update consists of simply multiplying the estimate x̂k|k by Fk.

Furthermore, the covariance of error matrix for predicting xk+1 by x̂k+1|k, is

given by

Σk+1|k = Cov(xk+1 − x̂k+1|k)

= Cov(Fk(xk − x̂k|k) + wk)

= FkΣk|kF
T
k +Qk. (3.23)

Putting it all together: Combining (3.20) and (3.22) with the fact ỹk = yk −
HT
k x̂k|k−1 yields the Kalman filter equation (3.17), if we set

Kk = FkCov(xk, ỹ
k)Cov(ỹk)−1. (3.24)

Applying the facts:

Cov(xk, ỹk) = Cov(xk + wk, H
T
k (xk − x̂k|k−1) + vk)

= Cov(xk, H
T
k (xk − x̂k|k−1))

= Cov(xk − x̂k|k−1, H
T
k (xk − x̂k|k−1)) (since x̂k|k−1 ⊥ xk − x̂k|k−1)

= Σk|k−1Hk (3.25)

and

Cov(ỹk) = Cov(HT
k (xk − x̂k|k−1) + vk)

= Cov(HT
k (xk − x̂k|k−1)) + Cov(vk)

= HT
k Σk|k−1Hk +Rk (3.26)

to (3.24) yields (3.18) and to (3.21) yields

Σk|k = Σk|k−1 − Σk|k−1Hk(HT
k Σk|k−1Hk +Rk)−1HT

k Σk|k−1. (3.27)
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Finally, (3.23) and (3.27) yield (3.19). This completes the derivation of the

Kalman filter equations.

Problems

3.1 Rotation of a joint normal distribution yielding independence Let X be

a Gaussian vector with

E[X] =

(
10

5

)
Cov(X) =

(
2 1

1 1

)
.

(a) Write an expression for the pdf of X that does not use matrix notation.

(b) Find a vector b and orthonormal matrix U such that the vector Y defined by

Y = UT (X−b) is a mean zero Gaussian vector such at Y1 and Y2 are independent.

3.2 Linear approximation of the cosine function over an interval Let Θ be uni-

formly distributed on the interval [0, π] (yes, [0, π], not [0, 2π]). Suppose Y =

cos(Θ) is to be estimated by an estimator of the form a + bΘ. What numerical

values of a and b minimize the mean square error?

3.3 Calculation of some minimum mean square error estimators Let Y = X+

N , where X has the exponential distribution with parameter λ, and N is Gaus-

sian with mean 0 and variance σ2. The variables X and N are independent,

and the parameters λ and σ2 are strictly positive. (Recall that E[X] = 1
λ and

Var(X) = 1
λ2 .)

(a) Find Ê[X|Y ] and also find the mean square error for estimatingX by Ê[X|Y ].

(b) Does E[X|Y ] = Ê[X|Y ]? Justify your answer. (Hint: Answer is yes if and

only if there is no estimator for X of the form g(Y ) with a smaller MSE than

Ê[X|Y ].)

3.4 Valid covariance matrix For what real values of a and b is the following

matrix the covariance matrix of some real-valued random vector?

K =

 2 1 b

a 1 0

b 0 1

 .

Hint: An symmetric n×n matrix is positive semidefinite if and only if the deter-

minant of every matrix obtained by deleting a set of rows and the corresponding

set of columns, is nonnegative.

3.5 Conditional probabilities with joint Gaussians I Let

(
X

Y

)
be a mean

zero Gaussian vector with correlation matrix

(
1 ρ

ρ 1

)
, where |ρ| < 1.

(a) Express P (X ≤ 1|Y ) in terms of ρ, Y , and the standard normal CDF, Φ.

(b) Find E[(X − Y )2|Y = y] for real values of y.

3.6 Conditional probabilities with joint Gaussians II LetX,Y be jointly Gaus-

sian random variables with mean zero and covariance matrix

Cov

(
X

Y

)
=

(
4 6

6 18

)
.
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You may express your answers in terms of the Φ function defined by Φ(u) =∫ u
−∞

1√
2π
e−s

2/2ds.

(a) Find P{|X − 1| ≥ 2}.
(b) What is the conditional density of X given that Y = 3? You can either

write out the density in full, or describe it as a well known density with specified

parameter values.

(c) Find P{|X − E[X|Y ]| ≥ 1}.
3.7 An estimation error bound Suppose the random vector

(
X
Y

)
has mean vec-

tor
(

2
−2

)
and covariance matrix

(
8 3

3 2

)
. Let e = X − E[X|Y ].

(a) If possible, compute E[e2]. If not, give an upper bound.

(b) For what joint distribution of X and Y (consistent with the given informa-

tion) is E[e2] maximized? Is your answer unique?

3.8 An MMSE estimation problem (a) Let X and Y be jointly uniformly dis-

tributed over the triangular region in the x − y plane with corners (0,0), (0,1),

and (1,2). Find both the linear minimum mean square error (LMMSE) estima-

tor estimator of X given Y and the (possibly nonlinear) MMSE estimator X

given Y . Compute the mean square error for each estimator. What percentage

reduction in MSE does the MMSE estimator provide over the LMMSE?

(b) Repeat (a) assuming Y is a N(0, 1) random variable and X = |Y |.
3.9 Comparison of MMSE estimators for an example Let X = 1

1+U , where

U is uniformly distributed over the interval [0, 1].

(a) Find E[X|U ] and calculate the MSE, E[(X − E[X|U ])2].

(b) Find Ê[X|U ] and calculate the MSE, E[(X − Ê[X|U ])2].

3.10 Conditional Gaussian comparison Suppose thatX and Y are jointly Gaus-

sian, mean zero, with Var(X) = Var(Y ) = 10 and Cov(X,Y ) = 8. Express the

following probabilities in terms of the Q function.

(a) pa
4
= P{X ≥ 2}.

(b) pb
4
= P (X ≥ 2|Y = 3).

(c) pc
4
= P (X ≥ 2|Y ≥ 3). (Note: pc can be expressed as an integral. You need

not carry out the integration.)

(d) Indicate how pa, pb, and pc are ordered, from smallest to largest.

3.11 Diagonalizing a two-dimensional Gaussian distribution Let X =
(
X!

X2

)
be a mean zero Gaussian random vector with correlation matrix

(
1 ρ

ρ 1

)
,

where |ρ| < 1. Find an orthonormal 2 by 2 matrix U such that X = UY for

a Gaussian vector Y =
(
Y1

Y2

)
such that Y1 is independent of Y2. Also, find the

variances of Y1 and Y2.

Note: The following identity might be useful for some of the problems that

follow. If A,B,C, and D are jointly Gaussian and mean zero, then E[ABCD] =

E[AB]E[CD]+E[AC]E[BD]+E[AD]E[BC]. This implies that E[A4] = 3E[A2]2,

Var(A2) = 2E[A2], and Cov(A2, B2) = 2Cov(A,B)2. Also, E[A2B] = 0.
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3.12 An estimator of an estimator Let X and Y be square integrable random

variables and let Z = E[X|Y ], so Z is the MMSE estimator of X given Y . Show

that the LMMSE estimator of X given Y is also the LMMSE estimator of Z

given Y . (Can you generalize this result?).

3.13 Projections onto nested linear subspaces (a) Use the Orthogonality Prin-

ciple to prove the following statement: Suppose V0 and V1 are two closed linear

spaces of second order random variables, such that V0 ⊃ V1, and suppose X is

a random variable with finite second moment. Let Z∗i be the random variable in

Vi with the minimum mean square distance from X. Then Z∗1 is the variable in

V1 with the minimum mean square distance from Z∗0 . (b) Suppose that X,Y1,

and Y2 are random variables with finite second moments. For each of the follow-

ing three statements, identify the choice of subspace V0 and V1 such that the

statement follows from (a):

(i) Ê[X|Y1] = Ê[ Ê[X|Y1, Y2] |Y1].

(ii) E[X|Y1] = E[ E[X|Y1, Y2] |Y1]. (Sometimes called the “tower property.”)

(iii) E[X] = E[Ê[X|Y1]]. (Think of the expectation of a random variable as the

constant closest to the random variable, in the m.s. sense.

3.14 Some identities for estimators Let X and Y be random variables with

E[X2] <∞. For each of the following statements, determine if the statement is

true. If yes, give a justification using the orthogonality principle. If no, give a

counter example.

(a) E[X cos(Y )|Y ] = E[X|Y ] cos(Y )

(b) E[X|Y ] = E[X|Y 3]

(c) E[X3|Y ] = E[X|Y ]3

(d) E[X|Y ] = E[X|Y 2]

(e) Ê[X|Y ] = Ê[X|Y 3]

(f) If E[(X − E[X|Y ])2] = Var(X), then E[X|Y ] = Ê[X|Y ].

3.15 Some identities for estimators, version 2 Let X,Y, and Z be random

variables with finite second moments and suppose X is to be estimated. For

each of the following, if true, give a brief explanation. If false, give a counter

example.

(a) E[(X − E[X|Y ])2] ≤ E[(X − Ê[X|Y, Y 2])2].

(b) E[(X −E[X|Y ])2] = E[(X − Ê[X|Y, Y 2]2] if X and Y are jointly Gaussian.

(c) E[ (X − E[E[X|Z] |Y ])2] ≤ E[(X − E[X|Y ])2].

(d) If E[(X − E[X|Y ])2] = Var(X), then X and Y are independent.

3.16 Some simple examples Give an example of each of the following, and in

each case, explain your reasoning.

(a) Two random variables X and Y such that Ê[X|Y ] = E[X|Y ], and such that

E[X|Y | is not simply constant, and X and Y are not jointly Gaussian.

(b) A pair of random variables X and Y on some probability space such that X

is Gaussian, Y is Gaussian, but X and Y are not jointly Gaussian.

(c) Three random variables X,Y, and Z, which are pairwise independent, but all

three together are not independent.
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3.17 The square root of a positive semidefinite matrix (a) True or false? If

B is a matrix over the reals, then BBT is positive semidefinite.

(b) True or false? If K is a symmetric positive semidefinite matrix over the reals,

then there exists a symmetric positive semidefinite matrix S over the reals such

that K = S2. (Hint: What if K is also diagonal?)

3.18 Estimating a quadratic Let

(
X

Y

)
be a mean zero Gaussian vector with

correlation matrix

(
1 ρ

ρ 1

)
, where |ρ| < 1.

(a) Find E[X2|Y ], the best estimator of X2 given Y.

(b) Compute the mean square error for the estimator E[X2|Y ].

(c) Find Ê[X2|Y ], the best linear (actually, affine) estimator of X2 given Y, and

compute the mean square error.

3.19 A quadratic estimator Suppose Y has the N(0, 1) distribution and that

X = |Y |. Find the estimator for X of the form X̂ = a+bY +cY 2 which minimizes

the mean square error. (You can use the following numerical values: E[|Y |] = 0.8,

E[Y 4] = 3, E[|Y |Y 2] = 1.6.)

(a) Use the orthogonality principle to derive equations for a, b, and c.

(b) Find the estimator X̂.

(c) Find the resulting minimum mean square error.

3.20 An innovations sequence and its application Let


Y1

Y2

Y3

X

 be a mean zero

random vector with correlation matrix


1 0.5 0.5 0

0.5 1 0.5 0.25

0.5 0.5 1 0.25

0 0.25 0.25 1

.

(a) Let Ỹ1, Ỹ2, Ỹ3 denote the innovations sequence. Find the matrix A so that Ỹ1

Ỹ2

Ỹ3

 = A

 Y1

Y2

Y3

.

(b) Find the correlation matrix of

 Ỹ1

Ỹ2

Ỹ3

 and cross covariance matrix Cov

X,
 Ỹ1

Ỹ2

Ỹ3


.

(c) Find the constants a, b, and c to minimize E[(X − aỸ1 − bỸ2 − cỸ3)2].

3.21 Estimation for an additive Gaussian noise model Assume x and n are

independent Gaussian vectors with means x̄, n̄ and covariance matrices Σx and

Σn. Let y = x+ n. Then x and y are jointly Gaussian.

(a) Show that E[x|y] is given by either x̄+ Σx(Σx + Σn)−1(y − (x̄+ n̄))

or Σn(Σx + Σn)−1x̄+ Σx(Σx + Σn)−1(y − n̄).

(b). Show that the conditional covariance matrix of x given y is given by any of

the three expressions: Σx − Σx(Σx + Σn)−1Σx = Σx(Σx + Σn)−1Σn = (Σ−1
x +
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Σ−1
n )−1.

(Assume that the various inverses exist.)

3.22 A Kalman filtering example (a) Let σ2 > 0, let f be a real constant, and

let x0 denote a N(0, σ2) random variable. Consider the state and observation

sequences defined by:

(state) xk+1 = fxk + wk

(observation) yk = xk + vk,

where w1, w2, . . . ; v1, v2, . . . are mutually independent N(0, 1) random variables.

Write down the Kalman filter equations for recursively computing the estimates

x̂k|k−1, the (scaler) gains Kk, and the sequence of the variances of the errors (for

brevity write σ2
k for the covariance or error instead of Σk|k−1).

(b) For what values of f is the sequence of error variances bounded?

3.23 Steady state gains for one-dimensional Kalman filter This is a contin-

uation of the previous problem.

(a) Show that limk→∞ σ2
k exists.

(b) Express the limit, σ2
∞, in terms of f .

(c) Explain why σ2
∞ = 1 if f = 0.

3.24 A variation of Kalman filtering (a) Let σ2 > 0, let f be a real constant,

and let x0 denote a N(0, σ2) random variable. Consider the state and observation

sequences defined by:

(state) xk+1 = fxk + wk

(observation) yk = xk + wk,

where w1, w2, . . . are mutually independent N(0, 1) random variables. Note that

the state and observation equations are driven by the same sequence, so that

some of the Kalman filtering equations derived in the notes do not apply. Derive

recursive equations needed to compute x̂k|k−1, including recursive equations for

any needed gains or variances of error. (Hints: What modifications need to be

made to the derivation for the standard model? Check that your answer is correct

for f = 1.)

3.25 Estimation with jointly Gaussian random variables SupposeX and Y are

jointly Gaussian random variables with E[X] = 2, E[Y ] = 4, Var(X) = 9,

Var(Y ) = 25, and ρ = 0.2. (ρ is the correlation coefficient.) Let W = X+2Y +3.

(a) Find E[W ] and Var(W ).

(b) Calculate the numerical value of P{W ≥ 20}.
(c) Find the unconstrained estimator g∗(W ) of Y based on W with the minimum

MSE, and find the resulting MSE.

3.26 An innovations problem Let U1, U2, . . . be a sequence of independent

random variables, each uniformly distributed on the interval [0, 1]. Let Y0 = 1,

and Yn = U1U2 · · ·Un for n ≥ 1.

(a) Find the variance of Yn for each n ≥ 1.

(b) Find E[Yn|Y0, . . . , Yn−1] for n ≥ 1.
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(c) Find Ê[Yn|Y0, . . . , Yn−1] for n ≥ 1.

(d) Find the linear innovations sequence Ỹ = (Ỹ0, Ỹ1, . . .).

(e) Fix a positive integer M and let XM = U1 + . . .+ UM . Using the answer to

(d), find Ê[XM |Y0, . . . , YM ], the best linear estimator of XM given (Y0, . . . , YM ).

3.27 Innovations and orthogonal polynomials for the normal distribution (a)

Let X be a N(0, 1) random variable. Show that for integers n ≥ 0,

E[Xn] =

{
n!

(n/2)!2n/2
n even

0 n odd
.

Hint: One approach is to apply the power series expansion for ex on each side of

the identity E[euX ] = eu
2/2, and identify the coefficients of un.

(b) Let X be a N(0, 1) random variable, and let Yn = Xn for integers n ≥ 0. Not

that Y0 ≡ 1. Express the first five terms, Ỹ0 through Ỹ4, of the linear innovations

sequence of Y in terms of U .

3.28 Linear innovations and orthogonal polynomials for the uniform distribution

(a) Let U be uniformly distributed on the interval [−1, 1]. Show that for integers

n ≥ 0,

E[Un] =

{
1

n+1 n even

0 n odd
.

(b) Let Yn = Un for integers n ≥ 0. Note that Y0 ≡ 1. Express the first four

terms, Ỹ1 through Ỹ4, of the linear innovations sequence of Y in terms of U .

3.29 Representation of three random variables with equal cross covariances

Let K be a matrix of the form

K =

 1 a a

a 1 a

a a 1

 ,

where a ∈ R.
(a) For what values of a is K the covariance matrix of some random vector?

(b) Let a have one of the values found in (a). Fill in the missing entries of the

matrix U,

U =

 ∗ ∗
1√
3

∗ ∗ 1√
3

∗ ∗ 1√
3

 ,

to yield an orthonormal matrix, and find a diagonal matrix Λ with nonnegative

entries, so that if Z is a three dimensional random vector with Cov(Z) = I, then

UΛ
1
2Z has covariance matrix K. (Hint: It happens that the matrix U can be

selected independently of a. Also, 1 + 2a is an eigenvalue of K.)

3.30 Example of extended Kalman filter Often dynamical systems in engineer-

ing applications have nonlinearities in the state dynamics and/or observation

model. If the nonlinearities are not too severe and if the rate of change of the

state is not too large compared to the observation noise (so that tracking is
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accurate) then an effective extension of Kalman filtering is based on linearizing

the nonlinearities about the current state estimate. For example, consider the

following example

xk+1 = xk + wk yk = sin(2πfk + xk) + vk,

where the wk’s are N(0, q) random variables and the vk’s are N(0, r) random

variables with q << 1 and f is a constant frequency. Here the random process

x can be viewed as the phase of a sinusoidal signal, and the goal of filtering

is to track the phase. In communication systems such tracking is implemented

using a phase lock loop, and in this instance we expect the extended Kalman

filter to give similar equations. The equations for the extended Kalman filter

are the same as for the ordinary Kalman filter with the variation that ỹk =

yk − sin(2πfk + x̂k|k−1) and, in the equations for the covariance of error and

Kalman gains, Hk = d sin(2πfk+x)
dx

∣∣∣∣
x=x̂k|k−1

. (a) Write down the equations for the

update x̂k|k−1 → x̂k+1|k, including expressing the Kalman gain Kk in terms of

Σk|k−1 and x̂k|k−1. (You don’t need to write out the equations for update of the

covariance of error, which, intuitively, should be slowly varying in steady state.

Also, ignore the fact that the phase can only be tracked modulo 2π over the long

run.)

(b) Verify/explain why, if the covariance of error is small, the extended Kalman

filter adjusts the estimated phase in the right direction. That is, the change to

x̂ in one step tends to have the opposite sign as the error x̂− x.
3.31 Kalman filter for a rotating state Consider the Kalman state and obser-

vation equations for the following matrices, where θo = 2π/10 (the matrices don’t

depend on time, so the subscript k is omitted):

F = (0.99)

(
cos(θo) − sin(θo)

sin(θo) cos(θo)

)
H =

(
1

0

)
Q =

(
1 0

0 1

)
R = 1.

(a) Explain in words what successive iterates Fnxo are like, for a nonzero initial

state xo (this is the same as the state equation, but with the random term wk
left off).

(b) Write out the Kalman filter equations for this example, simplifying as much

as possible (but no more than possible! The equations don’t simplify all that

much.)

3.32* Proof of the orthogonality principle Prove the seven statements lettered

(a)-(g) in what follows.

Let X be a random variable and let V be a collection of random variables on the

same probability space such that

(i) E[Z2] < +∞ for each Z ∈ V
(ii) V is a linear class, i.e., if Z,Z ′ ∈ V then so is aZ + bZ ′ for any real numbers

a and b.

(iii) V is closed in the sense that if Zn ∈ V for each n and Zn converges to a

random variable Z in the mean square sense, then Z ∈ V.
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The Orthogonality Principle is that there exists a unique element Z∗ ∈ V so

that E[(X−Z∗)2] ≤ E[(X−Z)2] for all Z ∈ V. Furthermore, a random variable

W ∈ V is equal to Z∗ if and only if (X −W ) ⊥ Z for all Z ∈ V. ((X −W ) ⊥ Z
means E[(X −W )Z] = 0.)

The remainder of this problem is aimed at a proof. Let d = inf{E[(X − Z)2] :

Z ∈ V}. By definition of infimum there exists a sequence Zn ∈ V so that

E[(X − Zn)2]→ d as n→ +∞.

(a) The sequence Zn is Cauchy in the mean square sense.

(Hint: Use the “parallelogram law”: E[(U − V )2] + E[(U + V )2] = 2(E[U2] +

E[V 2]). Thus, by the Cauchy criteria, there is a random variable Z∗ such that

Zn converges to Z∗ in the mean square sense.

(b) Z∗ satisfies the conditions advertised in the first sentence of the principle.

(c) The element Z∗ satisfying the condition in the first sentence of the principle

is unique. (Consider two random variables that are equal to each other with

probability one to be the same.) This completes the proof of the first sentence.

(d) (“if” part of second sentence). If W ∈ V and (X −W ) ⊥ Z for all Z ∈ V,

then W = Z∗.

(The “only if” part of second sentence is divided into three parts:)

(e) E[(X − Z∗ − cZ)2] ≥ E[(X − Z∗)2] for any real constant c.

(f) −2cE[(X − Z∗)Z] + c2E[Z2] ≥ 0 for any real constant c.

(g) (X − Z∗) ⊥ Z, and the principle is proved.

3.33* The span of two closed subspaces is closed Check that the span, V1⊕
V2, of two closed orthogonal linear spaces (defined in Proposition 3.5) is also a

closed linear space. A hint for showing that V is closed is to use the fact that if

(Zn) is a m.s. convergent sequence of random variables in V, then each variable

in the sequence can be represented as Zn = Zn,1 + Zn,2, where Zn,i ∈ Vi, and

E[(Zn − Zm)2] = E[(Zn,1 − Zm,1)2] + E[(Zn,2 − Zm,2)2].

3.34* Von Neumann’s alternating projections algorithm Let V1 and V2 be

closed linear subspaces of L2(Ω,F , P ), and let X ∈ L2(Ω,F , P ). Define a se-

quence (Zn : n ≥ 0) recursively, by alternating projections onto V1 and V2, as fol-

lows. Let Z0 = X, and for k ≥ 0, let Z2k+1 = ΠV1(Z2k) and Z2k+2 = ΠV2(Z2k+1).

The goal of this problem is to show that Zn
m.s.→ ΠV1∩V2(X). The approach will

be to establish that (Zn) converges in the m.s. sense, by verifying the Cauchy

criteria, and then use the orthogonality principle to identify the limit. Define

D(i, j) = E[(Zi − Zj)]2 for i ≥ 0 and j ≥ 0, and let εi = D(i+ 1, i) for i ≥ 0.

(a) Show that εi = E[(Zi)
2]− E[(Zi+1)2].

(b) Show that
∑∞
i=0 εi ≤ E[X2] <∞.

(c) Use the orthogonality principle to show that for n ≥ 1 and k ≥ 0:

D(n, n+ 2k + 1) = εn +D(n+ 1, n+ 2k + 1)

D(n, n+ 2k + 2) = D(n, n+ 2k + 1)− εn+2k+1.
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(d) Use the above equations to show that for n ≥ 1 and k ≥ 0,

D(n, n+ 2k + 1) = εn + · · ·+ εn+k − (εn+k+1 + · · ·+ εn+2k)

D(n, n+ 2k + 2) = εn + · · ·+ εn+k − (εn+k+1 + · · ·+ εn+2k+1).

Consequently, D(n,m) ≤
∑m−1
i=n εi for 1 ≤ n < m, and therefore (Zn : n ≥ 0) is

a Cauchy sequence, so Zn
m.s.→ Z∞ for some random variable Z∞.

(e) Verify that Z∞ ∈ V1 ∩ V2.

(f) Verify that (X−Z∞) ⊥ Z for any Z ∈ V1∩V2. (Hint: Explain why (X−Zn) ⊥
Z for all n, and let n→∞.)

By the orthogonality principle, (e) and (f) imply that Z∞ = ΠV1∩V2(X).



4 Random Processes

After presenting the definition of a random process, this chapter discusses many

of the most widely used examples and subclasses of random processes.

4.1 Definition of a random process

A random process X is an indexed collection X = (Xt : t ∈ T) of random

variables, all on the same probability space (Ω,F , P ). In many applications the

index set T is a set of times. If T = Z, or more generally, if T is a set of consecutive

integers, then X is called a discrete-time random process. If T = R or if T is an

interval of R, then X is called a continuous-time random process. Three ways to

view a random process X = (Xt : t ∈ T) are as follows:

• For each t fixed, Xt is a function on Ω.

• X is a function on T× Ω with value Xt(ω) for given t ∈ T and ω ∈ Ω.

• For each ω fixed with ω ∈ Ω, Xt(ω) is a function of t, called the sample path

corresponding to ω.

Example 4.1 Suppose W1,W2, . . . are independent random variables with

P{Wk = 1} = P{Wk = −1} = 1
2 for each k, X0 = 0, and Xn = W1 + · · · + Wn

for positive integers n. Let W = (Wk : k ≥ 1) and X = (Xn : n ≥ 0). Then

W and X are both discrete-time random processes. The index set T for X is

Z+. A sample path of W and a corresponding sample path of X are shown in

Figure 4.1.

The following notation is used:

µX(t) = E[Xt]

RX(s, t) = E[XsXt]

CX(s, t) = Cov(Xs, Xt)

FX,n(x1, t1; . . . ;xn, tn) = P{Xt1 ≤ x1, . . . , Xtn ≤ xn},



110 Random Processes

k

W (  )k ω k
X (  )ω

k

Figure 4.1 Typical sample paths.

µX is called the mean function, RX is called the correlation function, CX is

called the covariance function, and FX,n is called the nth order cumulative dis-

tribution function (CDF) Sometimes the prefix “auto,” meaning “self,” is added

to the words “correlation” and “covariance,” to emphasize that only one random

process is involved.

definition 4.1 A second order random process is a random process

(Xt : t ∈ T) such that E[X2
t ] < +∞ for all t ∈ T.

The mean, correlation, and covariance functions of a second order random process

are all well-defined and finite.

If Xt is a discrete random variable for each t, then the nth order pmf of X is

defined by

pX,n(x1, t1; . . . ;xn, tn) = P{Xt1 = x1, . . . , Xtn = xn}.

Similarly, if Xt1 , . . . , Xtn are jointly continuous random variables for any distinct

t1, . . . , tn in T, then X has an nth order pdf fX,n, such that for t1, . . . , tn fixed,

fX,n(x1, t1; . . . ;xn, tn) is the joint pdf of Xt1 , . . . , Xtn .

Example 4.2 Let A and B be independent, N(0, 1) random variables. Suppose

Xt = A+Bt+ t2 for all t ∈ R. Let us describe the sample functions, the mean,

correlation, and covariance functions, and the first and second order pdf’s of X.

Each sample function corresponds to some fixed ω in Ω. For ω fixed, A(ω) and

B(ω) are numbers. The sample paths all have the same shape–they are parabolas

with constant second derivative equal to 2. The sample path for ω fixed has t = 0

intercept A(ω), and minimum value A(ω)− B(ω)2

4 achieved at t = −B(w)
2 . Three

typical sample paths are shown in Figure 4.2. The various moment functions are

given by

µX(t) = E[A+Bt+ t2] = t2

RX(s, t) = E[(A+Bs+ s2)(A+Bt+ t2)] = 1 + st+ s2t2

CX(s, t) = RX(s, t)− µX(s)µX(t) = 1 + st.

As for the densities, for each t fixed,Xt is a linear combination of two independent
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ωA(  )ω −B(  )
2 t

A(  )−ω
4
ωB(  )2

Figure 4.2 Typical sample paths.

Gaussian random variables, µX(t) = t2 and Var(Xt) = CX(t, t) = 1 + t2. Thus,

Xt is a N(t2, 1 + t2) random variable. That specifies the first order pdf fX,1 well

enough, but if one insists on writing it out in all detail it is given by

fX,1(x, t) =
1√

2π(1 + t2)
exp

(
− (x− t2)2

2(1 + t2)

)
.

For distinct s and t, Xs and Xt are jointly Gaussian with

Cov

(
Xs

Xt

)
=

(
1 + s2 1 + st

1 + st 1 + t2

)
..

The determinant of this matrix is (s−t)2, which is nonzero. Thus X has a second

order pdf fX,2. For most purposes, we have already written enough about fX,2
for this example, but in full detail fX,2(x, s; y, t) is given by

1

2π|s− t|
exp

(
−1

2

(
x− s2

y − t2
)T (

1 + s2 1 + st

1 + st 1 + t2

)−1(
x− s2

y − t2
))

.

The nth order distributions of X are joint Gaussian distributions, but densities

don’t exist for n ≥ 3 because the values of

 Xt1

Xt2

Xt3

 are restricted to a plane

embedded in R3.

A random process (Xt : t ∈ T) is said to be Gaussian if the random variables

Xt : t ∈ T comprising the process are jointly Gaussian. The process X in the

above example is Gaussian. The finite order distributions of a Gaussian random

process X are determined by the mean function µX and autocorrelation func-

tion RX . Indeed, for any finite subset {t1, t2, . . . , tn} of T, (Xt1 , . . . , Xtn)T is a

Gaussian vector with mean (µX(t1), . . . , µX(tn))T and covariance matrix with

ijth element CX(ti, tj) = RX(ti, tj) − µX(ti)µX(tj). Two or more random pro-
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cesses are said to be jointly Gaussian if all the random variables comprising the

processes are jointly Gaussian.

Example 4.3 Let U = (Uk : k ∈ Z) be a random process such that the random

variables Uk : k ∈ Z are independent, and P{Uk = 1} = P{Uk = −1} = 1
2

for all k. Let X = (Xt : t ∈ R) be the random process obtained by letting

Xt = Un for n ≤ t < n + 1 for any n. Equivalently, Xt = Ubtc. A sample

path of U and a corresponding sample path of X are shown in Figure 4.3. Both

k
Uk X t

t

Figure 4.3 Typical sample paths.

random processes have zero mean, so their covariance functions are equal to their

correlation functions and are given by

RU (k, l) =

{
1 if k = l

0 else
RX(s, t) =

{
1 if bsc = btc
0 else

.

The random variables of U are discrete, so the nth order pmf of U exists for all

n. It is given by

pU,n(x1, k1; . . . ;xn, kn) =

{
2−n if (x1, . . . , xn) ∈ {−1, 1}n
0 else

for distinct integers k1, . . . , kn. The nth order pmf of X exists for the same

reason, but it is a bit more difficult to write down. In particular, the joint pmf

of Xs and Xt depends on whether bsc = btc. If bsc = btc then Xs = Xt and if

bsc 6= btc then Xs and Xt are independent. Therefore, the second order pmf of

X is given as follows:

pX,2(x1, t1;x2, t2) =


1
2 if bt1c = bt2c and x1 = x2 ∈ {−1, 1}
1
4 if bt1c 6= bt2c and x1, x2 ∈ {−1, 1}

0 else.

4.2 Random walks and gambler’s ruin

The topic of this section illustrates how interesting events concerning multiple

random variables naturally arise in the study of random processes. Suppose p
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is given with 0 < p < 1. Let W1,W2, . . . be independent random variables with

P{Wi = 1} = p and P{Wi = −1} = 1 − p for i ≥ 1. Suppose X0 is an integer

valued random variable independent of (W1,W2, . . .), and for n ≥ 1, define Xn

by Xn = X0 +W1 + · · ·+Wn. A sample path of X = (Xn : n ≥ 0) is shown in

Figure 4.4. The random process X is called a random walk. Write Pk and Ek for

k

b
ω

n

X  (  )n

Figure 4.4 A typical sample path.

conditional probabilities and conditional expectations given that X0 = k. For

example, Pk(A) = P (A | X0 = k) for any event A. Let us summarize some of

the basic properties of X.

• Ek[Xn] = k + n(2p− 1).

• Vark(Xn) = Var(k +W1 + · · ·+Wn) = 4np(1− p).
• limn→∞

Xn
n = 2p− 1 (a.s. and m.s. under Pk, k fixed).

• limn→∞ Pk

{
Xn−n(2p−1)√

4np(1−p)
≤ c
}

= Φ(c).

• Pk{Xn = k + j − (n− j)} =
(
n
j

)
pj(1− p)n−j for 0 ≤ j ≤ n.

Almost all the properties listed are properties of the one dimensional dis-

tributions of X. In fact, only the strong law of large numbers, giving the a.s.

convergence in the third property listed, depends on the joint distribution of the

Xn’s.

The so-called gambler’s ruin problem is a nice example of the calculation of

a probability involving the joint distributions of the random walk X. Interpret

Xn as the number of units of money a gambler has at time n. Assume that

the initial wealth k satisfies k ≥ 0, and suppose the gambler has a goal of

accumulating b units of money for some positive integer b ≥ k. While the random

walk (Xn : n ≥ 0) continues on forever, we are only interested in it until it hits



114 Random Processes

either 0 (the gambler is ruined) or b (the gambler is successful). Let Sb denote

the event that the gambler is successful, meaning the random walk reaches b

or more without first reaching 0. The gambler’s success probability is Pk(Sb). A

simple idea allows us to compute the success probability. The idea is to condition

on the value of the first step W1, and then to recognize that after the first step

is taken, the conditional probability of success is the same as the unconditional

probability of success for initial wealth k +W1.

Let sk = Pk(Sb) for 0 ≤ k ≤ b, so sk is the success probability for the

gambler with initial wealth k and target wealth b. Clearly s0 = 0 and sb = 1.

For 1 ≤ k ≤ b− 1, condition on W1 to yield

sk = Pk{W1 = 1}Pk(Sb |W1 = 1) + Pk{W1 = −1}Pk(Sb |W1 = −1)

or sk = psk+1 + (1 − p)sk−1. This yields b − 1 linear equations for the b − 1

unknowns s1, . . . , sb−1.

If p = 1
2 the equations become sk = 1

2{sk−1 + sk+1} so that sk = A+ Bk for

some constants A and B. Using the boundary conditions s0 = 0 and sb = 1, we

find that sk = k
b in case p = 1

2 . Note that, interestingly enough, after the gambler

stops playing, he’ll have b units with probability k
b and zero units otherwise.

Thus, his expected wealth after completing the game is equal to his initial capital,

k.

If p 6= 1
2 , we seek a solution of the form sk = Aθk1 +Bθk2 , where θ1 and θ2 are

the two roots of the quadratic equation θ = pθ2 + (1− p) and A,B are selected

to meet the two boundary conditions. The roots are 1 and 1−p
p , and finding A

and B yields that, if p 6= 1
2 ,

sk =
1−

(
1−p
p

)k
1−

(
1−p
p

)b 0 ≤ k ≤ b.

Now suppose p > 1
2 . By the law of large numbers, Xn

n → 2p − 1 a.s. as

n→∞. This implies, in particular, that Xn → +∞ a.s. as n→∞. Thus, unless

the gambler is ruined in finite time, his capital converges to infinity. Let S be

the event that the gambler’s wealth converges to infinity without ever reaching

zero. The events Sb decrease with b because if b is larger the gambler has more

possibilities to be ruined before accumulating b units of money: S1 ⊃ S2 ⊃ · · ·
and S = {Xn → ∞} ∩ (∩∞b=1Sb). Therefore, by the fact P{Xn → ∞} = 1 and

the continuity of probability,

Pk(S) = P (∩∞b=1Sb) = lim
b→∞

Pk(Sb) = lim
b→∞

sk = 1−
(

1− p
p

)k
.

Thus, the probability of eventual ruin decreases geometrically with the initial

wealth k.
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4.3 Processes with independent increments and martingales

The increment of a random process X = (Xt : t ∈ T) over an interval [a, b] is

the random variable Xb − Xa. A random process is said to have independent

increments if for any positive integer n and any t0 < t1 < · · · < tn in T, the

increments Xt1 −Xt0 , . . . , Xtn −Xtn−1
are mutually independent.

A random process (Xt : t ∈ T) is called a martingale if E[Xt] is finite for all t

and for any positive integer n and t1 < t2 < · · · < tn < tn+1,

E[Xtn+1 | Xt1 , . . . , Xtn ] = Xtn

or, equivalently,

E[Xtn+1 −Xtn | Xt1 , . . . , Xtn ] = 0.

If tn is interpreted as the present time, then tn+1 is a future time and the value

of (Xt1 , . . . , Xtn) represents information about the past and present values of X.

With this interpretation, the martingale property is that the future increments of

X have conditional mean zero, given the past and present values of the process.

An example of a martingale is the following. Suppose a gambler has initial

wealth X0. Suppose the gambler makes bets with various odds, such that, as

far as the past history of X can determine, the bets made are all for fair games

in which the expected net gains are zero. Then if Xt denotes the wealth of the

gambler at any time t ≥ 0, then (Xt : t ≥ 0) is a martingale.

Suppose (Xt) is an independent increment process with index set T = R+ or

T = Z+, with X0 equal to a constant and with mean zero increments. Then X is

a martingale, as we now show. Let t1 < · · · < tn+1 be in T. Then (Xt1 , . . . , Xtn)

is a function of the increments Xt1 −X0, Xt2 −Xt1 , . . . , Xtn −Xtn−1 , and hence

it is independent of the increment Xtn+1
−Xtn . Thus

E[Xtn+1
−Xtn | Xt1 , . . . , Xtn ] = E[Xtn+1

−Xtn ] = 0.

The random walk (Xn : n ≥ 0) arising in the gambler’s ruin problem is an

independent increment process, and if p = 1
2 it is also a martingale.

The following proposition is stated, without proof, to give an indication of

some of the useful deductions that follow from the martingale property.

proposition 4.2 (a) (Doob’s maximal inequality) Let X0, X1, X2, . . . be

nonnegative random variables such that

E[Xk+1 | X0, . . . , Xk] ≤ Xk for k ≥ 0 (such X is a nonnegative super-

martingale). Therefore,

P

{(
max

0≤k≤n
Xk

)
≥ γ

}
≤ E[X0]

γ
.

(b) (Doob’s L2 Inequality) Let X0, X1, . . . be a martingale sequence with
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E[X2
n] < +∞ for some n. Then

E

[(
max

0≤k≤n
Xk

)2
]
≤ 4E[X2

n].

Martingales can be used to derive concentration inequalities involving sums of

dependent random variables, as shown next. A random sequence X1, X2, . . . is

called a martingale difference sequence if the process of partial sums defined

by Sn = X1 + · · · + Xn (with S0 = 0) is a martingale, or equivalently, if

E[Xn|X1, · · · , Xn−1] = 0 for each n ≥ 1. The following proposition shows that

Bennett’s inequality and Bernstein’s inequality given in Problem 2.38 readily

extend from the case of sums of independent random variables to sums of mar-

tingale difference random variables. A related analysis in Section 10.3 yields the

Azuma-Hoeffding inequality.

proposition 4.3 (Bennett’s and Bernstein’s inequalities for martingale dif-

ference sequences) Suppose X1, X2, . . . is a martingale difference sequence such

that for some constant L and constants d2
i , i ≥ 1: P{|Xi| ≤ L} = 1 and

E[X2
i |X1, . . . , Xi−1] ≤ d2

i for i ≥ 1. Then for α > 0 and n ≥ 1 :

P

{
n∑
i=1

Xi ≥ α

}
≤ exp

(
−
∑n
i=1 d

2
i

L2
ϕ

(
αL∑
i d

2
i

))
(Bennett’s inequality)

≤ exp

(
−

1
2α

2∑n
i=1 d

2
i + αL

3

)
(Bernstein’s inequality),

where ϕ(u) = (1 + u) ln(1 + u)− u.

Proof Problem 2.38(a) yields E[eθXi |X1, . . . , Xi−1] ≤ exp
(
d2i (e

θL−1−θL)
L2

)
for

θ > 0. Therefore,

E[eθSn ] = E[E[eθXneθSn−1 |X1, . . . , Xn−1]]

= E[E[eθXn |X1, . . . , Xn−1]eθSn−1 ]

≤ exp

(
d2
n(eθL − 1− θL)

L2

)
E[eθSn−1 ],

which by induction on n implies

E[eθSn ] ≤ exp

((∑n
i=1 d

2
i

)
(eθL − 1− θL)

L2

)
,

just as if the Xi’s were independent. The remainder of the proof is identical to

the proof of the Chernoff bound.

4.4 Brownian motion

A Brownian motion, also called a Wiener process, with parameter σ2 > 0, is a

random process W = (Wt : t ≥ 0) such that
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B.0 P{W0 = 0} = 1.

B.1 W has independent increments.

B.2 Wt −Ws has the N(0, σ2(t− s)) distribution for t ≥ s.
B.3 P{Wt is a continuous function of t} = 1, or in other words, W is sample

path continuous with probability one.

A typical sample path of a Brownian motion is shown in Figure 4.5. A Brownian

X  (  )ω
t

t

Figure 4.5 A typical sample path of Brownian motion.

motion, being a mean zero independent increment process with P{W0 = 0} = 1,

is a martingale.

The mean, correlation, and covariance functions of a Brownian motion W are

given by

µW (t) = E[Wt] = E[Wt −W0] = 0

and, for s ≤ t,

RW (s, t) = E[WsWt]

= E[(Ws −W0)(Ws −W0 +Wt −Ws)]

= E[(Ws −W0)2] = σ2s

so that, in general,

CW (s, t) = RW (s, t) = σ2(s ∧ t).

A Brownian motion is Gaussian, because if 0 = t0 ≤ t1 ≤ · · · ≤ tn, then

each coordinate of the vector (Wt1 , . . . ,Wtn) is a linear combination of the n

independent Gaussian random variables

(Wti −Wti−1
: 1 ≤ i ≤ n). Thus, properties B.0–B.2 imply that W is a Gaussian

random process with µW = 0 and RW (s, t) = σ2(s ∧ t). In fact, the converse is

also true. If W = (Wt : t ≥ 0) is a Gaussian random process with mean zero and

RW (s, t) = σ2(s ∧ t), then B.0–B.2 are true.

Property B.3 does not come automatically. For example, if W is a Brownian

motion and if U is a Unif(0,1) distributed random variable independent of W ,

let W̃ be defined by

W̃t = Wt + I{U=t}.
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Then P{W̃t = Wt} = 1 for each t ≥ 0 and W̃ also satisfies B.0–B.2, but W̃

fails to satisfy B.3. Thus, W̃ is not a Brownian motion. The difference between

W and W̃ is significant if events involving uncountably many values of t are

investigated. For example,

P{Wt ≤ 1 for 0 ≤ t ≤ 1} 6= P{W̃t ≤ 1 for 0 ≤ t ≤ 1}.

4.5 Counting processes and the Poisson process

A function f on R+ is called a counting function if f(0) = 0, f is nondecreasing, f

is right continuous, and f is integer valued. The interpretation is that f(t) is the

number of “counts” observed during the interval (0, t]. An increment f(b)−f(a)

is the number of counts in the interval (a, b]. If ti denotes the time of the ith

count for i ≥ 1, then f can be described by the sequence (ti). Or, if u1 = t1
and ui = ti − ti−1 for i ≥ 2, then f can be described by the sequence (ui). See

Figure 4.6. The numbers t1, t2, . . . are called the count times and the numbers

t

t t t
1 2 3

u u u31 2

3

2

1

0
0

f(t)

Figure 4.6 A counting function.

u1, u2, . . . are called the intercount times. The following equations clearly hold:

f(t) =

∞∑
n=1

I{t≥tn}

tn = min{t : f(t) ≥ n}
tn = u1 + · · ·+ un.

A random process is called a counting process if with probability one its sample

path is a counting function. A counting process has two corresponding random

sequences, the sequence of count times and the sequence of intercount times.

The most widely used example of a counting process is a Poisson process,

defined next.

definition 4.4 Let λ ≥ 0. A Poisson process with rate λ is a random process

N = (Nt : t ≥ 0) such that
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N.1 N is a counting process,

N.2 N has independent increments,

N.3 N(t)−N(s) has the Poi(λ(t− s)) distribution for t ≥ s.

proposition 4.5 Let N be a counting process and let λ > 0. The following

are equivalent:

(a) N is a Poisson process with rate λ.

(b) The intercount times U1, U2, . . . are mutually independent, Exp(λ) random

variables.

(c) For each τ > 0, Nτ is a Poisson random variable with parameter λτ , and

given {Nτ = n}, the times of the n counts during [0, τ ] are the same as n

independent, Unif[0, τ ] random variables, reordered to be nondecreasing.

That is, for any n ≥ 1, the conditional density of the first n count times,

(T1, . . . , Tn), given the event {Nτ = n}, is:

f(t1, . . . , tn|Nτ = n) =

{
n!
τn 0 < t1 < · · · < tn ≤ τ
0 else

. (4.1)

Proof It will be shown that (a) implies (b), (b) implies (c), and (c) implies (a).

(a) implies (b). Suppose N is a Poisson process. The joint pdf of the first n

count times T1, . . . , Tn can be found as follows. Let 0 < t1 < t2 < · · · < tn. Select

ε > 0 so small that (t1 − ε, t1], (t2 − ε, t2], . . . , (tn − ε, tn] are disjoint intervals

of R+. Then the probability that (T1, . . . , Tn) is in the n-dimensional cube with

upper corner t1, . . . , tn and sides of length ε is given by

P{Ti ∈ (ti − ε, ti] for 1 ≤ i ≤ n}
= P{Nt1−ε = 0, Nt1 −Nt1−ε = 1, Nt2−ε −Nt1 = 0, . . . , Ntn −Ntn−ε = 1}
= (e−λ(t1−ε))(λεe−λε)(e−λ(t2−ε−t1)) · · · (λεe−λε)
= (λε)ne−λtn .

The volume of the cube is εn. Therefore (T1, . . . , Tn) has the pdf

fT1···Tn(t1, . . . , tn) =

{
λne−λtn if 0 < t1 < · · · < tn
0 else.

(4.2)

The vector (U1, . . . , Un) is the image of (T1, . . . , Tn) under the mapping

(t1, . . . , tn) → (u1, . . . , un) defined by u1 = t1, uk = tk − tk−1 for k ≥ 2. The

mapping is invertible, because tk = u1 + · · · + uk for 1 ≤ k ≤ n. The range of

the mapping is Rn+, and the Jacobian, given by

∂u

∂t
=


1

−1 1

−1 1
. . .

. . .

−1 1

 ,
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has unit determinant. Therefore, by the formula for the transformation of random

vectors (see Section 1.11),

fU1...Un(u1, . . . , un) =

{
λne−λ(u1+···+un) u ∈ Rn+
0 else

. (4.3)

The joint pdf in (4.3) factors into the product of n pdfs, with each pdf being for an

Exp(λ) random variable. Thus the intercount times U1, U2, . . . are independent

and each is exponentially distributed with parameter λ. So (a) implies (b).

(b) implies (c). Suppose that N is a counting process such that the intercount

times U1, U2, . . . are independent, Exp(λ) random variables, for some λ > 0.

Thus, for n ≥ 1, the first n intercount times have the joint pdf given in (4.3).

Equivalently, appealing to the transformation of random vectors in the reverse

direction, the pdf of the first n count times, (T1, . . . , Tn), is given by (4.2). Fix

τ > 0 and an integer n ≥ 1. The event {Nτ = n} is equivalent to the event

(T1, . . . , Tn+1) ∈ An,τ , where

An,τ = {t ∈ Rn+1
+ : 0 < t1 < · · · < tn ≤ τ < tn+1}.

The conditional pdf of (T1, . . . , Tn+1), given that {Nτ = n}, is obtained by

starting with the joint pdf of (T1, . . . , Tn+1), namely λn+1e−λ(tn+1) on the set

{t ∈ Rn+1 : 0 < t1 < · · · < tn+1}, setting it equal to zero off of the set An,τ , and

scaling it up by the factor 1/P{Nτ = n} on An,τ :

f(t1, . . . , tn+1|Nτ = n) =

{
λn+1e−λtn+1

P{Nτ=n} 0 < t1 < · · · < tn ≤ τ < tn+1

0 else
.

(4.4)

The joint density of (T1, . . . , Tn), given that {Nτ = n}, is obtained for each

(t1, . . . , tn) by integrating the density in (4.4) with respect to tn+1 over R. If

0 < t1 < · · · < tn ≤ τ does not hold, the density in (4.4) is zero for all values

of tn+1. If 0 < t1 < · · · < tn ≤ τ , then the density in (4.4) is nonzero for

tn+1 ∈ (τ,∞). Integrating (4.4) with respect to tn+1 over (τ,∞) yields:

f(t1, . . . , tn|Nτ = n) =

{
λne−λτ

P{Nτ=n} 0 < t1 < · · · < tn ≤ τ
0 else

. (4.5)

The conditional density in (4.5) is constant on {t ∈ Rn+ : 0 < t1 < · · · < tn ≤ τ},
and that constant must be the reciprocal of the n-dimensional volume of the

set. The unit cube [0, τ ]n in Rn has volume τn. It can be partitioned into n!

equal volume subsets determined by the n! possible orderings of the numbers

t1, . . . , tn. Therefore, the set {t ∈ Rn+ : 0 ≤ t1 < · · · < tn ≤ τ} has volume τn/n!.

Hence, (4.5) implies both that (4.1) holds and that P{Nτ = n} = (λτ)ne−λτ

n! .

These implications are for n ≥ 1. Also, P{Nτ = 0} = P{U1 > τ} = e−λτ . Thus,

Nτ is a Poi(λτ) random variable.

(c) implies (a). Suppose t0 < t1 < . . . < tk and let n1, . . . , nk be nonnegative

integers. Set n = n1 + . . .+nk and pi = (ti− ti−1)/tk for 1 ≤ i ≤ k. Suppose (c)

is true. Given there are n counts in the interval [0, τ ], by (c), the distribution of
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the numbers of counts in each subinterval is as if each of the n counts is thrown

into a subinterval at random, falling into the ith subinterval with probability pi.

The probability that, for 1 ≤ i ≤ K, ni particular counts fall into the ith interval,

is pn1
1 · · · p

nk
k . The number of ways to assign n counts to the intervals such that

there are ni counts in the ith interval is
(

n
n1 ··· nk

)
= n!

n1!···nk! . This thus gives rise

to what is known as a multinomial distribution for the numbers of counts per

interval. We have

P{N(ti)−N(ti−1) = ni for 1 ≤ i ≤ k}
= P {N(tk) = n}P [N(ti)−N(ti−1) = ni for 1 ≤ i ≤ k | N(tk) = n]

=
(λtk)ne−λtk

n!

(
n

n1 · · · nk

)
pn1

1 · · · p
nk
k

=

k∏
i=1

(λ(ti − ti−1))nie−λ(ti−ti−1)

ni!
.

Therefore the increments N(ti) − N(ti−1), 1 ≤ i ≤ k, are independent, with

N(ti) − N(ti−1) being a Poisson random variable with mean λ(ti − ti−1), for

1 ≤ i ≤ k. So (a) is proved.

A Poisson process is not a martingale. However, if Ñ is defined by Ñt = Nt−λt,
then Ñ is an independent increment process with mean 0 and Ñ0 = 0. Thus, Ñ

is a martingale. Note that Ñ has the same mean and covariance function as a

Brownian motion with σ2 = λ, which shows how little one really knows about a

process from its mean function and correlation function alone.

4.6 Stationarity

Consider a random process X = (Xt : t ∈ T) such that either T = Z or T = R.

Then X is said to be stationary if for any t1, . . . , tn and s in T, the random

vectors (Xt1 , . . . , Xtn) and (Xt1+s, . . . , Xtn+s) have the same distribution. In

other words, the joint statistics of X of all orders are unaffected by a shift in

time. The condition of stationarity of X can also be expressed in terms of the

CDF’s ofX:X is stationary if for any n ≥ 1, s, t1, . . . , tn ∈ T, and x1, . . . , xn ∈ R,

FX,n(x1, t1; . . . ;xn, tn) = FX,n(x1, t1 + s; . . . ;xn; tn + s).

Suppose X is a stationary second order random process. (Recall that second

order means that E[X2
t ] <∞ for all t.) Then by the n = 1 part of the definition of

stationarity, Xt has the same distribution for all t. In particular, µX(t) and E[X2
t ]

do not depend on t. Moreover, by the n = 2 part of the definition E[Xt1Xt2 ] =

E[Xt1+sXt2+s] for any s ∈ T. If E[X2
t ] < +∞ for all t, then E[Xt+s] and

RX(t1 + s, t2 + s) are finite and both do not depend on s.

A second order random process (Xt : t ∈ T) with T = Z or T = R is called
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wide sense stationary (WSS) if

µX(t) = µX(s+ t) and RX(t1, t2) = RX(t1 + s, t2 + s)

for all t, s, t1, t2 ∈ T. As shown above, a stationary second order random process

is WSS. Wide sense stationarity means that µX(t) is a finite number, not de-

pending on t, and RX(t1, t2) depends on t1, t2 only through the difference t1−t2.

By a convenient and widely accepted abuse of notation, if X is WSS, we use µX
to be the constant and RX to be the function of one real variable such that

E[Xt] = µX t ∈ T
E[Xt1Xt2 ] = RX(t1 − t2) t1, t2 ∈ T.

The dual use of the notation RX if X is WSS leads to the identity RX(t1, t2) =

RX(t1 − t2). As a practical matter, this means replacing a comma by a minus

sign. Since one interpretation of RX requires it to have two arguments, and the

other interpretation requires only one argument, the interpretation is clear from

the number of arguments. Some brave authors even skip mentioning that X is

WSS when they write: “Suppose (Xt : t ∈ R) has mean µX and correlation

function RX(τ),” because it is implicit in this statement that X is WSS.

Since the covariance function CX of a random process X satisfies

CX(t1, t2) = RX(t1, t2)− µX(t1)µX(t2),

if X is WSS then CX(t1, t2) is a function of t1− t2. The notation CX is also used

to denote the function of one variable such that CX(t1 − t2) = Cov(Xt1 , Xt2).

Therefore, ifX is WSS then CX(t1−t2) = CX(t1, t2). Also, CX(τ) = RX(τ)−µ2
X ,

where in this equation τ should be thought of as the difference of two times,

t1 − t2.

In general, there is much more to know about a random vector or a random

process than the first and second moments. Therefore, one can mathematically

define WSS processes that are spectacularly different in appearance from any

stationary random process. For example, any random process (Xk : k ∈ Z) such

that the Xk are independent with E[Xk] = 0 and Var(Xk) = 1 for all k is WSS.

To be specific, we could take the Xk to be independent, with Xk being N(0, 1)

for k ≤ 0 and with Xk having pmf

pX,1(x, k) = P{Xk = x} =


1

2k2 x ∈ {k,−k}
1− 1

k2 if x = 0

0 else

for k ≥ 1. A typical sample path is shown in Figure 4.7.

The situation is much different if X is a Gaussian process. Indeed, suppose

X is Gaussian and WSS. Then for any t1, t2, . . . , tn, s ∈ T, the random vector

(Xt1+s, Xt2+s, . . . , Xtn+s)
T is Gaussian with mean (µ, µ, . . . , µ)T and covariance

matrix with ijth entry CX((ti + s) − (tj + s)) = CX(ti − tj). This mean and

covariance matrix do not depend on s. Thus, the distribution of the vector does

not depend on s. Therefore, X is stationary.
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k

kX

Figure 4.7 A typical sample path of an example of a WSS random process.

In summary, if X is stationary then X is WSS, and if X is both Gaussian and

WSS, then X is stationary.

Example 4.4 Let Xt = A cos(ωct+ Θ), where ωc is a nonzero constant, A and

Θ are independent random variables with P{A > 0} = 1 and E[A2] < +∞. Each

sample path of the random process (Xt : t ∈ R) is a pure sinusoidal function at

frequency ωc radians per unit time, with amplitude A and phase Θ.

We address two questions. First, what additional assumptions, if any, are

needed on the distributions of A and Θ to imply that X is WSS? Second, we

consider two distributions for Θ which each make X WSS, and see if they make

X stationary.

To address whether X is WSS, the mean and correlation functions can be

computed as follows. Since A and Θ are independent and since cos(ωct + Θ) =

cos(ωct) cos(Θ)− sin(ωct) sin(Θ),

µX(t) = E[A] (E[cos(Θ)] cos(ωct)− E[sin(Θ)] sin(ωct)) .

Thus, the function µX(t) is a linear combination of cos(ωct) and sin(ωct). The

only way such a linear combination can be independent of t is if the coefficients

of both cos(ωct) and sin(ωct) are zero (in fact, it is enough to equate the values

of µX(t) at ωct = 0, π
2 , and π). Therefore, µX(t) does not depend on t if and

only if E[cos(Θ)] = E[sin(Θ)] = 0.

Turning next to RX , using the identity cos(a) cos(b) = (cos(a−b)+cos(a+b))/2

yields

RX(s, t) = E[A2]E[cos(ωcs+ Θ) cos(ωct+ Θ)]

=
E[A2]

2
{cos(ωc(s− t)) + E[cos(ωc(s+ t) + 2Θ)]} .

Since s+ t can be arbitrary for s− t fixed, in order that RX(s, t) be a function of

s−t alone it is necessary that E[cos(ωc(s+t)+2Θ)] be a constant, independent of
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the value of s+t. Arguing just as in the case of µX , with Θ replaced by 2Θ, yields

that RX(s, t) is a function of s− t if and only if E[cos(2Θ)] = E[sin(2Θ)] = 0.

Combining the findings for µX and RX , yields that X is WSS, if and only if,

E[cos(Θ)] = E[sin(Θ)] = E[cos(2Θ)] = E[sin(2Θ)] = 0.

There are many distributions for Θ in [0, 2π] such that the four moments specified

are zero. Two possibilities are (a) Θ is uniformly distributed on the interval

[0, 2π], or, (b) Θ is a discrete random variable, taking the four values 0, π2 , π, 3π
2

with equal probability. Is X stationary for either possibility?

We shall show that X is stationary if Θ is uniformly distributed over [0, 2π].

Stationarity means for any fixed constant s, the random processes (Xt : t ∈ R)

and (Xt+s : t ∈ R) have the same finite order distributions. For this example,

Xt+s = A cos(ωc(t+ s) + Θ) = A cos(ωct+ Θ̃)

where Θ̃ = ((ωcs + Θ) mod 2π). By Example 1.10, Θ̃ is again uniformly dis-

tributed on the interval [0, 2π]. Thus (A,Θ) and (A, Θ̃) have the same joint

distribution, so A cos(ωct + Θ) and A cos(ωct + Θ̃) have the same finite order

distributions. Hence, X is indeed stationary if Θ is uniformly distributed over

[0, 2π].

Assume now that Θ takes on each of the values of 0, π2 , π, and 3π
2 with equal

probability. Is X stationary? If X were stationary then Xt would have the same

distribution for all t. On one hand, P{X0 = 0} = P{Θ = π
2 or Θ = 3π

2 } = 1
2 .

On the other hand, if ωct is not an integer multiple of π
2 , then ωct + Θ cannot

be an integer multiple of π
2 , so P{Xt = 0} = 0. Hence X is not stationary.

With more work it can be shown thatX is stationary, if and only if, (Θ mod 2π)

is uniformly distributed over the interval [0, 2π].

4.7 Joint properties of random processes

Two random processes X and Y are said to be jointly stationary if their param-

eter set T is either Z or R, and if for any t1, . . . , tn, s ∈ T, the distribution of the

random vector

(Xt1+s, Xt2+s, . . . , Xtn+s, Yt1+s, Yt2+s, . . . , Ytn+s)

does not depend on s.

The random processes X and Y are said to be jointly Gaussian if all the

random variables comprising X and Y are jointly Gaussian.

If X and Y are second order random processes on the same probability space,

the cross correlation function, RXY , is defined by RXY (s, t) = E[XsYt], and the

cross covariance function, CXY , is defined by CXY (s, t) = Cov(Xs, Yt).

The random processes X and Y are said to be jointly WSS, if X and Y are

each WSS, and if RXY (s, t) is a function of s− t. If X and Y are jointly WSS, we
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use RXY (τ) for RXY (s, t) where τ = s−t, and similarly CXY (s−t) = CXY (s, t).

Note that CXY (s, t) = CY X(t, s), so CXY (τ) = CY X(−τ).

4.8 Conditional independence and Markov processes

Markov processes are naturally associated with the state space approach for

modeling a system. The idea of a state space model for a given system is to

define the state of the system at any given time t. The state of the system at

time t should summarize everything about the system up to and including time t

that is relevant to the future of the system. For example, the state of an aircraft at

time t could consist of the position, velocity, and remaining fuel at time t. Think

of t as the present time. The state at time t determines the possible future part of

the aircraft trajectory. For example, it determines how much longer the aircraft

can fly and where it could possibly land. The state at time t does not completely

determine the entire past trajectory of the aircraft. Rather, the state summarizes

enough about the system up to the present so that if the state is known, no more

information about the past is relevant to the future possibilities. The concept

of state is inherent in the Kalman filtering model discussed in Chapter 3. The

notion of state is captured for random processes using the notions of conditional

independence and the Markov property, which are discussed next.

Let X,Y, Z be random vectors. We shall define the condition that X and Z

are conditionally independent given Y . Such condition is denoted by X−Y −Z.

If X,Y, Z are discrete, then X − Y − Z is defined to hold if

P (X = i, Z = k | Y = j) = P (X = i | Y = j)P (Z = k | Y = j) (4.6)

for all i, j, k with P{Y = j} > 0. Equivalently, X − Y − Z if

P{X = i, Y = j, Z = k}P{Y = j} = P{X = i, Y = j}P{Z = k, Y = j} (4.7)

for all i, j, k. Equivalently again, X - Y - Z if

P (Z = k | X = i, Y = j) = P (Z = k | Y = j) (4.8)

for all i, j, k with P{X = i, Y = j} > 0. The forms (4.6) and (4.7) make it clear

that the condition X − Y − Z is symmetric in X and Z: thus X − Y − Z is

the same condition as Z − Y − X. The form (4.7) does not involve conditional

probabilities, so no requirement about conditioning on events having positive

probability is needed. The form (4.8) shows that X − Y − Z means that

knowing Y alone is as informative as knowing both X and Y , for the purpose of

determining conditional probabilities of Z. Intuitively, the condition X − Y − Z

means that the random variable Y serves as a state.

If X,Y , and Z have a joint pdf, then the condition X − Y − Z can be

defined using the pdfs and conditional pdfs in a similar way. For example, the

conditional independence condition X − Y − Z holds by definition if

fXZ|Y (x, z|y) = fX|Y (x|y)fZ|Y (z|y) whenever fY (y) > 0.
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An equivalent condition is

fZ|XY (z|x, y) = fZ|Y (z|y) whenever fXY (x, y) > 0. (4.9)

Example 4.5 Suppose X,Y, Z are jointly Gaussian vectors. Let us see what the

condition

X − Y − Z means in terms of the covariance matrices. Assume without loss

of generality that the vectors have mean zero. Because X,Y , and Z are jointly

Gaussian, the condition (4.9) is equivalent to the condition that E[Z|X,Y ] =

E[Z|Y ] (because given X,Y , or just given Y , the conditional distribution of Z

is Gaussian, and in the two cases the mean and covariance of the conditional

distribution of Z is the same.) The idea of linear innovations applied to the

length two sequence (Y,X) yields E[Z|X,Y ] = E[Z|Y ] + E[Z|X̃] where X̃ =

X −E[X|Y ]. Thus X − Y −Z if and only if E[Z|X̃] = 0, or equivalently, if and

only if Cov(X̃, Z) = 0. Since X̃ = X − Cov(X,Y )Cov(Y )−1Y , if follows that

Cov(X̃, Z) = Cov(X,Z)− Cov(X,Y )Cov(Y )−1Cov(Y, Z).

Therefore, X − Y − Z if and only if

Cov(X,Z) = Cov(X,Y )Cov(Y )−1Cov(Y, Z). (4.10)

In particular, if X,Y , and Z are jointly Gaussian random variables with nonzero

variances, the condition X − Y − Z holds if and only if the correlation

coefficients satisfy ρXZ = ρXY ρY Z .

A general definition of conditional probabilities and conditional independence,

based on the general definition of conditional expectation given in Chapter 3, is

given next. Recall that P (F ) = E[IF ] for any event F , where IF denotes the

indicator function of F . If Y is a random vector, we define P (F |Y ) to equal

E[IF |Y ]. This means that P (F |Y ) is the unique (in the sense that any two ver-

sions are equal with probability one) random variable such that

(1) P (F |Y ) is a function of Y and it has finite second moments, and

(2) E[g(Y )P (F |Y )] = E[g(Y )IF ] for any g(Y ) with finite second moment.

Given arbitrary random vectors, we define X and Z to be conditionally inde-

pendent given Y , (written X − Y − Z) if for any Borel sets A and B,

P ({X ∈ A}{Z ∈ B}|Y ) = P (X ∈ A|Y )P (Z ∈ B|Y ).

Equivalently, X − Y −Z if for any Borel set B, P (Z ∈ B|X,Y ) = P (Z ∈ B|Y ).

definition 4.6 A random process X = (Xt : t ∈ T) is said to be a Markov

process if for any t1, . . . , tn+1 in T with t1 < · · · < tn, the following conditional

independence condition holds:

(Xt1 , · · · , Xtn) − Xtn − Xtn+1
. (4.11)
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It turns out that the Markov property is equivalent to the following conditional

independence property: For any t1, . . . , tn+m in T with t1 < · · · < tn+m,

(Xt1 , · · · , Xtn) − Xtn − (Xtn , · · · , Xtn+m
). (4.12)

The definition (4.11) is easier to check than condition (4.12), but (4.12) is ap-

pealing because it is symmetric in time. In words, thinking of tn as the present

time, the Markov property means that the past and future of X are conditionally

independent given the present state Xtn .

Example 4.6 (Markov property of independent increment processes) Let (Xt :

t ≥ 0) be an independent increment process such that X0 is a constant. Then for

any t1, . . . , tn+1 with 0 ≤ t1 ≤ · · · ≤ tn+1, the vector (Xt1 , . . . , Xtn) is a function

of the n increments Xt1 −X0, Xt2 −Xt1 , Xtn −Xtn−1 , and is thus independent

of the increment V = Xtn+1
− Xtn . But Xtn+1

is determined by V and Xtn .

Thus, X is a Markov process. In particular, random walks, Brownian motions,

and Poisson processes are Markov processes.

Example 4.7 (Gaussian Markov processes) Suppose X = (Xt : t ∈ T) is a

Gaussian random process with Var(Xt) > 0 for all t. By the characterization of

conditional independence for jointly Gaussian vectors (4.10), the Markov prop-

erty (4.11) is equivalent to

Cov




Xt1

Xt2
...

Xtn

 , Xtn+1

 = Cov




Xt1

Xt2
...

Xtn

 , Xtn

Var(Xtn)−1Cov(Xtn , Xtn+1
),

which, letting ρ(s, t) denote the correlation coefficient between Xs and Xt, is

equivalent to the requirement
ρ(t1, tn+1)

ρ(t2, tn+1))
...

ρ(tn, tn+1)

 =


ρ(t1, tn)

ρ(t2, tn)
...

ρ(tn, tn)

 ρ(tn, tn+1).

Therefore a Gaussian process X is Markovian if and only if

ρ(r, t) = ρ(r, s)ρ(s, t) whenever r, s, t ∈ T with r < s < t. (4.13)

If X = (Xk : k ∈ Z) is a discrete-time stationary Gaussian process, then

ρ(s, t) may be written as ρ(k), where k = s − t. Note that ρ(k) = ρ(−k). Such

a process is Markovian if and only if ρ(k1 + k2) = ρ(k1)ρ(k2) for all positive

integers k1 and k2. Therefore, X is Markovian if and only if ρ(k) = b|k| for all

k, for some constant b with |b| ≤ 1. Equivalently, a stationary Gaussian process

X = (Xk : k ∈ Z) with V ar(Xk) > 0 for all k is Markovian if and only if the
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covariance function has the form CX(k) = Ab|k| for some constants A and b with

A > 0 and |b| ≤ 1.

Similarly, if (Xt : t ∈ R) is a continuous-time stationary Gaussian process with

V ar(Xt) > 0 for all t, X is Markovian if and only if ρ(s + t) = ρ(s)ρ(t) for all

s, t ≥ 0. The only bounded real-valued functions satisfying such a multiplicative

condition are exponential functions. Therefore, a stationary Gaussian process X

with V ar(Xt) > 0 for all t is Markovian if and only if ρ has the form ρ(τ) =

exp(−α|τ |), for some constant α ≥ 0, or equivalently, if and only if CX has the

form CX(τ) = A exp(−α|τ |) for some constants A > 0 and α ≥ 0.

The following proposition should be intuitively clear, and it often applies in

practice.

proposition 4.7 (Markov property of a sequence determined by a recursion

driven by independent random variables) Suppose X0, U1, U2, . . . are mutually

independent random variables and suppose (Xn : n ≥ 1) is determined by a

recursion of the form Xn+1 = hn+1(Xn, Un+1) for n ≥ 0. Then (Xn : n ≥ 0) is

a Markov process.

Proof The Proposition will first be proved in case the random variables are all

discrete type. Let n ≥ 1, let B ⊂ R, and let ϕ be the function defined by ϕ(xn) =

P{hn+1(xn, Un+1) ∈ B}. The random vector (X0, . . . , Xn) is determined by

(X0, U1, . . . , Un), and is therefore independent of Un+1. Thus, for any possible

value (x0, . . . , xn) of (X0, . . . , Xn),

P (Xn+1 ∈ B|X0 = xo, . . . , Xn = xn)

= P (hn+1(xn, Un+1) ∈ B|X0 = xo, . . . , Xn = xn)

= ϕ(xn).

So the conditional distribution of Xn+1 given (X0, . . . , Xn) depends only on Xn,

establishing the Markov property.

For the general case we use the general version of conditional probability. Let

n ≥ 1, let B be a Borel subset of R, and let ϕ be defined as before. We will

show that P (Xn+1 ∈ B|X0, . . . , Xn) = ϕ(Xn) by checking that ϕ(Xn) has the

two properties that characterize P (Xn+1 ∈ B|X0, . . . , Xn). First, ϕ(Xn) is a

function of X0, . . . , Xn with finite second moments. Secondly, if g is an arbitrary
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Borel function such that g(X0, . . . , Xn) has a finite second moment, then

E
[
I{Xn+1∈B}g(X0, . . . , Xn)

]
=

∫
Rn

∫
{u:hn+1(xn,u)∈B}

g(x0, . . . , xn)dFUn+1
(u)dFX0,...,Xn(x0, . . . , xn)

=

∫
Rn

(∫
{u:hn+1(xn,u)∈B}

dFUn+1(u)

)
g(x0, . . . , xn)dFX0,...,Xn(x0, . . . , xn)

=

∫
Rn
ϕ(xn)g(x0, . . . , xn)dFX0,...,Xn(x0, . . . , xn)

= E [ϕ(Xn)g(X0, . . . , Xn)] .

Therefore, P (Xn+1 ∈ B|X0, . . . Xn) = ϕ(Xn). Hence, P (Xn+1 ∈ B|X0, . . . Xn)

is a function of Xn so that P (Xn+1 ∈ B|X0, . . . Xn) = P (Xn+1 ∈ B|Xn). Since

B is arbitrary it implies (X0, . . . , Xn)−Xn−Xn+1, so (Xn : n ≥ 0) is a Markov

process.

For example, if the driving terms wk : k ≥ 0 used for discrete-time Kalman

filtering are independent (rather than just being pairwise uncorrelated), then the

state process of the Kalman filtering model has the Markov property.

4.9 Discrete-state Markov processes

This section delves further into the theory of Markov processes in the case of

a discrete state space S, assumed to be a finite or countably infinite set. Given

a probability space (Ω,F , P ), an S valued random variable is defined to be a

function Y mapping Ω to S such that {ω : Y (ω) = s} ∈ F for each s ∈ S. Assume

that the elements of S are ordered so that S = {a1, a2, . . . , an} in case S has finite

cardinality, or S = {a1, a2, a3, . . .} in case S has infinite cardinality. Given the

ordering, an S valued random variable is equivalent to a positive integer valued

random variable, so it is nothing exotic. Think of the probability distribution of

an S valued random variable Y as a row vector of possibly infinite dimension,

called a probability vector: pY = (P{Y = a1}, P{Y = a2}, . . .). Similarly think

of a deterministic function g on S as a column vector, g = (g(a1), g(a2), . . .)T .

Since the elements of S may not even be numbers, it might not make sense to

speak of the expected value of an S valued random variable. However, if g is

a function mapping S to the reals, then g(Y ) is a real-valued random variable

and its expectation is given by the inner product of the probability vector pY
and the column vector g: E[g(Y )] =

∑
i∈S pY (i)g(i) = pY g. A random process

X = (Xt : t ∈ T) is said to have state space S if Xt is an S valued random

variable for each t ∈ T, and the Markov property of such a random process is

defined just as it is for a real valued random process.

Let (Xt : t ∈ T) be a be a Markov process with state space S. For brevity

we denote the first order pmf of X at time t as π(t) = (πi(t) : i ∈ S). That
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is, πi(t) = pX(i, t) = P{X(t) = i}. The following notation is used to denote

conditional probabilities:

P

(
Xt1 = j1, . . . , Xtn = jn

∣∣∣∣Xs1 = i1, . . . , Xsm = im

)
pX(j1, t1; . . . ; jn, tn|i1, s1; . . . ; im, sm).

For brevity, conditional probabilities of the form P (Xt = j|Xs = i) are written

as pij(s, t), and are called the transition probabilities of X.

The first order pmfs π(t) and the transition probabilities pij(s, t) determine

all the finite order distributions of the Markov process as follows. Given{
t1 < t2 < . . . < tn in T,
ii, i2, ..., in ∈ S

, (4.14)

one writes

pX(i1, t1; · · · ; in, tn)

= pX(i1, t1; · · · ; in−1, tn−1)pX(in, tn|i1, t1; · · · ; in−1, tn−1)

= pX(i1, t1; · · · ; in−1, tn−1)pin−1in(tn−1, tn).

Application of this operation n− 2 more times yields that

pX(i1, t1; · · · ; in, tn) = πi1(t1)pi1i2(t1, t2) · · · pin−1in(tn−1, tn), (4.15)

which shows that the finite order distributions of X are indeed determined by

the first order pmfs and the transition probabilities. Equation (4.15) can be used

to easily verify that the form (4.12) of the Markov property holds.

Given s < t, the collection H(s, t) defined by H(s, t) = (pij(s, t) : i, j ∈ S)

should be thought of as a matrix, and it is called the transition probability matrix

for the interval [s, t]. Let e denote the column vector with all ones, indexed by S.

Since π(t) and the rows of H(s, t) are probability vectors, it follows that π(t)e = 1

and H(s, t)e = e. Computing the distribution of Xt by summing over all possible

values of Xs yields that πj(t) =
∑
i P (Xs = i,Xt = j) =

∑
i πi(s)pij(s, t), which

in matrix form yields that π(t) = π(s)H(s, t) for s, t ∈ T, s ≤ t. Similarly, given

s < τ < t, computing the conditional distribution of Xt given Xs by summing

over all possible values of Xτ yields

H(s, t) = H(s, τ)H(τ, t) s, τ, t ∈ T, s < τ < t. (4.16)

The relations (4.16) are known as the Chapman-Kolmogorov equations.

A Markov process is time-homogeneous if the transition probabilities pij(s, t)

depend on s and t only through t − s. In that case we write pij(t − s) instead

of pij(s, t), and Hij(t − s) instead of Hij(s, t). If the Markov process is time-

homogeneous, then π(s+τ) = π(s)H(τ) for s, s+τ ∈ T and τ ≥ 0. A probability

distribution π is called an equilibrium (or invariant) distribution if πH(τ) = π

for all τ ≥ 0.

Recall that a random process is stationary if its finite order distributions are

invariant with respect to translation in time. On one hand, referring to (4.15),
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we see that a time-homogeneous Markov process is stationary if and only if

π(t) = π for all t for some equilibrium distribution π. On the other hand, a

Markov random process that is stationary is time homogeneous.

Repeated application of the Chapman-Kolmogorov equations yields that pij(s, t)

can be expressed in terms of transition probabilities for s and t close together. For

example, consider Markov processes with index set the integers. Then H(n, k +

1) = H(n, k)P (k) for n ≤ k, where P (k) = H(k, k + 1) is the one-step tran-

sition probability matrix. Fixing n and using forward recursion starting with

H(n, n) = I, H(n, n + 1) = P (n), H(n, n + 2) = P (n)P (n + 1), and so forth

yields

H(n, l) = P (n)P (n+ 1) · · ·P (l − 1).

In particular, if the chain is time-homogeneous then H(k) = P k for all k, where

P is the time independent one-step transition probability matrix, and π(l) =

π(k)P l−k for l ≥ k. In this case a probability distribution π is an equilibrium

distribution if and only if πP = π.

Example 4.8 Consider a two-stage pipeline through which packets flow, as pic-

tured in Figure 4.8. Some assumptions about the pipeline will be made in order

to model it as a simple discrete-time Markov process. Each stage has a single

buffer. Normalize time so that in one unit of time a packet can make a single

transition. Call the time interval between k and k + 1 the kth “time slot,” and

assume that the pipeline evolves in the following way during a given slot.

d d1 2a

Figure 4.8 A two-stage pipeline.

If at the beginning of the slot, there are no packets in stage one, then a new

packet arrives to stage one with probability a, independently of the past

history of the pipeline and of the outcome at stage two.

If at the beginning of the slot, there is a packet in stage one and no packet

in stage two, then the packet is transfered to stage two with probability

d1.

If at the beginning of the slot, there is a packet in stage two, then the packet

departs from the stage and leaves the system with probability d2, inde-

pendently of the state or outcome of stage one.

These assumptions lead us to model the pipeline as a discrete-time Markov

process with the state space S = {00, 01, 10, 11}, transition probability diagram

shown in Figure 4.9 (using the notation x̄ = 1 − x) and one-step transition
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Figure 4.9 One-step transition probability diagram.

probability matrix P given by

P =


ā 0 a 0

ād2 ād̄2 ad2 ad̄2

0 d1 d̄1 0

0 0 d2 d̄2

 .

The rows of P are probability vectors. For example, the first row is the prob-

ability distribution of the state at the end of a slot, given that the state is 00

at the beginning of a slot. Now that the model is specified, let us determine the

throughput rate of the pipeline.

The equilibrium probability distribution π = (π00, π01, π10, π11) is the proba-

bility vector satisfying the linear equation π = πP . Once π is found, the through-

put rate η can be computed as follows. It is defined to be the rate (averaged over

a long time) that packets transit the pipeline. Since at most two packets can be

in the pipeline at a time, the following three quantities are all clearly the same,

and can be taken to be the throughput rate.

The rate of arrivals to stage one

The rate of departures from stage one (or rate of arrivals to stage two)

The rate of departures from stage two

Focus on the first of these three quantities to obtain

η = P{an arrival at stage 1}
= P (an arrival at stage 1|stage 1 empty at slot beginning)

· P (stage 1 empty at slot beginning)

= a(π00 + π01).

Similarly, by focusing on departures from stage 1, obtain η = d1π10. Finally,

by focusing on departures from stage 2, obtain η = d2(π01 + π11). These three

expressions for η must agree.

Consider the numerical example a = d1 = d2 = 0.5. The equation π = πP

yields that π is proportional to the vector (1, 2, 3, 1). Applying the fact that

π is a probability distribution yields that π = (1/7, 2/7, 3/7, 1/7). Therefore
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η = 3/14 = 0.214 . . ..

In the remainder of this section we assume that X is a continuous-time, finite-

state Markov process. The transition probabilities for arbitrary time intervals

can be described in terms of the transition probabilities over arbitrarily short

time intervals. By saving only a linearization of the transition probabilities, the

concept of generator matrix arises naturally, as we describe next.

Let S be a finite set. A pure-jump function for a finite state space S is a

function x : R+ → S such that there is a sequence of times, 0 = τ0 < τ1 < · · ·
with limi→∞ τi = ∞, and a sequence of states with si 6= si+1, i ≥ 0, such that

that x(t) = si for τi ≤ t < τi+1. A pure-jump Markov process is an S valued

Markov process such that, with probability one, the sample functions are pure-

jump functions.

Let Q = (qij : i, j ∈ S) be such that

qij ≥ 0 i, j ∈ S, i 6= j

qii = −
∑
j∈S,j 6=i qij i ∈ S. . (4.17)

An example for state space S = {1, 2, 3} is

Q =

 −1 0.5 0.5

1 −2 1

0 1 −1

 ,

and this matrix Q can be represented by the transition rate diagram shown in

Figure 4.10. A pure-jump, time-homogeneous Markov process X has generator

21

3

0.5

1

1
10.5

Figure 4.10 Transition rate diagram for a continuous-time Markov process.

matrix Q if the transition probabilities (pij(τ)) satisfy

lim
h↘0

(pij(h)− I{i=j})/h = qij i, j ∈ S, (4.18)

or equivalently

pij(h) = I{i=j} + hqij + o(h) i, j ∈ S, (4.19)

where o(h) represents a quantity such that limh→0 o(h)/h = 0. For the example
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this means that the transition probability matrix for a time interval of duration

h is given by 1− h 0.5h 0.5h

h 1− 2h h

0 h 1− h

+

 o(h) o(h) o(h)

o(h) o(h) o(h)

o(h) o(h) o(h)

 .

For small enough h, the rows of the first matrix are probability distributions,

owing to the assumptions on the generator matrix Q.

proposition 4.8 Given a matrix Q satisfying (4.17), and a probability dis-

tribution

π(0) = (πi(0) : i ∈ S), there is a pure-jump, time-homogeneous Markov process

with generator matrix Q and initial distribution π(0). The finite order distribu-

tions of the process are uniquely determined by π(0) and Q.

The first order distributions and the transition probabilities can be derived

from Q and an initial distribution π(0) by solving differential equations, derived

as follows. Fix t > 0 and let h be a small positive number. The Chapman-

Kolmogorov equations imply that

πj(t+ h)− πj(t)
h

=
∑
i∈S

πi(t)

(
pij(h)− I{i=j}

h

)
. (4.20)

Letting h converge to zero yields the differential equation:

∂πj(t)

∂t
=
∑
i∈S

πi(t)qij (4.21)

or, in matrix notation, ∂π(t)
∂t = π(t)Q. These equations, known as the Kolmogorov

forward equations, can be rewritten as

∂πj(t)

∂t
=

∑
i∈S,i6=j

πi(t)qij −
∑

i∈S,i6=j

πj(t)qji, (4.22)

which shows that the rate change of the probability of being at state j is the rate

of probability flow into state j minus the rate of probability flow out of state j.

The Kolmogorov forward equations (4.21), or equivalently, (4.22), for (π(t) :

t ≥ 0) take as input data the initial distribution π(0) and the generator matrix Q.

These equations include as special cases differential equations for the transition

probability functions, pi,j(t). After all, for io fixed, pio,j(t) = P (Xt = j|X0 =

io) = πj(t) if the initial distribution of (π(t)) is πi(0) = I{i=io}. Thus, (4.21)

specializes to

∂pio,j(t)

∂t
=
∑
i∈S

pio,i(t)qi,j pio,i(0) = I{i=io}. (4.23)

Recall that H(t) is the matrix with (i, j)th element equal to pi,j(t). Therefore, for

any io fixed, the differential equation (4.23) determines the itho row of (H(t); t ≥
0). The equations (4.23) for all choices of io can be written together in the
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following matrix form: ∂H(t)
∂t = H(t)Q with H(0) equal to the identify matrix.

An occasionally useful general expression for the solution is H(t) = exp(Qt)
4
=∑∞

n=0
tnQn

n! .

Example 4.9 Consider the two-state, continuous-time Markov process with the

transition rate diagram shown in Figure 4.11 for some positive constants α and

β. The generator matrix is given by

21

α

β

Figure 4.11 Transition rate diagram for a two-state continuous-time Markov process.

Q =

[
−α α

β −β

]
.

Let us solve the forward Kolmogorov equation for a given initial distribution

π(0). The equation for π1(t) is

∂π1(t)

∂t
= −απ1(t) + βπ2(t); π1(0) given.

But π1(t) = 1− π2(t), so

∂π1(t)

∂t
= −(α+ β)π1(t) + β; π1(0) given.

By differentiation we check that this equation has the solution

π1(t) = π1(0)e−(α+β)t +

∫ t

0

e−(α+β)(t−s)βds

= π1(0)e−(α+β)t +
β

α+ β
(1− e−(α+β)t),

so that

π(t) = π(0)e−(α+β)t +

(
β

α+ β
,

α

α+ β

)
(1− e−(α+β)t). (4.24)

For any initial distribution π(0),

lim
t→∞

π(t) =

(
β

α+ β
,

α

α+ β

)
.

The rate of convergence is exponential, with rate parameter α + β, and the

limiting distribution is the unique probability distribution satisfying πQ = 0.

By specializing (4.24) we determine H(t). Specifically, H(t) is a 2× 2 matrix;
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its top row is π(t) for the initial condition π(0) = (1, 0); its bottom row is π(t)

for the initial condition π(0) = (0, 1); the result is:

H(t) =

(
αe−(α+β)t+β

α+β
α(1−e−(α+β)t)

α+β
β(1−e−(α+β)t)

α+β
α+βe−(α+β)t

α+β

)
. (4.25)

Note that H(t) is a transition probability matrix for each t ≥ 0, H(0) is the 2×2

identity matrix; each row of limt→∞H(t) is equal to limt→∞ π(t).

4.10 Space-time structure of discrete-state Markov processes

The previous section showed that the distribution of a time-homogeneous, discrete-

state Markov process can be specified by an initial probability distribution, and

either a one-step transition probability matrix P (for discrete-time processes)

or a generator matrix Q (for continuous-time processes). Another way to de-

scribe these processes is to specify the space-time structure, which is simply the

sequences of states visited and how long each state is visited. The space-time

structure is discussed first for discrete-time processes, and then for continuous-

time processes. One benefit is to show how little difference there is between

discrete-time and continuous-time processes.

Let (Xk : k ∈ Z+) be a time-homogeneous Markov process with one-step

transition probability matrix P . Let Tk denote the time that elapses between

the kth and k + 1th jumps of X, and let XJ(k) denote the state after k jumps.

See Fig. 4.12 for illustration. More precisely, the holding times are defined by

40

TT T

X

XJ(1)
XJ(2)

(0)J X (3)J

k

0 1 2

20

. . .

10 30

Figure 4.12 Illustration of jump process and holding times.

T0 = min{t ≥ 0 : X(t) 6= X(0)} (4.26)

Tk = min{t ≥ 0 : X(T0 + . . . + Tk−1 + t) 6= X(T0 + . . . + Tk−1)}(4.27)

and the jump process XJ = (XJ(k) : k ≥ 0) is defined by

XJ(0) = X(0) and XJ(k) = X(T0 + . . . + Tk−1). (4.28)
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Clearly the holding times and jump process contain all the information needed

to construct X, and vice versa. Thus, the following description of the joint distri-

bution of the holding times and the jump process characterizes the distribution

of X.

proposition 4.9 Let X = (X(k) : k ∈ Z+) be a time-homogeneous Markov

process with one-step transition probability matrix P .

(a) The jump process XJ is itself a time-homogeneous Markov process, and its

one-step transition probabilities are given by pJij = pij/(1−pii) for i 6= j,

and pJii = 0, i, j ∈ S.

(b) Given X(0), XJ(1) is conditionally independent of T0.

(c) Given (XJ(0), . . . , XJ(n)) = (j0, . . . , jn), the variables T0, . . . , Tn are

conditionally independent, and the conditional distribution of Tl is geo-

metric with parameter pjljl :

P (Tl = k|XJ(0) = j0, . . . , X
J(n) = jn) = pk−1

jljl
(1−pjljl) 0 ≤ l ≤ n, k ≥ 1.

Proof Observe that if X(0) = i, then

{T0 = k,XJ(1) = j} = {X(1) = i,X(2) = i, . . . ,X(k − 1) = i,X(k) = j},

so

P (T0 = k,XJ(1) = j|X(0) = i) = pk−1
ii pij =

[
(1− pii)pk−1

ii

]
pJij . (4.29)

Because for i fixed the last expression in (4.29) displays the product of two

probability distributions, conclude that given X(0) = i,

T0 has distribution ((1− pii)pk−1
ii : k ≥ 1), the geometric distribution of mean

1/(1− pii)
XJ(1) has distribution (pJij : j ∈ S) (i fixed)

T0 and XJ(1) are independent.

More generally, check that

P

(
XJ(1) = j1, . . . , X

J(n) = jn, To = k0, . . . , Tn = kn

∣∣∣∣XJ(0) = i

)
= pJij1p

J
j1j2 . . . p

J
jn−1jn

n∏
l=0

(
pkl−1
jljl

(1− pjljl)
)
.

This establishes the proposition.

Next we consider the space-time structure of time-homogeneous continuous-

time pure-jump Markov processes. Essentially the only difference between the

discrete- and continuous-time Markov processes is that the holding times for

the continuous-time processes are exponentially distributed rather than geomet-

rically distributed. Indeed, define the holding times Tk, k ≥ 0 and the jump

process XJ using (4.26)-(4.28) as before.
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proposition 4.10 Let X = (X(t) : t ∈ R+) be a time-homogeneous, pure-

jump Markov process with generator matrix Q. Then

(a) The jump process XJ is a discrete-time, time-homogeneous Markov process,

and its one-step transition probabilities are given by

pJij =

{
−qij/qii for i 6= j

0 for i = j
. (4.30)

(b) Given X(0), XJ(1) is conditionally independent of T0.

(c) Given XJ(0) = j0, . . . , X
J(n) = jn, the variables T0, . . . , Tn are condi-

tionally independent, and the conditional distribution of Tl is exponential

with parameter −qjljl :

P (Tl ≥ c|XJ(0) = j0, . . . , X
J(n) = jn) = exp(cqjljl) 0 ≤ l ≤ n.

Proof Fix h > 0 and define the “sampled” process X(h) by X(h)(k) = X(hk)

for k ≥ 0. See Fig. 4.13. Then X(h) is a discrete-time Markov process with one-

X(t)

t

(h)X    (1)  X    (2)  (h)
X    (3)  (h)

s
s
s1
2
3

Figure 4.13 Illustration of sampling of a pure-jump function.

step transition probabilities pij(h) (the transition probabilities for the original

process for an interval of length h). Let (T
(h)
k : k ≥ 0) denote the sequence of

holding times and (XJ,h(k) : k ≥ 0) the jump process for the process X(h).

The assumption that with probability one the sample paths of X are pure-

jump functions, implies that with probability one:

lim
h→0

(XJ,h(0), XJ,h(1), . . . , XJ,h(n), hT
(h)
0 , hT

(h)
1 , . . . , hT (h)

n ) =

(XJ(0), XJ(1), . . . , XJ(n), T0, T1, . . . , Tn). (4.31)

Since convergence with probability one implies convergence in distribution, the

goal of identifying the distribution of the random vector on the righthand side

of (4.31) can be accomplished by identifying the limit of the distribution of the

vector on the left.

First, the limiting distribution of the process XJ,h is identified. Since X(h)

has one-step transition probabilities pij(h), the formula for the jump process
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probabilities for discrete-time processes (see Proposition 4.9, part a) yields that

the one step transition probabilities pJ,hij for X(J,h) are given by

pJ,hij =
pij(h)

1− pii(h)

=
pij(h)/h

(1− pii(h))/h
→ qij
−qii

as h→ 0 (4.32)

for i 6= j, where the limit indicated in (4.32) follows from the definition (4.18)

of the generator matrix Q. Thus, the limiting distribution of XJ,h is that of a

Markov process with one-step transition probabilities given by (4.30), establish-

ing part (a) of the proposition. The conditional independence properties stated

in (b) and (c) of the proposition follow in the limit from the corresponding prop-

erties for the jump process XJ,h guaranteed by Proposition 4.9. Finally, since

log(1 + θ) = θ + o(θ) by Taylor’s formula, we have for all c ≥ 0 that

P (hT
(h)
l > c|XJ,h(0) = j0, . . . , X

J,h(n) = jn) = (pjljl(h))bc/hc

= exp(bc/hc log(pjljl(h)))

= exp(bc/hc(qjljlh+ o(h)))

→ exp(qjljlc) as h→ 0,

which establishes the remaining part of (c), and the proposition is proved.

Problems

4.1 Event probabilities for a simple random process Define the random pro-

cess X by Xt = 2A+Bt where A and B are independent random variables with

P{A = 1} = P{A = −1} = P{B = 1} = P{B = −1} = 0.5. (a) Sketch the pos-

sible sample functions. (b) Find P{Xt ≥ 0} for all t. (c) Find P{Xt ≥ 0 for all t}.
4.2 Correlation function of a product Let Y and Z be independent random

processes with RY (s, t) = 2 exp(−|s − t|) cos(2πf(s − t)) and RZ(s, t) = 9 +

exp(−3|s− t|4). Find the autocorrelation function RX(s, t) where Xt = YtZt.

4.3 A sinusoidal random process Let Xt = A cos(2πV t+ Θ) where the ampli-

tude A has mean 2 and variance 4, the frequency V in Hertz is uniform on [0, 5],

and the phase Θ is uniform on [0, 2π]. Furthermore, suppose A, V and Θ are in-

dependent. Find the mean function µX(t) and autocorrelation function RX(s, t).

Is X WSS?

4.4 Another sinusoidal random process Suppose that X1 and X2 are random

variables such that EX1 = EX2 = EX1X2 = 0 and Var(X1) = Var(X2) = σ2.

Define Yt = X1 cos(2πt) −X2 sin(2πt). (a) Is the random process Y necessarily

wide-sense stationary? (b) Give an example of random variables X1 and X2

satisfying the given conditions such that Y is stationary. (c) Give an example of

random variables X1 and X2 satisfying the given conditions such that Y is not

(strict sense) stationary.

4.5 A random line Let X = (Xt : t ∈ R) be a random process such that

Xt = R− St for all t, where R and S are independent random variables, having
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the Rayleigh distribution with positive parameters σ2
R and σ2

S , respectively.

(a) Indicate three typical sample paths of X in a single sketch. Describe in words

the set of possible sample paths of X.

(b) Is X a Markov process? Why or why not?

(c) Does X have independent increments? Why or why not?

(d) Let A denote the area of the triangle bounded by portions of the coordinate

axes and the graph of X. Find E[A]. Simplify your answer as much as possible.

4.6 A random process corresponding to a random parabola Define a random

process X by Xt = A+Bt+t2, where A and B are independent, N(0, 1) random

variables. (a) Find Ê[X5|X1], the linear minimum mean square error (LMMSE)

estimator of X5 given X1, and compute the mean square error. (b) Find the

MMSE (possibly nonlinear) estimator of X5 given X1, and compute the mean

square error. (c) Find Ê[X5|X0, X1] and compute the mean square error. (Hint:

Can do by inspection.)

4.7 Some probabilities for a Brownian motion Let (Wt : t ≥ 1) be a standard

Brownian motion.

(a) Express P{W3 ≥ W2+W4

2 + 1} in terms of the Q function.

(b) Find the limit of the distribution of
W 2
t

t as t→∞.
4.8 Brownian motion: Ascension and smoothing Let W be a Brownian mo-

tion process and suppose 0 ≤ r < s < t.

(a) Find P{Wr ≤Ws ≤Wt}.
(b) Find E[Ws|Wr,Wt]. (This part is unrelated to part (a).)

4.9 Brownian bridge Let W = (Wt : t ≥ 0) be a standard Brownian motion

(i.e. a Brownian motion with parameter σ2 = 1.) Let Bt = Wt− tW1 for 0 ≤ t ≤
1. The process B = (Bt : 0 ≤ t ≤ 1) is called a Brownian bridge process. Like

W , B is a mean zero Gaussian random process.

(a) Sketch a typical sample path of W , and the corresponding sample path of B.

(b) Find the autocorrelation function of B.

(c) Is B a Markov process?

(d) Show that B is independent of the random variable W1. (This means that

for any finite collection, t1, . . . , tn ∈ [0, 1], the random vector (Bt1 , . . . , Btn)T is

independent of W1.)

(e) (Due to J.L. Doob.) Let Xt = (1 − t)W t
1−t

, for 0 ≤ t < 1 and let X1 = 0.

Let X denote the random process X = (Xt : 0 ≤ t ≤ 1). Like W , X is a mean

zero, Gaussian random process. Find the autocorrelation function of X. Can you

draw any conclusions?

4.10 Empirical distribution functions as random processes LetX1, X2, . . . be

independent random variables, all with the same CDF F. For n ≥ 1, the empir-

ical CDF for n observations is defined by F̂n(t) = 1
n

∑n
k=1 I{Xk≤t} for t ∈ R.

(a) Find the mean function and autocovariance function of the random process

(F̂n(t) : t ∈ R) for fixed n. (Hint: For computing the autocovariance, it may help

to treat the cases s ≤ t and s ≥ t separately.)

(b) Explain why, for each t ∈ R, limn→∞ F̂n(t) = F (t) almost surely.
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(c) Let Dn = supt∈R |F̂n(t)−F (t)|, so that Dn is a measure of distance between

F̂n and F. Suppose the CDF F is continuous and strictly increasing. Show that

the distribution of Dn is the same as it would be if the Xn’s were all uniformly

distributed on the interval [0, 1]. (Hint: Let Uk = F (Xk). Show that the U ’s

are uniformly distributed on the interval [0, 1], let Ĝn be the empirical CDF

for the U ’s and let G be the CDF of the U ’s. Show that if F (t) = v, then

|F̂n(t)− F (t)| = |Ĝn(v)−G(v)|. Then complete the proof.)

(d) Let Xn(t) =
√
n(F̂n(t) − F (t)) for t ∈ R. Find the limit in distribution of

Xn(t) for t fixed as n→∞.
(e) (Note that

√
nDn = supt∈R |Xn(t)|. ) Show that in the case the X’s are

uniformly distributed on the interval [0, 1], the autocorrelation function of the

process (Xn(t) : 0 ≤ t ≤ 1) is the same as for a Brownian bridge (discussed in the

previous problem). (Note: The distance Dn is known as the Kolmogorov-Smirnov

statistic, and by pursuing the method of this problem further, the limiting distri-

bution of
√
nDn can be found and it is equal to the distribution of the maximum

magnitude of a Brownian bridge, a result due to J.L. Doob. )

4.11 Some Poisson process calculations Let N = (Nt : t ≥ 0) be a Poisson

process with rate λ > 0.

(a) Give a simple expression for P (N1 ≥ 1|N2 = 2) in terms of λ.

(b) Give a simple expression for P (N2 = 2|N1 ≥ 1) in terms of λ.

(c) Let Xt = N2
t . Is X = (Xt : t ≥ 0) a time-homogeneous Markov process? If

so, give the transition probabilities pij(τ). If not, explain.

4.12 MMSE prediction for a Gaussian process based on two observations

Let X be a mean zero stationary Gaussian process with RX(τ) = 5 cos(πτ2 )3−|τ |.

(a) Find the covariance matrix of (X(2), X(3), X(4))T . (b) Find E[X(4)|X(2)].

(c) Find E[X(4)|X(2), X(3)].

4.13 A simple discrete-time random process Let U = (Un : n ∈ Z) consist of

independent random variables, each uniformly distributed on the interval [0, 1].

Let X = (Xk : k ∈ Z} be defined by Xk = max{Uk−1, Uk}. (a) Sketch a typical

sample path of the process X. (b) Is X stationary? (c) Is X Markov? (d) Describe

the first order distributions of X. (e) Describe the second order distributions of

X.

4.14 Poisson process probabilities Consider a Poisson process with rate λ > 0.

(a) Find the probability that there is (exactly) one count in each of the three

intervals [0,1], [1,2], and [2,3].

(b) Find the probability that there are two counts in the interval [0, 2] and two

counts in the interval [1, 3]. (Note: your answer to part (b) should be larger than

your answer to part (a)).

(c) Find the probability that there are two counts in the interval [1,2], given that

there are two counts in the interval [0,2] and two counts in the the interval [1,3].

4.15 Sliding function of an i.i.d. Poisson sequence Let X = (Xk : k ∈ Z) be

a random process such that the Xi are independent, Poisson random variables

with mean λ, for some λ > 0. Let Y = (Yk : k ∈ Z) be the random process

defined by Yk = Xk +Xk+1.
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(a) Show that Yk is a Poisson random variable with parameter 2λ for each k.

(b) Show that X is a stationary random process.

(c) Is Y a stationary random process? Justify your answer.

4.16 Adding jointly stationary Gaussian processes Let X and Y be jointly

stationary, jointly Gaussian random processes with mean zero, autocorrelation

functions RX(t) = RY (t) = exp(−|t|), and cross-correlation function

RXY (t) = (0.5) exp(−|t− 3|).
(a) Let Z(t) = (X(t) + Y (t))/2 for all t. Find the autocorrelation function of Z.

(b) Is Z a stationary random process? Explain.

(c) Find P{X(1) ≤ 5Y (2) + 1}. You may express your answer in terms of the

standard normal cumulative distribution function Φ.

4.17 Invariance of properties under transformations Let X = (Xn : n ∈ Z),

Y = (Yn : n ∈ Z), and Z = (Zn : n ∈ Z) be random processes such that

Yn = X2
n for all n and Zn = X3

n for all n. Determine whether each of the

following statements is always true. If true, give a justification. If not, give a

simple counter example.

(a) If X is Markov then Y is Markov.

(b) If X is Markov then Z is Markov.

(c) If Y is Markov then X is Markov.

(d) If X is stationary then Y is stationary.

(e) If Y is stationary then X is stationary.

(f) If X is wide sense stationary then Y is wide sense stationary.

(g) If X has independent increments then Y has independent increments.

(h) If X is a martingale then Z is a martingale.

4.18 A linear evolution equation with random coefficients Let the variables

Ak, Bk, k ≥ 0 be mutually independent with mean zero. Let Ak have variance

σ2
A and let Bk have variance σ2

B for all k. Define a discrete-time random process

Y by

Y = (Yk : k ≥ 0), such that Y0 = 0 and Yk+1 = AkYk +Bk for k ≥ 0.

(a) Find a recursive method for computing Pk = E[(Yk)2] for k ≥ 0.

(b) Is Y a Markov process? Explain.

(c) Does Y have independent increments? Explain.

(d) Find the autocorrelation function of Y . ( You can use the second moments

(Pk) in expressing your answer.)

(e) Find the corresponding linear innovations sequence (Ỹk : k ≥ 1).

4.19 On an M/D/infinity system Suppose customers enter a service system

according to a Poisson point process on R of rate λ, meaning that the num-

ber of arrivals, N(a, b], in an interval (a, b], has the Poisson distribution with

mean λ(b− a), and the numbers of arrivals in disjoint intervals are independent.

Suppose each customer stays in the system for one unit of time, independently

of other customers. Because the arrival process is memoryless, because the ser-

vice times are deterministic, and because the customers are served simultane-

ously, corresponding to infinitely many servers, this queueing system is called an

M/D/∞ queueing system. The number of customers in the system at time t is
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given by Xt = N(t− 1, t].

(a) Find the mean and autocovariance function of X.

(b) Is X stationary? Is X wide sense stationary?

(c) Is X a Markov process?

(d) Find a simple expression for P{Xt = 0 for t ∈ [0, 1]} in terms of λ.

(e) Find a simple expression for P{Xt > 0 for t ∈ [0, 1]} in terms of λ.

4.20 A Poisson spacing probability Let N = (Nt : t ≥ 0) be a Poisson process

with some rate λ > 0. For t ≥ 0, let At be the event that during the interval

[0, t] no two arrivals in the interval are closer than one unit of time apart. Let

x(t) = P (At).

(a) Find x(t) for 0 ≤ t ≤ 1.

(b) Derive a differential equation for (x(t) : t ≥ 1) which expresses x′(t) as a

function of x(t) and x(t − 1). Begin by supposing t ≥ and h is a small positive

constant, and writing an expression for x(t + h) in terms of x(t) and x(t − 1).

(This is a linear differential equation with a delay term. From the viewpoint of

solving such differential equations, we view the initial condition of the equation

as the waveform (x(t) : 0 ≤ t ≤ 1). Since x is determined over [0, 1] in part (a),

the differential equation can then be used to solve, at least numerically, for x

over the interval [1, 2], then over the interval [2, 3], and so on, to determine x(t)

for all t ≥ 0. Moreover, this shows that the solution (x(t) : t ≥ 0) is an increasing

function of its initial value, (x(t) : 0 ≤ t ≤ 1). This monotonicity is different from

monotonicity with respect to time. )

(c) Give equations that identify θ∗ > 0 and constants c0 and c1 so that c0 ≤
x(t)eθ

∗t ≤ c1 for all t ≥ 0. (Hint: Use the fact that there is a solution of the

differential equation found in part (b), but not satisfying the initial condition

over [0, 1] found in part (a), of the form y(t) = e−θ
∗t for some θ∗ > 0, and use

the monotonicity property identified in part (b).)

(d) The conditional probability of At, given there are exactly k arrivals dur-

ing [0, t], is
(
t−k+1
t

)k
for 0 ≤ k ≤ dte (Why?). Use that fact to give a series

representation for (x(t) : t ≥ 0).

4.21 Hitting the corners of a triangle Consider a discrete-time Markov pro-

cess (Xk : k ≥ 0), with state space {1, 2, 3, 4, 5, 6}. Suppose the states are ar-

ranged in the triangle shown,

6

1

2

3 4 5

and given Xk = i, the next state Xk+1 is one of the two neighbors of i, selected

with probability 0.5 each. Suppose P{X0 = 1} = 1.

(a) Let τB = min{k : Xk ∈ {3, 4, 5}}. So τB is the time the base of the triangle

is first reached. Find E[τB ].
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(b) Let τ3 = min{k : Xk = 3}. Find E[τ3].

(c) Let τC be the first time k ≥ 1 such that both states 3 and 5 have been visited

by time k. Find E[τC ]. (Hint: Use results of (a) and (b) and symmetry.)

(d) Let τR denote the first time k ≥ τC such that Xk = 1. That is, τR is the

first time the process returns to vertex 1 of the triangle after reaching both of

the other vertices. Find E[τR]. (Hint: Use results of (c) and (b) and symmetry.)

4.22 A fly on a cube Consider a cube with vertices 000, 001, 010, 100, 110,

101. 011, 111. Suppose a fly walks along edges of the cube from vertex to vertex,

and for any integer t ≥ 0, let Xt denote which vertex the fly is at at time t.

Assume X = (Xt : t ≥ 0) is a discrete-time Markov process, such that given

Xt, the next state Xt+1 is equally likely to be any one of the three vertices

neighboring Xt.

(a) Sketch the one step transition probability diagram for X.

(b) Let Yt denote the distance of Xt, measured in number of hops, between

vertex 000 and Xt. For example, if Xt = 101, then Yt = 2. The process Y

is a Markov process with states 0,1,2, and 3. Sketch the one-step transition

probability diagram for Y .

(c) Suppose the fly begins at vertex 000 at time zero. Let τ be the first time

that X returns to vertex 000 after time 0, or equivalently, the first time that Y

returns to 0 after time 0. Find E[τ ].

4.23 Time elapsed since Bernoulli renewals Let U = (Uk : k ∈ Z) be such

that for some p ∈ (0, 1), the random variables Uk are independent, with each

having the Bernoulli distribution with parameter p. Interpret Uk = 1 to mean

that a renewal, or replacement, of some part takes place at time k. For k ∈ Z,
let

Xk = min{i ≥ 1 : Uk−i = 1}. In words, Xk is the time elapsed since the last

renewal strictly before time k.

(a) The process X is a time-homogeneous Markov process. Indicate a suitable

state space, and describe the one-step transition probabilities.

(b) Find the distribution of Xk for k fixed.

(c) Is X a stationary random process? Explain.

(d) Find the k-step transition probabilities, pi,j(k) = P{Xn+k = j|Xn = i}.
4.24 A random process created by interpolation Let U = (Uk : k ∈ Z) such

that the Uk are independent, and each is uniformly distributed on the interval

[0, 1]. Let X = (Xt : t ∈ R) denote the continuous time random process obtained

by linearly interpolating between the U ’s. Specifically, Xn = Un for any n ∈ Z,

and Xt is affine on each interval of the form [n, n+ 1] for n ∈ Z.
(a) Sketch a sample path of U and a corresponding sample path of X.

(b) Let t ∈ R. Find and sketch the first order marginal density, fX,1(x, t). (Hint:

Let n = btc and a = t − n, so that t = n + a. Then Xt = (1 − a)Un + aUn+1.

It’s helpful to consider the cases 0 ≤ a ≤ 0.5 and 0.5 < a < 1 separately. For

brevity, you need only consider the case 0 ≤ a ≤ 0.5.) (c) Is the random process

X WSS? Justify your answer.

(d) Find P{max0≤t≤10Xt ≤ 0.5}.
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4.25 Reinforcing samples (Due to G. Polya) Suppose at time k = 2, there is a

bag with two balls in it, one orange and one blue. During each time step between

k and k + 1, one of the balls is selected from the bag at random, with all balls

in the bag having equal probability. That ball, and a new ball of the same color,

are both put into the bag. Thus, at time k there are k balls in the bag, for all

k ≥ 2. Let Xk denote the number of blue balls in the bag at time k.

(a) Is X = (Xk : k ≥ 2) a Markov process?

(b) Let Mk = Xk
k . Thus, Mk is the fraction of balls in the bag at time k that are

blue. Determine whether M = (Mk : k ≥ 2) is a martingale.

(c) By the theory of martingales, since M is a bounded martingale, it converges

a.s. to some random variableM∞. Let Vk = Mk(1−Mk). Show that E[Vk+1|Vk] =
k(k+2)
(k+1)2 Vk, and therefore that E[Vk] = (k+1)

6k . It follows that Var(limk→∞Mk) =
1
12 .

(d) More concretely, find the distribution of Mk for each k, and then identify the

distribution of the limit random variable, M∞.

4.26 Restoring samples Suppose at time k = 2, there is a bag with two balls

in it, one orange and one blue. During each time step between k and k + 1, one

of the balls is selected from the bag at random, with all balls in the bag having

equal probability. That ball, and a new ball of the other color, are both put into

the bag. Thus, at time k there are k balls in the bag, for all k ≥ 2. Let Xk denote

the number of blue balls in the bag at time k.

(a) Is X = (Xk : k ≥ 2) a Markov process? If so, describe the one-step transition

probabilities.

(b) Compute E[Xk+1|Xk] for k ≥ 2.

(c) Let Mk = Xk
k . Thus, Mk is the fraction of balls in the bag at time k that are

blue. Determine whether M = (Mk : k ≥ 2) is a martingale.

(d) Let Dk = Mk − 1
2 . Show that

E[D2
k+1|Xk] =

1

(k + 1)2

{
k(k − 2)D2

k +
1

4

}
.

(e) Let vk = E[D2
k]. Prove by induction on k that vk ≤ 1

4k . What can you

conclude about the limit of Mk as k →∞? (Be sure to specify what sense(s) of

limit you mean.)

4.27 A space-time transformation of Brownian motion Suppose (Xt : t ≥ 0)

is a real-valued, mean zero, independent increment process, and let E[X2
t ] = ρt

for t ≥ 0. Assume ρt <∞ for all t.

(a) Show that ρ must be nonnegative and nondecreasing over [0,∞).

(b) Express the autocorrelation function RX(s, t) in terms of the function ρ for

all s ≥ 0 and t ≥ 0.

(c) Conversely, suppose a nonnegative, nondecreasing function ρ on [0,∞) is

given. Let Yt = W (ρt) for t ≥ 0, where W is a standard Brownian motion with

RW (s, t) = min{s, t}. Explain why Y is an independent increment process with

E[Y 2
t ] = ρt for all t ≥ 0.

(d) Define a process Z in terms of a standard Brownian motion W by Z0 = 0
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and Zt = tW ( 1
t ) for t > 0. Does Z have independent increments? Justify your

answer.

4.28 An M/M/1/B queueing system SupposeX is a continuous-time Markov

process with the transition rate diagram shown, for a positive integer B and pos-

itive constant λ.

. . .
1 1 1 11

! ! ! ! !

0 1 2 B!1 B

(a) Find the generator matrix, Q, of X for B = 4.

(b) Find the equilibrium probability distribution. (Note: The process X models

the number of customers in a queueing system with a Poisson arrival process,

exponential service times, one server, and a finite buffer.)

4.29 Identification of special properties of two discrete-time processes (I)

Determine which of the properties:

(i) Markov property

(ii) martingale property

(iii) independent increment property

are possessed by the following two random processes. Justify your answers.

(a) X = (Xk : k ≥ 0) defined recursively by X0 = 1 and Xk+1 = (1 + Xk)Uk
for k ≥ 0, where U0, U1, . . . are independent random variables, each uniformly

distributed on the interval [0, 1].

(b) Y = (Yk : k ≥ 0) defined by Y0 = V0, Y1 = V0+V1, and Yk = Vk−2+Vk−1+Vk
for k ≥ 2, where Vk : k ∈ Z are independent Gaussian random variables with

mean zero and variance one.

4.30 Identification of special properties of two discrete-time processes (II)

Determine which of the properties:

(i) Markov property

(ii) martingale property

(iii) independent increment property

are possessed by the following two random processes. Justify your answers.

(a) (Xk : k ≥ 0), where Xk is the number of cells alive at time k in a colony that

evolves as follows. Initially, there is one cell, so X0 = 1. During each discrete

time step, each cell either dies or splits into two new cells, each possibility having

probability one half. Suppose cells die or split independently. Let Xk denote the

number of cells alive at time k.

(b) (Yk : k ≥ 0), such that Y0 = 1 and, for k ≥ 1, Yk = U1U2 . . . Uk, where

U1, U2, . . . are independent random variables, each uniformly distributed over

the interval [0, 2]

4.31 Identification of special properties of two continuous-time processes (I)

Answer as in the previous problem, for the following two random processes:

(a) Z = (Zt : t ≥ 0), defined by Zt = exp(Wt − σ2t
2 ), where W is a Brownian

motion with parameter σ2. (Hint: Observe that E[Zt] = 1 for all t.)

(b) R = (Rt : t ≥ 0) defined by Rt = D1 +D2 + · · ·+DNt , where N is a Poisson
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process with rate λ > 0 and Di : i ≥ 1 is an iid sequence of random variables,

each having mean 0 and variance σ2.

4.32 Identification of special properties of two continuous-time processes (II)

Answer as in the previous problem, for the following two random processes:

(a) Z = (Zt : t ≥ 0), defined by Zt = W 3
t , where W is a Brownian motion with

parameter σ2.

(b) R = (Rt : t ≥ 0), defined by Rt = cos(2πt + Θ), where Θ is uniformly

distributed on the interval [0, 2π].

4.33 A branching process Let p = (pi : i ≥ 0) be a probability distribution on

the nonnegative integers with mean m. Consider a population beginning with

a single individual, comprising generation zero. The offspring of the initial in-

dividual comprise the first generation, and, in general, the offspring of the kth

generation comprise the k + 1st generation. Suppose the number of offspring of

any individual has the probability distribution p, independently of how many

offspring other individuals have. Let Y0 = 1, and for k ≥ 1 let Yk denote the

number of individuals in the kth generation.

(a) Is Y = (Yk : k ≥ 0) a Markov process? Briefly explain your answer.

(b) Find constants ck so that Yk
ck

is a martingale.

(c) Let am = P{Ym = 0}, the probability of extinction by the mth generation.

Express am+1 in terms of the distribution p and am (Hint: condition on the value

of Y1, and note that the Y1 subpopulations beginning with the Y1 individuals in

generation one are independent and statistically identical to the whole popula-

tion.)

(d) Express the probability of eventual extinction, a∞ = limm→∞ am, in terms

of the distribution p. Under what condition is a∞ = 1?

(e) Find a∞ in terms of θ in case pk = θk(1− θ) for k ≥ 0 and 0 ≤ θ < 1. (This

distribution is similar to the geometric distribution, and it has mean m = θ
1−θ .)

4.34 Moving balls Consider the motion of three indistinguishable balls on a

linear array of positions, indexed by the positive integers, such that one or more

balls can occupy the same position. Suppose that at time t = 0 there is one ball

at position one, one ball at position two, and one ball at position three. Given

the positions of the balls at some integer time t, the positions at time t + 1

are determined as follows. One of the balls in the left most occupied position is

picked up, and one of the other two balls is selected at random (but not moved),

with each choice having probability one half. The ball that was picked up is then

placed one position to the right of the selected ball.

(a) Define a finite-state Markov process that tracks the relative positions of the

balls. Try to use a small number of states. (Hint: Take the balls to be indistin-

guishable, and don’t include the position numbers.) Describe the significance of

each state, and give the one-step transition probability matrix for your process.

(b) Find the equilibrium distribution of your process.

(c) As time progresses, the balls all move to the right, and the average speed has

a limiting value, with probability one. Find that limiting value. (You can use the

fact that for a finite-state Markov process in which any state can eventually be
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reached from any other, the fraction of time the process is in a state i up to time

t converges a.s. to the equilibrium probability for state i as t→∞.

(d) Consider the following continuous time version of the problem. Given the cur-

rent state at time t, a move as described above happens in the interval [t, t+ h]

with probability h + o(h). Give the generator matrix Q, find its equilibrium

distribution, and identify the long term average speed of the balls.

4.35 Mean hitting time for a discrete-time Markov process

Let (Xk : k ≥ 0) be a time-homogeneous Markov process with the one-step

transition probability diagram shown.

1 2 3

0.2
0.6 0.6

0.4

0.4

0.8

(a) Write down the one step transition probability matrix P .

(b) Find the equilibrium probability distribution π.

(c) Let τ = min{k ≥ 0 : Xk = 3} and let ai = E[τ |X0 = i] for 1 ≤ i ≤ 3.

Clearly a3 = 0. Derive equations for a1 and a2 by considering the possible values

of X1, in a way similar to the analysis of the gambler’s ruin problem. Solve the

equations to find a1 and a2.

4.36 Mean hitting time for a continuous-time Markov process Let (Xt : t ≥
0) be a time-homogeneous Markov process with the transition rate diagram

shown.

1 2 3
10

1

5

1

(a) Write down the rate matrix Q.

(b) Find the equilibrium probability distribution π.

(c) Let τ = min{t ≥ 0 : Xt = 3} and let ai = E[τ |X0 = i] for 1 ≤ i ≤ 3.

Clearly a3 = 0. Derive equations for a1 and a2 by considering the possible values

of Xt(h) for small values of h > 0 and taking the limit as h → 0. Solve the

equations to find a1 and a2.

4.37 Poisson merger Summing counting processes corresponds to “merging”

point processes. Show that the sum of K independent Poisson processes, having

rates λ1, . . . , λK , respectively, is a Poisson process with rate λ1 + . . .+λK . (Hint:

First formulate and prove a similar result for sums of random variables, and then

think about what else is needed to get the result for Poisson processes. You can

use the definition of a Poisson process or one of the equivalent descriptions given

by Proposition 4.5 in the notes. Don’t forget to check required independence

properties.)

4.38 Poisson splitting Consider a stream of customers modeled by a Poisson

process, and suppose each customer is one of K types. Let (p1, . . . , pK) be a

probability vector, and suppose that for each k, the kth customer is type i with
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probability pi. The types of the customers are mutually independent and also

independent of the arrival times of the customers. Show that the stream of cus-

tomers of a given type i is again a Poisson stream, and that its rate is λpi.

(Same hint as in the previous problem applies.) Show furthermore that the K

substreams are mutually independent.

4.39 Poisson method for coupon collector’s problem (a) Suppose a stream of

coupons arrives according to a Poisson process (A(t) : t ≥ 0) with rate λ = 1,

and suppose there are k types of coupons. (In network applications, the coupons

could be pieces of a file to be distributed by some sort of gossip algorithm.) The

type of each coupon in the stream is randomly drawn from the k types, each

possibility having probability 1
k , and the types of different coupons are mutually

independent. Let p(k, t) be the probability that at least one coupon of each type

arrives by time t. (The letter “p” is used here because the number of coupons

arriving by time t has the Poisson distribution). Express p(k, t) in terms of k

and t.

(b) Find limk→∞ p(k, k ln k + kc) for an arbitrary constant c. That is, find the

limit of the probability that the collection is complete at time t = k ln k + kc.

(Hint: If ak → a as k →∞, then (1 + ak
k )k → ea.)

(c) The rest of this problem shows that the limit found in part (b) also holds

if the total number of coupons is deterministic, rather than Poisson distributed.

One idea is that if t is large, then A(t) is not too far from its mean with high

probability. Show, specifically, that

limk→∞ P{A(k ln k + kc) ≥ k ln k + kc′} =

{
0 if c < c′

1 if c > c′
.

(d) Let d(k, n) denote the probability that the collection is complete after n

coupon arrivals. (The letter “d” is used here because the number of coupons,

n, is deterministic.) Show that for any k, t, and n fixed, d(k, n)P{A(t) ≥ n} ≤
p(k, t) ≤ P{A(t) ≥ n}+ P{A(t) ≤ n}d(k, n).

(e) Combine parts (c) and (d) to identify limk→∞ d(k, k ln k + kc).

4.40 Some orthogonal martingales based on Brownian motion Let

W = (Wt : t ≥ 0) be a Brownian motion with σ2 = 1 (called a standard

Brownian motion), and let Mt = exp
(
θWt − θ2t

2

)
for an arbitrary constant θ.

(a) Show that (Mt : t ≥ 0) is a martingale. (Hint for parts (a) and (b): For

notational brevity, let Ws represent (Wu : 0 ≤ u ≤ s) for the purposes of

conditioning. If Zt is a function of Wt for each t, then a sufficient condition for

Z to be a martingale is that E[Zt|Ws] = Zs whenever 0 < s < t, because then

E[Zt|Zu, 0 ≤ u ≤ s] = E[E[Zt|Ws]|Zu, 0 ≤ u ≤ s] = E[Zs|Zu, 0 ≤ u ≤ s] = Zs).

(b) By the power series expansion of the exponential function,

exp

(
θWt −

θ2t

2

)
= 1 + θWt +

θ2

2
(W 2

t − t) +
θ3

3!
(W 3

t − 3tWt) + · · ·

=

∞∑
n=0

θn

n!
Mn(t),
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where Mn(t) = tn/2Hn(Wt√
t
), and Hn is the nth Hermite polynomial. The fact

that M is a martingale for any value of θ can be used to show that Mn is a

martingale for each n (you don’t need to supply details). Verify directly that

W 2
t − t and W 3

t − 3tWt are martingales.

(c) For fixed t, (Mn(t) : n ≥ 0) is a sequence of orthogonal random variables,

because it is the linear innovations sequence for the variables 1,Wt,W
2
t , . . .. Use

this fact and the martingale property of the Mn processes to show that if n 6= m

and s, t ≥ 0, then Mn(s) ⊥Mm(t).

4.41 A state space reduction preserving the Markov property Consider a time-

homogeneous, discrete-time Markov process X = (Xk : k ≥ 0) with state space

S = {1, 2, 3}, initial state X0 = 3, and one-step transition probability matrix

P =

 0.0 0.8 0.2

0.1 0.6 0.3

0.2 0.8 0.0

 .

(a) Sketch the transition probability diagram and find the equilibrium probabil-

ity distribution π = (π1, π2, π3).

(b) Identify a function f on S so that f(s) = a for two choices of s and f(s) = b

for the third choice of s, where a 6= b, such that the process Y = (Yk : k ≥ 0)

defined by Yk = f(Xk) is a Markov process with only two states, and give the

one-step transition probability matrix of Y . Briefly explain your answer.

4.42* Autocorrelation function of a stationary Markov process Let

X = (Xk : k ∈ Z) be a Markov process such that the state space, {ρ1, ρ2, ..., ρn},
is a finite subset of the real numbers. Let P = (pij) denote the matrix of one-step

transition probabilities. Let e be the column vector of all ones, and let π(k) be

the row vector

π(k) = (P{Xk = ρ1}, ..., P{Xk = ρn}).
(a) Show that Pe = e and π(k + 1) = π(k)P .

(b) Show that if the Markov chain X is a stationary random process then π(k) =

π for all k, where π is a vector such that π = πP .

(c) Prove the converse of part (b).

(d) Show that P (Xk+m = ρj |Xk = ρi, Xk−1 = s1, ..., Xk−m = sm) = p
(m)
ij ,

where p
(m)
ij is the i, jth element of the mth power of P , Pm, and s1, . . . , sm are

arbitrary states.

(e) Assume that X is stationary. Express RX(k) in terms of P , (ρi), and the

vector π of parts (b) and (c).
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This chapter gives a glimpse of the theory of iterative algorithms for graphical

models, as well as an introduction to statistical estimation theory. It begins

with a brief introduction to estimation theory: maximum likelihood and Bayes

estimators are introduced, and an iterative algorithm, known as the expectation-

maximization algorithm, for computation of maximum likelihood estimators in

certain contexts, is described. This general background is then focused on three

inference problems posed using Markov models.

5.1 A bit of estimation theory

The two most commonly used methods for producing estimates of unknown

quantities are the maximum likelihood (ML) and Bayesian methods. These two

methods are briefly described in this section, beginning with the ML method.

Suppose a parameter θ is to be estimated, based on observation of a random

variable Y . An estimator of θ based on Y is a function θ̂, which for each possi-

ble observed value y, gives the estimate θ̂(y). The ML method is based on the

assumption that Y has a pmf pY (y|θ) (if Y is discrete type) or a pdf fY (y|θ) (if

Y is continuous type), where θ is the unknown parameter to be estimated, and

the family of functions pY (y|θ) or fY (y|θ), is known.

definition 5.1 For a particular value y and parameter value θ, the likelihood

of y for θ is pY (y|θ), if Y is discrete type, or fY (y|θ), if Y is continuous type. The

maximum likelihood estimate of θ given Y = y for a particular y is the value of θ

that maximizes the likelihood of y. That is, the maximum likelihood estimator

θ̂ML is given by θ̂ML(y) = arg maxθ pY (y|θ), or θ̂ML(y) = arg maxθ fY (y|θ).

Note that the maximum likelihood estimator is not defined as one maximizing

the likelihood of the parameter θ to be estimated. In fact, θ need not even

be a random variable. Rather, the maximum likelihood estimator is defined by

selecting the value of θ that maximizes the likelihood of the observation.

Example 5.1 Suppose Y is assumed to be a N(θ, σ2) random variable, where

σ2 is known. Equivalently, we can write Y = θ + W , where W is a N(0, σ2)
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random variable. Given a value y is observed, the ML estimator is obtained by

maximizing fY (y|θ) = 1√
2πσ2

exp
(
− (y−θ)2

2σ2

)
with respect to θ. By inspection,

θ̂ML(y) = y.

Example 5.2 Suppose Y is assumed to be a Poi(θ) random variable, for some

θ > 0. Given the observation Y = k for some fixed k ≥ 0, the ML estimator

is obtained by maximizing pY (k|θ) = e−θθk

k! with respect to θ. Equivalently,

dropping the constant k! and taking the logarithm, θ is to be selected to maximize

−θ+ k ln θ. The derivative is −1 + k/θ, which is positive for θ < k and negative

for θ > k. Hence, θ̂ML(k) = k.

Note that in the ML method, the quantity to be estimated, θ, is not assumed

to be random. This has the advantage that the modeler does not have to come

up with a probability distribution for θ, and the modeler can still impose hard

constraints on θ. But the ML method does not permit incorporation of soft

probabilistic knowledge the modeler may have about θ before any observation is

used.

The Bayesian method is based on estimating a random quantity. Thus, in the

end, the variable to be estimated, say Z, and the observation, say Y , are jointly

distributed random variables.

definition 5.2 The Bayes estimator of Z given Y, for jointly distributed

random variables Z and Y, and cost function C(z, y), is the function Ẑ = g(Y )

of Y which minimizes the average cost, E[C(Z, Ẑ)].

The assumed distribution of Z is called the prior or a priori distribution,

whereas the conditional distribution of Z given Y is called the posterior or a

posteriori distribution. In particular, if Z is discrete, there is a prior pmf, pZ ,

and a posterior pmf, pZ|Y , or if Z and Y are jointly continuous, there is a prior

pdf, fZ , and a posterior pdf, fZ|Y .

One of the most common choices of the cost function is the squared error,

C(z, ẑ) = (z−ẑ)2, for which the Bayes estimators are the minimum mean squared

error (MMSE) estimators, examined in Chapter 3. Recall that the MMSE esti-

mators are given by the conditional expectation, g(y) = E[Z|Y = y], which,

given the observation Y = y, is the mean of the posterior distribution of Z given

Y = y.

A commonly used choice of C in case Z is a discrete random variable is

C(z, ẑ) = I{z 6=ẑ}. In this case, the Bayesian objective is to select Ẑ to mini-

mize P{Z 6= Ẑ}, or equivalently, to maximize P{Z = Ẑ}. For an estimator

Ẑ = g(Y ),

P{Z = Ẑ} =
∑
y

P (Z = g(y)|Y = y)pY (y) =
∑
y

pZ|Y (g(y)|y)pY (y).
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So a Bayes estimator for C(z, ẑ) = I{z 6=ẑ} is one such that g(y) maximizes

P (Z = g(y)|Y = y) for each y. That is, for each y, g(y) is a maximizer of the

posterior pmf of Z. The estimator, called the maximum a posteriori probability

(MAP) estimator, can be written concisely as

ẐMAP (y) = arg max
z
pZ|Y (z|y).

Suppose there is a parameter θ to be estimated based on an observation Y,

and suppose that the pmf of Y, pY (y|θ), is known for each θ. This is enough to

determine the ML estimator, but determination of a Bayes estimator requires, in

addition, a choice of cost function C and a prior probability distribution (i.e. a

distribution for θ). For example, if θ is a discrete variable, the Bayesian method

would require that a prior pmf for θ be selected. In that case, we can view

the parameter to be estimated as a random variable, which we might denote

by the upper case symbol Θ, and the prior pmf could be denoted by pΘ(θ).

Then, as required by the Bayesian method, the variable to be estimated, Θ,

and the observation, Y , would be jointly distributed random variables. The joint

pmf would be given by pΘ,Y (θ, Y ) = pΘ(θ)pY (y|θ). The posterior probability

distribution can be expressed as a conditional pmf, by Bayes’ formula:

pΘ|Y (θ|y) =
pΘ(θ)pY (y|θ)

pY (y)
(5.1)

where pY (y) =
∑
θ′ pΘ,Y (θ′, y). Given y, the value of the MAP estimator is a

value of θ that maximizes pΘ|Y (θ|y) with respect to θ. For that purpose, the

denominator in the right-hand side of (5.1) can be ignored, so that the MAP

estimator is given by

Θ̂MAP (y) = arg max
θ
pΘ|Y (θ|y)

= arg max
θ
pΘ(θ)pY (y|θ). (5.2)

The expression, (5.2), for Θ̂MAP (y) is rather similar to the expression for the

ML estimator, θ̂ML(y) = arg maxθ pY (y|θ). In fact, the two estimators agree if

the prior pΘ(θ) is uniform, meaning it is the same for all θ.

The MAP criterion for selecting estimators can be extended to the case that

Y and θ are jointly continuous variables, leading to the following:

Θ̂MAP (y) = arg max
θ
fΘ|Y (θ|y)

= arg max
θ
fΘ(θ)fY (y|θ). (5.3)

In this case, the probability that any estimator is exactly equal to θ is zero, but

taking Θ̂MAP (y) to maximize the posterior pdf maximizes the probability that

the estimator is within ε of the true value of θ, in an asymptotic sense as ε→ 0.

Example 5.3 Suppose Y is assumed to be a N(θ, σ2) random variable, where

the variance σ2 is known and θ is to be estimated. Using the Bayesian method,
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suppose the prior density of θ is the N(0, b2) density for some known parameter

b2. Equivalently, we can write Y = Θ+W , where Θ is a N(0, b2) random variable

and W is a N(0, σ2) random variable, independent of Θ. By the properties of

joint Gaussian densities given in Chapter 3, given Y = y, the posterior distri-

bution (i.e. the conditional distribution of Θ given y) is the normal distribution

with mean Ê[Θ|Y = y] = b2y
b2+σ2 and variance b2σ2

b2+σ2 . The mean and maximiz-

ing value of this conditional density are both equal to Ê[Θ|Y = y]. Therefore,

Θ̂MMSE(y) = Θ̂MAP (y) = ̂E[Θ|Y = y]. It is interesting to compare this exam-

ple to Example 5.1. The Bayes estimators (MMSE and MAP) are both smaller

in magnitude than θ̂ML(y) = y, by the factor b2

b2+σ2 . If b2 is small compared

to σ2, the prior information indicates that |θ| is believed to be small, result-

ing in the Bayes estimators being smaller in magnitude than the ML estimator.

As b2 → ∞, the priori distribution gets increasingly uniform, and the Bayes

estimators converge to the ML estimator.

Example 5.4 Suppose Y is assumed to be a Poi(θ) random variable. Using the

Bayesian method, suppose the prior distribution for θ is the uniformly distribu-

tion over the interval [0, θmax], for some known value θmax. Given the observation

Y = k for some fixed k ≥ 0, the MAP estimator is obtained by maximizing

pY (k|θ)fΘ(θ) =
e−θθk

k!

I{0≤θ≤θθmax}

θmax

with respect to θ. As seen in Example 5.2, the term e−θθk

k! is increasing in θ for

θ < k and decreasing in θ for θ > k. Therefore,

Θ̂MAP (k) = min{k, θmax}.

It is interesting to compare this example to Example 5.2. Intuitively, the prior

probability distribution indicates knowledge that θ ≤ θmax, but no more than

that, because the prior restricted to θ ≤ θmax is uniform. If θmax is less than

k, the MAP estimator is strictly smaller than θ̂ML(k) = k. As θmax → ∞, the

MAP estimator converges to the ML estimator. Actually, deterministic prior

knowledge, such as θ ≤ θmax, can also be incorporated into ML estimation as a

hard constraint.

The next example makes use of the following lemma.

lemma 5.3 Suppose ci ≥ 0 for 1 ≤ i ≤ n and that c =
∑n
i=1 ci > 0. Then∑n

i=1 ci log pi is maximized over all probability vectors p = (p1. . . . , pn) by pi =

ci/c.

Proof If cj = 0 for some j, then clearly pj = 0 for the maximizing probability

vector. By eliminating such terms from the sum, we can assume without loss of

generality that ci > 0 for all i. The function to be maximized is a strictly concave
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function of p over a region with linear constraints. The positivity constraints,

namely pi ≥ 0, will be satisfied with strict inequality. The remaining constraint

is the equality constraint,
∑n
i=1 pi = 1. We thus introduce a Lagrange multiplier

λ for the equality constraint and seek the stationary point of the Lagrangian

L(p, λ) =
∑n
i=1 ci log pi−λ((

∑n
i=1 pi)− 1). By definition, the stationary point is

the point at which the partial derivatives with respect to the variables pi are all

zero. Setting ∂L
∂pi

= ci
pi
− λ = 0 yields that pi = ci

λ for all i. To satisfy the linear

constraint, λ must equal c.

Example 5.5 Suppose b = (b1, b2, . . . , bn) is a probability vector to be estimated

by observing Y = (Y1, . . . , YT ). Assume Y1, . . . , YT are independent, with each

Yt having probability distribution b: P{Yt = i} = bi for 1 ≤ t ≤ T and 1 ≤ i ≤ n.
We shall determine the maximum likelihood estimate, b̂ML(y), given a particular

observation y = (y1, . . . , yT ). The likelihood to be maximized with respect to b

is p(y|b) = by1 · · · byT =
∏n
i=1 b

ki
i where ki = |{t : yt = i}|. The log likelihood

is ln p(y|b) =
∑n
i=1 ki ln(bi). By Lemma 5.3, this is maximized by the empirical

distribution of the observations, namely bi = ki
T for 1 ≤ i ≤ n. That is, b̂ML =

(k1T , . . . ,
kn
T ).

Example 5.6 This is a Bayesian version of the previous example. Suppose

b = (b1, b2, . . . , bn) is a probability vector to be estimated by observing Y =

(Y1, . . . , YT ), and assume Y1, . . . , YT are independent, with each Yt having prob-

ability distribution b. For the Bayesian method, a distribution of the unknown

distribution b must be assumed. That is right, a distribution of the distribution

is needed. A convenient choice is the following. Suppose for some known numbers

di ≥ 1 that (b1, . . . , bn−1) has the prior density:

fB(b) =

{ ∏n
i=1 b

di−1

i

Z(d) if bi ≥ 0 for 1 ≤ i ≤ n− 1, and
∑n−1
i=1 bi ≤ 1

0 else

where bn = 1 − b1 − · · · − bn−1, and Z(d) is a constant chosen so that fB
integrates to one. A larger value of di for a fixed i expresses an a priori guess

that the corresponding value bi may be larger. It can be shown, in particular,

that if B has this prior distribution, then E[Bi] = di
d1+···dn . The MAP estimate,

b̂MAP (y), for a given observation vector y, is given by:

b̂MAP (y) = arg max
b

ln (fB(b)p(y|b))

= arg max
b

{
− ln(Z(d)) +

n∑
i=1

(di − 1 + ki) ln(bi)

}
.

By Lemma 5.3, b̂MAP (y) = (d1−1+k1
T̃

, . . . , dn−1+kn
T̃

), where

T̃ =
∑n
i=1(di − 1 + ki) = T − n+

∑n
i=1 di.
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Comparison with Example 5.5 shows that the MAP estimate is the same as the

ML estimate, except that di− 1 is added to ki for each i. If the di’s are integers,

the MAP estimate is the ML estimate with some prior observations mixed in,

namely, di − 1 prior observations of outcome i for each i. A prior distribution

such that the MAP estimate has the same algebraic form as the ML estimate is

called a conjugate prior, and the specific density fB for this example is a called

the Dirichlet density with parameter vector d.

Example 5.7 Suppose Y = (Y1, . . . , YT ) is observed, and it is assumed that

the Yi are independent, with the binomial distribution with parameters n and q.

Suppose n is known, and q is an unknown parameter to be estimated from Y . Let

us find the maximum likelihood estimate, q̂ML(y), for a particular observation

y = (y1, . . . , yT ). The likelihood is

p(y|q) =

T∏
t=1

[(
n

yt

)
qyt(1− q)n−yt

]
= cqs(1− q)nT−s,

where s = y1 + · · · + yT , and c depends on y but not on q. The log likelihood

is ln c + s ln(q) + (nT − s) ln(1 − q). Maximizing over q yields q̂ML = s
nT . An

alternative way to think about this is to realize that each Yt can be viewed as

the sum of n independent Bernoulli(q) random variables, and s can be viewed

as the observed sum of nT independent Bernoulli(q) random variables.

5.2 The expectation-maximization (EM) algorithm

The expectation-maximization algorithm is a computational method for comput-

ing maximum likelihood estimates in contexts where there are hidden random

variables, in addition to observed data and unknown parameters. The following

notation will be used.

θ, a parameter to be estimated

X, the complete data

pcd(x|θ), the pmf of the complete data, which is a known function for each value

of θ

Y = h(X), the observed random vector

Z, the unobserved data (This notation is used in the common case that X has

the form X = (Y,Z).)

We write p(y|θ) to denote the pmf of Y for a given value of θ. It can be expressed

in terms of the pmf of the complete data by:

p(y|θ) =
∑

{x:h(x)=y}

pcd(x|θ). (5.4)
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In some applications, there can be a very large number of terms in the sum in

(5.4), making it difficult to numerically maximize p(y|θ) with respect to θ (i.e.

to compute θ̂ML(y)).

algorithm 5.4 (Expectation-maximization (EM) algorithm) An observation

y is given, along with an initial estimate θ(0). The algorithm is iterative. Given

θ(k), the next value θ(k+1) is computed in the following two steps:

(Expectation step) Compute Q(θ|θ(k)) for all θ, where

Q(θ|θ(k)) = E[ log pcd(X|θ) | y, θ(k)]. (5.5)

(Maximization step) Compute θ(k+1) ∈ arg maxθ Q(θ|θ(k)). In other words, find

a value θ(k+1) of θ that maximizes Q(θ|θ(k)) with respect to θ.

Some intuition behind the algorithm is the following. If a vector of complete

data x could be observed, it would be reasonable to estimate θ by maximizing

the pmf of the complete data, pcd(x|θ), with respect to θ. This plan is not feasible

if the complete data is not observed. The idea is to estimate log pcd(X|θ) by its

conditional expectation, Q(θ|θ(k)), and then find θ to maximize this conditional

expectation. The conditional expectation is well defined if some value of the

parameter θ is fixed. For each iteration of the algorithm, the expectation step

is completed using the latest value of θ, θ(k), in computing the expectation of

log pcd(X|θ).
In most applications there is some additional structure that helps in the com-

putation of Q(θ|θ(k)). This typically happens when pcd factors into simple terms,

such as in the case of hidden Markov models discussed in this chapter, or when

pcd has the form of an exponential raised to a low degree polynomial, such as

the Gaussian or exponential distribution. In some cases there are closed form

expressions for Q(θ|θ(k)). In others, there may be an algorithm that generates

samples of X with the desired pmf pcd(x|θ(k)) using random number generators,

and then log pcd(X|θ) is used as an approximation to Q(θ|θ(k)).

Example 5.8 (Estimation of the variance of a signal) An observation Y is mod-

eled as Y = S+N, where the signal S is assumed to be a N(0, θ) random variable,

where θ is an unknown parameter, assumed to satisfy θ ≥ 0, and the noise N is

a N(0, σ2) random variable where σ2 is known and strictly positive. Suppose it

is desired to estimate θ, the variance of the signal. Let y be a particular observed

value of Y. We consider two approaches to finding θ̂ML : a direct approach, and

the EM algorithm.

For the direct approach, note that for θ fixed, Y is a N(0, θ + σ2) random

variable. Therefore, the pdf of Y evaluated at y, or likelihood of y, is given by

f(y|θ) =
exp(− y2

2(θ+σ2) )√
2π(θ + σ2)

.
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The natural log of the likelihood is given by

log f(y|θ) = − log(2π)

2
− log(θ + σ2)

2
− y2

2(θ + σ2)
.

Maximizing over θ yields θ̂ML = (y2 − σ2)+. While this one-dimensional case

is fairly simple, the situation is different in higher dimensions, as explored in

Problem 5.7. Thus, we examine use of the EM algorithm for this example.

To apply the EM algorithm for this example, take X = (S,N) as the complete

data. The observation is only the sum, Y = S +N, so the complete data is not

observed. For given θ, S and N are independent, so the log of the joint pdf of

the complete data is given as follows:

log pcd(s, n|θ) = − log(2πθ)

2
− s2

2θ
− log(2πσ2)

2
− n2

2σ2
.

For the expectation step, we find

Q(θ|θ(k)) = E[ log pcd(S,N |θ) |y, θ(k)]

= − log(2πθ)

2
− E[S2|y, θ(k)]

2θ
− log(2πσ2)

2
− E[N2|y, θ(k)]

2σ2
.

For the maximization step, we find

∂Q(θ|θ(k))

∂θ
= − 1

2θ
+
E[S2|y, θ(k)]

2θ2

from which we see that θ(k+1) = E[S2|y, θ(k)]. Computation of E[S2|y, θ(k)] is

an exercise in conditional Gaussian distributions, similar to Example 3.4. The

conditional second moment is the sum of the square of the conditional mean

and the variance of the estimation error. Thus, the EM algorithm becomes the

following recursion:

θ(k+1) =

(
θ(k)

θ(k) + σ2

)2

y2 +
θ(k)σ2

θ(k) + σ2
. (5.6)

Problem 5.5 shows that if θ(0) > 0, then θ(k) → θ̂ML as k →∞.

Proposition 5.7 below shows that the likelihood p(y|θ(k)) is nondecreasing in k.

In the ideal case, the likelihood converges to the maximum possible value of the

likelihood, and limk→∞ θ(k) = θ̂ML(y). However, the sequence could converge to

a local, but not global, maximizer of the likelihood, or possibly even to an inflec-

tion point of the likelihood. This behavior is typical of gradient type nonlinear

optimization algorithms, which the EM algorithm is similar to. Note that even

if the parameter set is convex (as it is for the case of hidden Markov models),

the corresponding sets of probability distributions on Y are not convex. It is the

geometry of the set of probability distributions that really matters for the EM

algorithm, rather than the geometry of the space of the parameters. Before the
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proposition is stated, the divergence between two probability vectors and some

of its basic properties are discussed.

definition 5.5 The divergence between probability vectors p = (p1, . . . , pn)

and q = (q1, . . . , qn), denoted by D(p||q), is defined by D(p||q) =
∑
i pi log(pi/qi),

with the understanding that pi log(pi/qi) = 0 if pi = 0 and pi log(pi/qi) = +∞
if pi > qi = 0.

lemma 5.6 (Basic properties of divergence)

(i) D(p||q) ≥ 0, with equality if and only if p = q

(ii) D is a convex function of the pair (p, q).

Proof Property (i) follows from Lemma 5.3. Here is another proof. In proving

(i), we can assume that qi > 0 for all i. The function ϕ(u) =

{
u log u u > 0

0 u = 0
is convex. Thus, by Jensen’s inequality,

D(p||q) =
∑
i

ϕ

(
pi
qi

)
qi ≥ ϕ

(∑
i

pi
qi
· qi

)
= ϕ(1) = 0,

so (i) is proved.

The proof of (ii) is based on the log-sum inequality, which is the fact that for

nonnegative numbers a1, . . . , an, b1, . . . , bn :∑
i

ai log
ai
bi
≥ a log

a

b
, (5.7)

where a =
∑
i ai and b =

∑
i bi. To verify (5.7), note that it is true if and only

if it is true with each ai replaced by cai, for any strictly positive constant c.

So it can be assumed that a = 1. Similarly, it can be assumed that b = 1. For

a = b = 1, (5.7) is equivalent to the fact D(a||b) ≥ 0, already proved. So (5.7) is

proved.

Let 0 < α < 1. Suppose pj = (pj1, . . . , p
j
n) and qj = (qj1, . . . , q

j
n) are probability

distributions for j = 1, 2, and let pi = αp1
i +(1−α)p2

i and qi = αq1
i +(1−α)q2

i , for

1 ≤ i ≤ n. That is, (p1, q1) and (p2, q2) are two pairs of probability distributions,

and (p, q) = α(p1, q1) + (1 − α)(p2, q2). For i fixed with 1 ≤ i ≤ n, the log-sum

inequality (5.7) with (a1, a2, b1, b2) = (αp1
i , (1− α)p2

i , αq
1
i , (1− α)q2

i ) yields

αp1
i log

p1
i

q1
i

+ (1− α)p2
i log

p2
i

q2
i

= αp1
i log

αp1
i

αq1
i

+ (1− α)p2
i log

(1− α)p2
i

(1− α)q2
i

≥ pi log
pi
qi
.

Summing each side of this inequality over i yields αD(p1||q1)+(1−α)D(p2||q2) ≥
D(p||q), so that D(p||q) is a convex function of the pair (p, q).

proposition 5.7 (Convergence of the EM algorithm) Suppose that the com-

plete data pmf can be factored as pcd(x|θ) = p(y|θ)k(x|y, θ) such that
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(i) log p(y|θ) is differentiable in θ

(ii) E
[

log k(X|y, θ̄) | y, θ̄
]

is finite for all θ̄

(iii) D(k(·|y, θ)||k(·|y, θ′)) is differentiable with respect to θ′ for fixed θ.

(iv) D(k(·|y, θ)||k(·|y, θ′)) is continuous in θ for fixed θ′.

and suppose that p(y|θ(0)) > 0. Then the likelihood p(y|θ(k)) is nondecreasing

in k, and any limit point θ∗ of the sequence (θ(k)) is a stationary point of the

objective function p(y|θ), which by definition means

∂p(y|θ)
∂θ

|θ=θ∗ = 0. (5.8)

Proof Using the factorization pcd(x|θ) = p(y|θ)k(x|y, θ),

Q(θ|θ(k)) = E[log pcd(X|θ)|y, θ(k)]

= log p(y|θ) + E[ log k(X|y, θ) |y, θ(k)]

= log p(y|θ) + E[ log
k(X|y, θ)
k(X|y, θ(k))

|y, θ(k)] +R

= log p(y|θ)−D(k(·|y, θ(k))||k(·|y, θ)) +R, (5.9)

where

R = E[ log k(X|y, θ(k)) |y, θ(k)].

By assumption (ii), R is finite, and it depends on y and θ(k), but not on θ.

Therefore, the maximization step of the EM algorithm is equivalent to:

θ(k+1) = arg max
θ

[
log p(y|θ)−D(k(·|y, θ(k))||k(·|y, θ))

]
. (5.10)

Thus, at each step, the EM algorithm attempts to maximize the log likelihood

ratio log p(y|θ) itself, minus a term which penalizes large differences between θ

and θ(k).

The definition of θ(k+1) implies that Q(θ(k+1)|θ(k)) ≥ Q(θ(k)|θ(k)). Therefore,

using (5.9) and the fact D(k(·|y, θ(k))||k(·|y, θ(k))) = 0, yields

log p(y|θ(k+1))−D(k(·|y, θ(k))||k(·|y, θ(k+1))) ≥ log p(y|θ(k)). (5.11)

In particular, since the divergence is nonnegative, p(y|θ(k)) is nondecreasing in

k. Therefore, limk→∞ log p(y|θ(k)) exists.

Suppose now that the sequence (θ(k)) has a limit point, θ∗. By continuity,

implied by the differentiability assumption (i), limk→∞ p(y|θ(k)) = p(y|θ∗) <∞.
For each k,

0 ≤ max
θ

[
log p(y|θ)−D

(
k(·|y, θ(k)) || k(·|y, θ)

)]
− log p(y|θ(k)) (5.12)

≤ log p(y|θ(k+1))− log p(y|θ(k))→ 0 as k →∞, (5.13)

where (5.12) follows from the fact that θ(k) is a possible value of θ in the maxi-

mization, and the inequality in (5.13) follows from (5.10) and the fact that the

divergence is always nonnegative. Thus, the quantity on the right-hand side of
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(5.12) converges to zero as k → ∞. So by continuity, for any limit point θ∗ of

the sequence (θk),

max
θ

[log p(y|θ)−D (k(·|y, θ∗) || k(·|y, θ))]− log p(y|θ∗) = 0

and therefore,

θ∗ ∈ arg max
θ

[log p(y|θ)−D (k(·|y, θ∗) || k(·|y, θ))] .

So the derivative of log p(y|θ) − D (k(·|y, θ∗) || k(·|y, θ)) with respect to θ at

θ = θ∗ is zero. The same is true of the term D (k(·|y, θ∗) || k(·|y, θ)) alone,

because this term is nonnegative, it has value 0 at θ = θ∗, and it is assumed to

be differentiable in θ. Therefore, the derivative of the first term, log p(y|θ), must

be zero at θ∗.

Remark 5.1 In the above proposition and proof, we assume that θ∗ is uncon-

strained. If there are inequality constraints on θ and if some of them are tight

for θ∗, then we still find that if θ∗ is a limit point of θ(k), then it is a maximizer

of f(θ) = log p(y|θ)−D (k(·|y, θ) || k(·|y, θ∗)) . Thus, under regularity conditions

implying the existence of Lagrange multipliers, the Kuhn-Tucker optimality con-

ditions are satisfied for the problem of maximizing f(θ). Since the derivatives of

D (k(·|y, θ) || k(·|y, θ∗)) with respect to θ at θ = θ∗ are zero, and since the Kuhn-

Tucker optimality conditions only involve the first derivatives of the objective

function, those conditions for the problem of maximizing the true log likelihood

function, log p(y|θ), also hold at θ∗.

5.3 Hidden Markov models

A popular model of one-dimensional sequences with dependencies, explored es-

pecially in the context of speech processing, are the hidden Markov models.

Suppose that

X = (Y,Z), where Z is unobserved data and Y is the observed data

Z = (Z1, . . . , ZT ) is a time-homogeneous Markov process, with one-step transi-

tion probability matrix A = (aij), and with Z1 having the initial distri-

bution π. Here, T , with T ≥ 1, denotes the total number of observation

times. The state-space of Z is denoted by S, and the number of states

of S is denoted by Ns.

Y = (Y1, . . . , YT ) is the observed data. It is such that given Z = z, for some

z = (z1, . . . , zT ), the variables Y1, · · · , YT are conditionally independent

with P (Yt = l|Z = z) = bztl, for a given observation generation matrix

B = (bil). The observations are assumed to take values in a set of size

No, so that B is an Ns ×No matrix and each row of B is a probability

vector.
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The parameter for this model is θ = (π,A,B). The model is illustrated in Figure

5.1. The pmf of the complete data, for a given choice of θ, is

T

!

Y

1

1 Y2 Y3 Y

Z Z 2 Z3
. . .

Z
A A A A

B B B B

T

Figure 5.1 Structure of hidden Markov model.

pcd(y, z|θ) = πz1

T−1∏
t=1

aztzt+1

T∏
t=1

bztyt . (5.14)

The correspondence between the pmf and the graph shown in Figure 5.1 is that

each term on the right-hand side of (5.14) corresponds to an edge in the graph.

In what follows we consider the following three estimation tasks associated

with this model:

1. Given the observed data and θ, compute the conditional distribution of the

state (solved by the forward-backward algorithm)

2. Given the observed data and θ, compute the most likely sequence for hidden

states (solved by the Viterbi algorithm)

3. Given the observed data, compute the maximum likelihood (ML) estimate of

θ (solved by the Baum-Welch/EM algorithm).

These problems are addressed in the next three subsections. As we will see, the

first of these problems arises in solving the third problem. The second problem

has some similarities to the first problem, but it can be addressed separately.

5.3.1 Posterior state probabilities and the forward-backward algorithm

In this subsection we assume that the parameter θ = (π,A,B) of the hidden

Markov model is known and fixed. We shall describe computationally efficient

methods for computing posterior probabilities for the state at a given time t, or

for a transition at a given pair of times t to t+ 1, of the hidden Markov process,

based on past observations (case of causal filtering) or based on past and future

observations (case of smoothing). These posterior probabilities would allow us to

compute, for example, MAP estimates of the state or transition of the Markov

process at a given time. For example, we have:

Ẑt|t,MAP = arg max
i∈S

P (Zt = i|Y1 = y1, . . . , Yt = yt, θ) (5.15)

Ẑt|T ,MAP = arg max
i∈S

P (Zt = i|Y1 = y1, . . . , YT = yT , θ) (5.16)
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̂(Zt, Zt+1)|T,MAP =

arg max
(i,j)∈S×S

P (Zt = i, Zt+1 = j|Y1 = y1, . . . , YT = yT , θ), (5.17)

where the conventions for subscripts is similar to that used for Kalman filtering:

“t|T” denotes that the state is to be estimated at time t based on the observations

up to time T . The key to efficient computation is to recursively compute certain

quantities through a recursion forward in time, and others through a recursion

backward in time. We begin by deriving a forward recursion for the variables

αi(t) defined as follows:

αi(t)
4
= P (Y1 = y1, · · · , Yt = yt, Zt = i|θ),

for i ∈ S and 1 ≤ t ≤ T. The initial value is αi(1) = πibiy1 . By the law of total

probability, the update rule is:

αj(t+ 1) =
∑
i∈S

P (Y1 = y1, · · · , Yt+1 = yt+1, Zt = i, Zt+1 = j|θ)

=
∑
i∈S

P (Y1 = y1, · · · , Yt = yt, Zt = i|θ)

· P (Zt+1 = j, Yt+1 = yt+1|Y1 = y1, · · · , Yt = yt, Zt = i, θ)

=
∑
i∈S

αi(t)aijbjyt+1 .

The right-hand side of (5.15) can be expressed in terms of the α’s as follows.

P (Zt = i|Y1 = y1, . . . , Yt = yt, θ) =
P (Zt = i, Y1 = y1, . . . , Yt = yt|θ)

P (Y1 = y1, . . . , Yt = yt|θ)

=
αi(t)∑
j∈S αj(t)

. (5.18)

The computation of the α’s and the use of (5.18) is an alternative, and very

similar to, the Kalman filtering equations. The difference is that for Kalman

filtering equations, the distributions involved are all Gaussian, so it suffices to

compute means and variances, and also the normalization in (5.18), which is

done once after the α’s are computed, is more or less done at each step in the

Kalman filtering equations.

To express the posterior probabilities involving both past and future observa-

tions used in (5.16), the following β variables are introduced:

βi(t)
4
= P (Yt+1 = yt+1, · · · , YT = yT |Zt = i, θ),

for i ∈ S and 1 ≤ t ≤ T. The definition is not quite the time reversal of the

definition of the α’s, because the event Zt = i is being conditioned upon in the

definition of βi(t). This asymmetry is introduced because the presentation of the

model itself is not symmetric in time. The backward equation for the β’s is as

follows. The initial condition for the backward equations is βi(T ) = 1 for all i.
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By the law of total probability, the update rule is

βi(t− 1) =
∑
j∈S

P (Yt = yt, · · · , YT = yT , Zt = j|Zt−1 = i, θ)

=
∑
j∈S

P (Yt = yt, Zt = j|Zt−1 = i, θ)

· P (Yt+1 = yt+1, · · · , YT = yT |Zt = j, Yt = yt, Zt−1 = i, θ)

=
∑
j∈S

aijbjytβj(t).

Note that

P (Zt = i, Y1 = y1, . . . , YT = yT |θ)
= P (Zt = i, Y1 = y1, . . . , Yt = yt|θ)

· P (Yt+1 = yt+1, . . . , YT = yT |θ, Zt = i, Y1 = y1, . . . , Yt = yt)

= P (Zt = i, Y1 = y1, . . . , Yt = yt|θ)
· P (Yt+1 = yt+1, . . . , YT = yT |θ, Zt = i)

= αi(t)βi(t)

from which we derive the smoothing equation for the conditional distribution of

the state at a time t, given all the observations:

γi(t)
4
= P (Zt = i|Y1 = y1, . . . , YT = yT , θ)

=
P (Zt = i, Y1 = y1, . . . , YT = yT |θ)

P (Y1 = y1, . . . , YT = yT |θ)

=
αi(t)βi(t)∑
j∈S αj(t)βj(t)

.

The variable γi(t) defined here is the same as the probability in the right-hand

side of (5.16), so that we have an efficient way to find the MAP smoothing

estimator defined in (5.16). For later use, we note from the above that for any i

such that γi(t) > 0,

P (Y1 = y1, . . . , YT = yT |θ) =
αi(t)βi(t)

γi(t)
. (5.19)

Similarly,

P (Zt = i, Zt+1 = j, Y1 = y1, . . . , YT = yT |θ)
= P (Zt = i, Y1 = y1, . . . , Yt = yt|θ)
· P (Zt+1 = j, Yt+1 = yt+1|θ, Zt = i, Y1 = y1, . . . , Yt = yt)

· P (Yt+2 = yt+2, . . . , YT = yT |θ, Zt = i, Zt+1 = j, Y1 = y1, . . . , Yt+1 = yt+1)

= αi(t)aijbjyt+1
βj(t+ 1),

from which we derive the smoothing equation for the conditional distribution of
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a state-transition for some pair of consecutive times t and t + 1, given all the

observations:

ξij(t)
4
= P (Zt = i, Zt+1 = j|Y1 = y1, . . . , YT = yT , θ)

=
P (Zt = i, Zt+1 = j, Y1 = y1, . . . , YT = yT |θ)

P (Y1 = y1, . . . , YT = yT |θ)

=
αi(t)aijbjyt+1βj(t+ 1)∑

i′,j′ αi′(t)ai′j′bj′yt+1βj′(t+ 1)

=
γi(t)aijbjyt+1βj(t+ 1)

βi(t)
,

where the final expression is derived using (5.19). The variable ξij(t) defined here

is the same as the probability in the right-hand side of (5.17), so that we have an

efficient way to find the MAP smoothing estimator of a state transition, defined

in (5.17).

Summarizing, the forward-backward or α − β algorithm for computing the

posterior distribution of the state or a transition is given by:

algorithm 5.8 (The forward-backward algorithm) The α’s can be recursively

computed forward in time, and the β’s recursively computed backward in time,

using:

αj(t+ 1) =
∑
i∈S

αi(t)aijbjyt+1
, with initial condition αi(1) = πibiy1

βi(t− 1) =
∑
j∈S

aijbjytβj(t), with initial condition βi(T ) = 1.

Then the posterior probabilities can be found:

P (Zt = i|Y1 = y1, . . . , Yt = yt, θ) =
αi(t)∑
j∈S αj(t)

(5.20)

γi(t)
4
= P (Zt = i|Y1 = y1, . . . , YT = yT , θ) =

αi(t)βi(t)∑
j∈S αj(t)βj(t)

. (5.21)

ξij(t)
4
= P (Zt = i, Zt+1 = j|Y1 = y1, . . . , YT = yT , θ)

=
αi(t)aijbjyt+1

βj(t+ 1)∑
i′,j′ αi′(t)ai′j′bj′yt+1

βj′(t+ 1)
(5.22)

=
γi(t)aijbjyt+1

βj(t+ 1)

βi(t)
. (5.23)

Remark 5.2 If the number of observations runs into the hundreds or thousands,

the α’s and β’s can become so small that underflow problems can be encountered

in numerical computation. However, the formulas (5.20), (5.21), and (5.22) for

the posterior probabilities in the forward-backward algorithm are still valid if the

α’s and β’s are multiplied by time dependent (but state independent) constants

(for this purpose, (5.22) is more convenient than (5.23), because (5.23) invovles
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β’s at two different times). Then, the α’s and β’s can be renormalized after each

time step of computation to have sum equal to one. Moreover, the sum of the

logarithms of the normalization factors for the α’s can be stored in order to

recover the log of the likelihood, log p(y|θ) = log
∑Ns−1
i=0 αi(T ).

5.3.2 Most likely state sequence – Viterbi algorithm

Suppose the parameter θ = (π,A,B) is known, and that Y = (Y1, . . . , YT ) is

observed. In some applications one wishes to have an estimate of the entire

sequence Z. Since θ is known, Y and Z can be viewed as random vectors with

a known joint pmf, namely pcd(y, z|θ). For the remainder of this section, let

y denote a fixed observed sequence, y = (y1, . . . , yT ). We will seek the MAP

estimate, ẐMAP (y, θ), of the entire state sequence Z = (Z1, . . . , ZT ), given Y =

y. By definition, it is defined to be the z that maximizes the posterior pmf

p(z|y, θ), and as shown in Section 5.1, it is also equal to the maximizer of the

joint pmf of Y and Z:

ẐMAP (y, θ) = arg max
z
pcd(y, z|θ).

The Viterbi algorithm (a special case of dynamic programming), described next,

is a computationally efficient algorithm for simultaneously finding the maximiz-

ing sequence z∗ ∈ ST and computing pcd(y, z
∗|θ). It uses the variables:

δi(t)
4
= max

(z1,...,zt−1)
P (Z1 = z1, . . . , Zt−1 = zt−1, Zt = i, Y1 = y1, · · · , Yt = yt|θ).

These variables have a simple graphical representation. Note by (5.14), the com-

plete data probability p(y, z|θ) is the product of terms encountered along the path

determined by z through a trellis based on the Markov structure, as illustrated

in Figure 5.2. Then δi(t) is the maximum, over all partial paths (z1, . . . , zt) going

Figure 5.2 Illustration of a sample path, z = (1, 1, 2, 2, . . . , 1, 1), of the hidden Markov
process.

from stage 1 to stage t, of the product of terms encountered along the partial

path.

The δ’s can be computed by a recursion forward in time, using the initial
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values δi(1) = π(i)biy1 and the recursion derived as follows:

δj(t) = max
i

max
{z1,...,zt−2}

P (Z1 = z1, . . . , Zt−1 = i, Zt = j, Y1 = y1, · · · , Yt = yt|θ)

= max
i

max
{z1,...,zt−2}

P (Z1 = z1, . . . , Zt−1 = i, Y1 = y1, · · · , Yt−1 = yt−1|θ)aijbjyt

= max
i
{δi(t− 1)aijbjyt} .

Note that δi(T ) = maxz:zT=i pcd(y, z|θ). Thus, the following algorithm correctly

finds ẐMAP (y, θ).

algorithm 5.9 (Viterbi algorithm) Compute the δ’s and associated back

pointers by a recursion forward in time:

(initial condition) δi(1) = π(i)biy1

(recursive step) δj(t) = max
i
{δi(t− 1)aijbjyt} (5.24)

(storage of back pointers) ϕj(t)
4
= arg max

i
{δi(t− 1)aijbjyt}

Then z∗ = ẐMAP (y, θ) satisfies pcd(y, z
∗|θ) = maxi δi(T ), and z∗ is given by

tracing backward in time:

z∗T = arg max
i
δi(T ) and z∗t−1 = ϕz∗t (t) for 2 ≤ t ≤ T. (5.25)

5.3.3 The Baum-Welch algorithm, or EM algorithm for HMM

The EM algorithm, introduced in Section 5.2, can be usefully applied to many

parameter estimation problems with hidden data. This section shows how to

apply it to the problem of estimating the parameter of a hidden Markov model

from an observed output sequence. This results in the Baum-Welch algorithm,

which was developed earlier than the EM algorithm, in the particular context of

HMMs.

The parameter to be estimated is θ = (π,A,B). The complete data consists

of (Y, Z) whereas the observed, incomplete data consists of Y alone. The initial

parameter θ(0) = (π(0), A(0), B(0)) should have all entries strictly positive, be-

cause any entry that is zero will remain zero at the end of an iteration. Suppose

θ(k) is given. The first half of an iteration of the EM algorithm is to compute, or

determine in closed form, Q(θ|θ(k)). Taking logarithms in the expression (5.14)

for the pmf of the complete data yields

log pcd(y, z|θ) = log πz1 +

T−1∑
t=1

log aztzt+1 +

T∑
t=1

log bztyt

Taking the expectation yields

Q(θ|θ(k)) = E[log pcd(y, Z|θ)|y, θ(k)]

=
∑
i∈S

γi(1) log πi +

T−1∑
t=1

∑
i,j

ξij(t) log aij +

T∑
t=1

∑
i∈S

γi(t) log biyt ,
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where the variables γi(t) and ξij(t) are defined using the model with parameter

θ(k). In view of this closed form expression for Q(θ|θ(k)), the expectation step of

the EM algorithm essentially comes down to computing the γ’s and the ξ’s. This

computation can be done using the forward-backward algorithm, Algorithm 5.8,

with θ = θ(k).

The second half of an iteration of the EM algorithm is to find the value of

θ that maximizes Q(θ|θ(k)), and set θ(k+1) equal to that value. The parameter

θ = (π,A,B) for this problem can be viewed as a set of probability vectors.

Namely, π is a probability vector, and, for each i fixed, aij as j varies, and bil as

l varies, are probability vectors. Therefore, Example 5.5 and Lemma 5.3 will be

of use. Motivated by these, we rewrite the expression found for Q(θ|θ(k)) to get

Q(θ|θ(k)) =
∑
i∈S

γi(1) log πi +
∑
i,j

T−1∑
t=1

ξij(t) log aij +
∑
i∈S

T∑
t=1

γi(t) log biyt

=
∑
i∈S

γi(1) log πi +
∑
i,j

(
T−1∑
t=1

ξij(t)

)
log aij

+
∑
i∈S

∑
l

(
T∑
t=1

γi(t)I{yt=l}

)
log bil (5.26)

The first summation in (5.26) has the same form as the sum in Lemma 5.3.

Similarly, for each i fixed, the sum over j involving aij , and the sum over l

involving bil, also have the same form as the sum in Lemma 5.3. Therefore, the

maximization step of the EM algorithm can be written in the following form:

π
(k+1)
i = γi(1) (5.27)

a
(k+1)
ij =

∑T−1
t=1 ξij(t)∑T−1
t=1 γi(t)

(5.28)

b
(k+1)
il =

∑T
t=1 γi(t)I{yt=l}∑T

t=1 γi(t)
. (5.29)

The update equations (5.27)-(5.29) have a natural interpretation. Equation (5.27)

means that the new value of the distribution of the initial state, π(k+1), is sim-

ply the posterior distribution of the initial state, computed assuming θ(k) is the

true parameter value. The other two update equations are similar, but are more

complicated because the transition matrix A and observation generation matrix

B do not change with time. The denominator of (5.28) is the posterior expected

number of times the state is equal to i up to time T − 1, and the numerator is

the posterior expected number of times two consecutive states are i, j. Thus, if

we think of the time of a jump as being random, the right-hand side of (5.28) is

the time-averaged posterior conditional probability that, given the state at the

beginning of a transition is i at a typical time, the next state will be j. Sim-

ilarly, the right-hand side of (5.29) is the time-averaged posterior conditional

probability that, given the state is i at a typical time, the observation will be l.
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algorithm 5.10 (Baum-Welch algorithm, or EM algorithm for HMM) Select

the state space S, and in particular, the cardinality, Ns, of the state space, and let

θ(0) denote a given initial choice of parameter. Given θ(k), compute θ(k+1) by us-

ing the forward-backward algorithm (Algorithm 5.8) with θ = θ(k) to compute the

γ’s and ξ’s. Then use (5.27)-(5.29) to compute θ(k+1) = (π(k+1), A(k+1), B(k+1)).

5.4 Notes

The EM algorithm is due to A.P. Dempster, N.M. Laird, and B.D. Rubin (Dempster,

Laird & Rubin 1977). The paper includes examples and a proof that the likeli-

hood is increased with each iteration of the algorithm. An article on the conver-

gence of the EM algorithm is given in (Wu 1983). Earlier related work includes

that of Baum et al. (Baum, Petrie, Soules & Weiss 1970), giving the Baum-

Welch algorithm. A tutorial on inference for HMMs and applications to speech

recognition is given in (Rabiner 1989).

Problems

5.1 Estimation of a Poisson parameter Suppose Y is assumed to be a Poi(θ)

random variable. Using the Bayesian method, suppose the prior distribution of

θ is the exponential distribution with some known parameter λ > 0. (a) Find

Θ̂MAP (k), the MAP estimate of θ given that Y = k is observed, for some k ≥ 0.

(b) For what values of λ is Θ̂MAP (k) ≈ θ̂ML(k)? (The ML estimator was found

in Example 5.2.) Why should that be expected?

5.2 A variance estimation problem with Poisson observation The input volt-

age to an optical device is X and the number of photons observed at a detector

is N . Suppose X is a Gaussian random variable with mean zero and variance

σ2, and that given X, the random variable N has the Poisson distribution with

mean X2. (Recall that the Poisson distribution with mean λ has probability

mass function λne−λ/n! for n ≥ 0.)

(a) Express P{N = n} in terms of σ2. You can express this as an integral, which

you do not have to evaluate.

(b) Find the maximum likelihood estimator of σ2 given N . (Caution: Estimate

σ2, not X. Be as explicit as possible–the final answer has a simple form. Hint:

You can first simplify your answer to part (a) by using the fact that if X is a

N(0, σ̃2) random variable, then E[X2n] = σ̃2n(2n)!
n!2n . )

5.3 ML estimation of covariance matrix Suppose n independently generated

p dimensional random vectors X1, . . . , Xn, are observed, each assumed to have

the N(0,K) distribution for some unknown positive semidefinite matrix K. Let

S denote the sample covariance function, defined by S = 1
n

∑n
i=1XiX

T
i . The

goal of this problem is to prove that S is the ML estimator of K. Let the obser-

vations be fixed for the remainder of this problem, and for simplicity, assume S

has full rank. Therefore S is symmetric and positive definite.

(a) First, show that ln f(X1, . . . , Xn|K) = −n2 (p ln(2π)+ln det(K)+Tr(SK−1)),
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where Tr denotes the trace function.

(b) Then, using the diagonalization of S, explain why there is a symmetric pos-

itive definite matrix S
1
2 so that S = S

1
2S

1
2 .

(c) Complete the proof by using the change of variables K̃ = S−
1
2KS−

1
2 and

finding the value of K̃ that maximizes the likelihood. Since the transformation

from K to K̃ is invertible, applying the inverse mapping to the maximizing value

of K̃ yields the ML estimator for K. (At some point you may need to use the fact

that for matrices A and B such that AB is a square matrix, Tr(AB) = Tr(BA).)

5.4 Estimation of Bernoulli parameter in Gaussian noise by EM algorithm

Suppose Y = (Y1, . . . , YT ), W = (W1, . . . ,WT ), and Z = (Z1, . . . , ZT ) Let

θ ∈ [0, 1] be a parameter to be estimated. Suppose W1. . . . ,WT are independent,

N(0, 1) random variables, and Z1, . . . ZT are independent random variables with

P{Zt = 1} = θ and P{Zt = −1} = 1− θ for 1 ≤ t ≤ T. Suppose Yt = Zt +Wt.

(a) Find a simple formula for ϕ(t, θ) defined by ϕ(u, θ) = E[Z1|Y1 = u, θ].

(b) Using the function ϕ found in part (a) in your answer, derive the EM algo-

rithm for calculation of θ̂ML(y).

5.5 Convergence of the EM algorithm for an example The purpose of this ex-

ercise is to verify for Example 5.8 that if θ(0) > 0, then θ(k) → θ̂ML as k → ∞.
As shown in the example, θ̂ML = (y2 − σ2)+. Let F (θ) =

(
θ

θ+σ2

)2

y2 + θσ2

θ+σ2

so that the recursion (5.6) has the form θ(k+1) = F (θ(k)). Clearly, over R+, F

is increasing and bounded. (a) Show that 0 is the only nonnegative solution of

F (θ) = θ if y ≤ σ2 and that 0 and y − σ2 are the only nonnegative solutions of

F (θ) = θ if y > σ2. (b) Show that for small θ > 0, F (θ) = θ+ θ2(y2−σ2)
σ4 + o(θ3).

(Hint: For 0 < θ < σ2, θ
θ+σ2 = θ

σ2
1

1+θ/σ2 = θ
σ2 (1− θ

σ2 + ( θ
σ2 )2 − . . .). (c) Sketch

F and argue, using the above properties of F, that if θ(0) > 0, then θ(k) → θ̂ML.

5.6 Transformation of estimators and estimators of transformations Consider

estimating a parameter θ ∈ [0, 1] from an observation Y . A prior density of θ is

available for the Bayes estimators, MAP and MMSE, and the conditional density

of Y given θ is known. Answer the following questions and briefly explain your

answers.

(a) Does 3 + 5θ̂ML = ̂(3 + 5θ)ML?

(b) Does (θ̂ML)3 = (̂θ3)ML?

(c) Does 3 + 5θ̂MAP = ̂(3 + 5θ)MAP ?

(d) Does (θ̂MAP )3 = (̂θ3)MAP ?

(e) Does 3 + 5θ̂MMSE = ̂(3 + 5θ)MMSE?

(f) Does (θ̂MMSE)3 = (̂θ3)MMSE?

5.7 Using the EM algorithm for estimation of a signal variance This problem

generalizes Example 5.8 to vector observations. Suppose the observation is Y =

S + N , such that the signal S and noise N are independent random vectors in

Rd. Assume that S is N(0, θI), and N is N(0,ΣN ), where θ, with θ > 0, is the

parameter to be estimated, I is the identity matrix, and ΣN is known.

(a) Suppose θ is known. Find the MMSE estimate of S, ŜMMSE , and find an
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expression for the covariance matrix of the error vector, S − ŜMMSE .

(b) Suppose now that θ is unknown. Describe a direct approach to computing

θ̂ML(Y ).

(c) Describe how θ̂ML(Y ) can be computed using the EM algorithm.

(d) Consider how your answers to parts (b) and (c) simplify in case d = 2 and

the covariance matrix of the noise, ΣN , is the identity matrix.

5.8 Finding a most likely path Consider an HMM with state space S = {0, 1},
observation space {0, 1, 2}, and parameter

θ = (π,A,B) given by:

π = (a, a3) A =

(
a a3

a3 a

)
B =

(
ca ca2 ca3

ca2 ca3 ca

)
.

Here a and c are positive constants. Their actual numerical values aren’t im-

portant, other than the fact that a < 1. Find the MAP state sequence for the

observation sequence 021201, using the Viterbi algorithm. Show your work.

5.9 State estimation for an HMM with conditionally Gaussian observations

Consider a discrete-time Markov process Z = (Z1, Z2, Z3, Z4) with state-space

{0, 1, 2}, initial distribution (i.e. distribution of Z1) π = (c2−3, c, c2−5) (where

c > 0 and its numerical value is not relevant), and transition probability diagram

shown.

1/41/4

1/21/2 1/4
1/21/4

1/4
1/4

0

1

2

(a) Place weights on the edges of the trellis below so that the minimum sum of

weights along a path in the trellis corresponds to the most likely state sequence

of length four. That is, you are to use the Viterbi algorithm approach to find

z∗ = (z∗1 , z
∗
2 , z
∗
3 , z
∗
4) that maximizes P{(Z1, Z2, Z3, Z4) = (z1, z2, z3, z4)} over all

choices of (z1, z2, z3, z4). Also, find z∗. (A weight i can represent a probability

2−i, for example.

2

1

t=1 t=2 t=3 t=4

0

(b) Using the same statistical model for the process Z as in part (a), suppose

there is an observation sequence (Yt : 1 ≤ t ≤ 4) with Yt = Zt + Wt, where

W1,W2,W3,W4 areN(0, σ2) random variables with 1
2σ2 = ln 2. (This choice of σ2
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simplifies the problem.) Suppose Z,W1,W2,W3,W4 are mutually independent.

Find the MAP estimate ẐMAP (y) of (Z1, Z2, Z3, Z4) for the observation sequence

y = (2, 0, 1,−2). Use an approach similar to part (a), by placing weights on the

nodes and edges of the same trellis so that the MAP estimate is the minimum

weight path in the trellis.

5.10 Estimation of the parameter of an exponential in exponential noise

Suppose an observation Y has the form Y = Z+N, where Z and N are indepen-

dent, Z has the exponential distribution with parameter θ, N has the exponential

distribution with parameter one, and θ > 0 is an unknown parameter. We con-

sider two approaches to finding θ̂ML(y).

(a) Show that fcd(y, z|θ) =

{
θe−y+(1−θ)z 0 ≤ z ≤ y

0 else
.

(b) Find f(y|θ). The direct approach to finding θ̂ML(y) is to maximize f(y|θ)
(or its log) with respect to θ. You needn’t attempt the maximization.

(c) Derive the EM algorithm for finding θ̂ML(y). You may express your answer

in terms of the function ϕ defined by:

ϕ(y, θ) = E[Z|y, θ] =


1
θ−1 −

y
exp((θ−1)y)−1 θ 6= 1

y
2 θ = 1

.

You needn’t implement the algorithm.

(d) Suppose an observation Y = (Y1, . . . , YT ) has the form Y = Z + N, where

Z = (Z1, . . . , ZT ) and N = (N1, . . . , NT ), such that N1, . . . , NT , Z1, . . . ZT are

mutually independent, and for each t, Zt has the exponential distribution with

parameter θ, and Nt has the exponential distribution with parameter one, and

θ > 0 is an unknown parameter. Note that θ does not depend on t. Derive the

EM algorithm for finding θ̂ML(y).

5.11 Estimation of a critical transition time of hidden state in HMM

Consider an HMM with unobserved data Z = (Z1, . . . , ZT ), observed data Y =

(Y1, . . . , YT ), and parameter vector θ = (π,A,B). Let F ⊂ S, where S is the

statespace of the hidden Markov process Z, and let τF be the first time t such

that Zt ∈ F with the convention that τF = T + 1 if (Zt 6∈ F for 1 ≤ t ≤ T ).

(a) Describe how to find the conditional distribution of τF given Y, under the

added assumption that (aij = 0 for all (i, j) such that i ∈ F and j 6∈ F ), i.e.

under the assumption that F is an absorbing set for Z.

(b) Describe how to find the conditional distribution of τF given Y, without the

added assumption made in part (a).

5.12 Maximum likelihood estimation for HMMs Consider an HMM with un-

observed data Z = (Z1, . . . , ZT ), observed data Y = (Y1, . . . , YT ), and parameter

vector θ = (π,A,B). Explain how the forward-backward algorithm or the Viterbi

algorithm can be used or modified to compute the following:

(a) The ML estimator, ẐML, of Z based on Y, assuming any initial state and

any transitions i→ j are possible for Z. (Hint: Your answer should not depend
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on π or A.)

(b) The ML estimator, ẐML, of Z based on Y, subject to the constraints that

ẐML takes values in the set {z : P{Z = z} > 0}. (Hint: Your answer should

depend on π and A only through which coordinates of π and A are nonzero.)

(c) The ML estimator, Ẑ1,ML, of Z1 based on Y.

(d) The ML estimator, Ẑto,ML, of Zto based on Y, for some fixed to with

1 ≤ to ≤ T.
5.13 An underconstrained estimation problem Suppose the parameter θ =

(π,A,B) for an HMM is unknown, but that it is assumed that the number

of states Ns in the statespace S for (Zt) is equal to the number of observations,

T . Describe a trivial choice of the ML estimator θ̂ML(y) for a given observation

sequence y = (y1, . . . , yT ). What is the likelihood of y for this choice of θ?

5.14 Specialization of Baum-Welch algorithm for no hidden data (a) Deter-

mine how the Baum-Welch algorithm simplifies in the special case that B is

the identity matrix, so that Xt = Yt for all t. (b) Still assuming that B is

the identity matrix, suppose that S = {0, 1} and the observation sequence is

0001110001110001110001. Find the ML estimator for π and A.

5.15 Bayes estimation for a simple product form distribution Let A be the

three by three matrix with entries aij =

{
2 i = j

1 i 6= j
. Suppose X,Y1, Y2, Y3

have the joint pmf P{X = i, Y1 = j, Y2 = k, Y3 = l} =
aijaikail

Z , where Z is a

normalizing constant so that the sum of P{X = i, Y1 = j, Y2 = k, Y3 = l} over

all i, j, k, l ∈ {1, 2, 3} is equal to one.

(a) Find the maximum a posteriori (MAP) estimate ofX given (Y1, Y2, Y3) = 122.

(b) Find the conditional probability distribution of X given (Y1, Y2, Y3) = 122.

5.16 Extending the forward-backward algorithm The forward-backward algo-

rithm is a form of belief propagation (or message passing) algorithm for the

special case of graph structure that is a one-dimensional chain. It is easy to gen-

eralize the algorithm when the graph structure is a tree. For even more general

graphs, with cycles, it is often useful to ignore the cycles and continue to use the

same local computations, resulting in general belief propagation algorithms. To

help explain how belief propagation equations can be derived for general graphs

without a given linear ordering of nodes, this problem focuses on a symmetric

version of the forward backward algorithm. If the initial distribution π is uniform,

then the complete probability distribution function can be written as

pcd(y, z|θ) =

∏T−1
t=1 aztzt+1

∏T
t=1 biyt

G
(5.30)

where G is the number of states in S. Taking θ = (A,B), and dropping the

requirement that the row sums of A and B be normalized to one, (5.30) still

defines a valid joint distribution for Y and Z, with the understanding that the

constant G is selected to make the sum over all pairs (y, z) sum to one. Note

that G depends on θ. This representation of joint probability distributions for

(Y,Z) is symmetric forward and backward in time.
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(a) Assuming the distribution in (5.30), derive a symmetric variation of the

forward backward algorithm for computation of γi(t) = P (Zt = i|y, θ). Instead

of α’s and β’s, use variables of the form µi(t, t+ 1) to replace the α’s; these are

messages passed to the right, and variables of the form µi(t + 1, t) to replace

the β’s; these are messages passed to the left. Here the notation u(s, t) for two

adjacent times s and t is for a message to be passed from node s to node t.

A better notation might be u(s → t). The message u(s, t) is a vector u(s, t) =

(ui(s, t) : i ∈ S) of likelihoods, about the distribution of Zt that has been

collected from the direction s is from t. Give equations for calculating the µ’s

and an equation to calculate the γ’s from the µ’s. (Hint: The backward variable

µ(t + 1, t) can be taken to be essentially identical to β(t) for all t, whereas the

forward variable µ(t, t + 1) will be somewhat different from α(t) for all t. Note

that α(t) depends on yt but β(t) does not. This asymmetry is used when α(t)

and β(t) are combined to give γ(t). )

(b) Give expressions for µi(t, t + 1) and µ(t + 1, t) for 1 ≤ t ≤ T that involve

multiple summations but no recursion. (These expressions can be verified by

induction.)

(c) Explain using your answer to part (b) the correctness of your algorithm in

part (a).

5.17 Free energy and the Boltzmann distribution Let S denote a finite set

of possible states of a physical system, and suppose the (internal) energy of

any state s ∈ S is given by V (s) for some function V on S. Let T > 0. The

Helmholtz free energy of a probability distribution Q on S is defined to be

the average (internal) energy minus the temperature times entropy: F (Q) =∑
iQ(i)V (i) +T

∑
iQ(i) logQ(i). Note that F is a convex function of Q. (We’re

assuming Boltzmann’s constant is normalized to one, so that T should actually

be in units of energy, but by abuse of notation we will call T the temperature.)

(a) Use the method of Lagrange multipliers to show that the Boltzmann distri-

bution defined by BT (i) = 1
Z(T ) exp(−V (i)/T ) minimizes F (Q). Here Z(T ) is

the normalizing constant required to make BT a probability distribution.

(b) Describe the limit of the Boltzmann distribution as T →∞.

(c) Describe the limit of the Boltzmann distribution as T → 0. If it is possible to

simulate a random variable with the Boltzmann distribution, does this suggest

an application?

(d) Show that F (Q) = TD(Q||BT ) + (term not depending on Q). Therefore,

given an energy function V on S and temperature T > 0, minimizing free energy

over Q in some set is equivalent to minimizing the divergence D(Q||BT ) over Q

in the same set.

5.18 Baum-Welch saddlepoint Suppose that the Baum-Welch algorithm is run

on a given data set with initial parameter θ(0) = (π(0), A(0), B(0)) such that

π(0) = π(0)A(0) (i.e., the initial distribution of the state is an equilibrium distri-

bution of the state) and every row of B(0) is identical. Explain what happens,

assuming an ideal computer with infinite precision arithmetic is used.

5.19 Inference for a mixture model (a) An observed random vector Y is dis-
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tributed as a mixture of Gaussian distributions in d dimensions. The parameter

of the mixture distribution is θ = (θ1, . . . , θJ), where θj is a d-dimensional vector

for 1 ≤ j ≤ J . Specifically, to generate Y a random variable Z, called the class

label for the observation, is generated. The variable Z is uniformly distributed

on {1, . . . , J}, and the conditional distribution of Y given (θ, Z) is Gaussian with

mean vector θZ and covariance the d × d identity matrix. The class label Z is

not observed. Assuming that θ is known, find the posterior pmf p(z|y, θ). Give a

geometrical interpretation of the MAP estimate Ẑ for a given observation Y = y.

(b) Suppose now that the parameter θ is random with the uniform prior over a

very large region and suppose that given θ, n random variables are each gener-

ated as in part (a), independently, to produce

(Z(1), Y (1), Z(2), Y (2), . . . , Z(n), Y (n)). Give an explicit expression for the joint

distribution

P (θ, z(1), y(1), z(2), y(2), . . . , z(n), y(n)).

(c) The iterative conditional modes (ICM) algorithm for this example corre-

sponds to taking turns maximizing P (θ̂, ẑ(1), y(1), ẑ(2), y(2), . . . , ẑ(n), y(n)) with

respect to θ̂ for ẑ fixed and with respect to ẑ for θ̂ fixed. Give a simple geometric

description of how the algorithm works and suggest a method to initialize the

algorithm (there is no unique answer for the later).

(d) Derive the EM algorithm for this example, in an attempt to compute the

maximum likelihood estimate of θ given y(1), y(2), . . . , y(n).

5.20 Constraining the Baum-Welch algorithm The Baum-Welch algorithm as

presented placed no prior assumptions on the parameters π, A, B, other than

the number of states Ns in the state space of (Zt). Suppose matrices A and B

are given with the same dimensions as the matrices A and B to be estimated,

with all elements of A and B having values 0 and 1. Suppose that A and B are

constrained to satisfy A ≤ A and B ≤ B, in the element-by-element ordering

(for example, aij ≤ aij for all i, j.) Explain how the Baum-Welch algorithm can

be adapted to this situation.

5.21 MAP estimation of parameters of a Markov process Let Z be a Markov

process with state space S = {0, 1}, initial time t = 1, initial distribution π, and

one-step transition probability matrix A.

(a) Suppose it is known that A =

(
2/3 1/3

1/3 2/3

)
and it is observed that

(Z(1), Z(4)) = (0, 1). Find the MAP estimate of Z(2).

(b) Suppose instead θ = (π,A) and θ is unknown, and three independent obser-

vations of (Z(1), Z(2), Z(3), Z(4)) are generated using θ. Assuming the observa-

tions are 0001, 1011, 1110, find θ̂ML.

5.22* Implementation of algorithms Write a computer program to (a) simu-

late a HMM on a computer for a specified value of the parameter θ = (π,A,B),

(b) To run the forward-backward algorithm and compute the α’s, β’s, γ’s, and

ξ’s , (c) To run the Baum-Welch algorithm. Experiment a bit and describe your

results. For example, if T observations are generated, and then if the Baum-
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Welch algorithm is used to estimate the parameter, how large does T need to be

to insure that the estimates of θ are pretty accurate.



6 Dynamics of Countable-State
Markov Models

Markov processes are useful for modeling a variety of dynamical systems. Often

questions involving the long-time behavior of such systems are of interest, such

as whether the process has a limiting distribution, or whether time-averages

constructed using the process are asymptotically the same as statistical averages.

6.1 Examples with finite state space

Recall that a probability distribution π on S is an equilibrium probability dis-

tribution for a time-homogeneous Markov process X if π = πH(t) for all t. In

the discrete-time case, this condition reduces to π = πP . We shall see in this

section that under certain natural conditions, the existence of an equilibrium

probability distribution is related to whether the distribution of X(t) converges

as t→∞. Existence of an equilibrium distribution is also connected to the mean

time needed for X to return to its starting state. To motivate the conditions that

will be imposed, we begin by considering four examples of finite state processes.

Then the relevant definitions are given for finite or countably-infinite state space,

and propositions regarding convergence are presented.

Example 6.1 Consider the discrete-time Markov process with the one-step prob-

ability diagram shown in Figure 6.1. Note that the process can’t escape from the

set of states S1 = {a, b, c, d, e}, so that if the initial state X(0) is in S1 with

probability one, then the limiting distribution is supported by S1. Similarly if

the initial state X(0) is in S2 = {f, g, h} with probability one, then the limiting

distribution is supported by S2. Thus, the limiting distribution is not unique

for this process. The natural way to deal with this problem is to decompose the

original problem into two problems. That is, consider a Markov process on S1,

and then consider a Markov process on S2.

Does the distribution of X(0) necessarily converge if X(0) ∈ S1 with proba-

bility one? The answer is no. For example, note that if X(0) = a, then X(k) ∈
{a, c, e} for all even values of k, whereas X(k) ∈ {b, d} for all odd values of k.

That is, πa(k)+πc(k)+πe(k) is one if k is even and is zero if k is odd. Therefore,

if πa(0) = 1, then π(k) does not converge as k →∞.
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Figure 6.1 A one-step transition probability diagram with eight states.

Basically speaking, the Markov process of Example 6.1 fails to have a unique

limiting distribution independent of the initial state for two reasons: (i) the

process is not irreducible, and (ii) the process is not aperiodic.

Example 6.2 Consider the two-state, continuous time Markov process with the

transition rate diagram shown in Figure 6.2 for some positive constants α and β.

This was already considered in Example 4.9, where we found that for any initial

!

"
1 2

Figure 6.2 A transition rate diagram with two states.

distribution π(0),

lim
t→∞

π(t) = lim
t→∞

π(0)H(t) =

(
β

α+ β
,

α

α+ β

)
.

The rate of convergence is exponential, with rate parameter α+β, which happens

to be the nonzero eigenvalue of Q. Note that the limiting distribution is the

unique probability distribution satisfying πQ = 0. The periodicity problem of

Example 6.1 does not arise for continuous-time processes.

Example 6.3 Consider the continuous-time Markov process with the transition

rate diagram in Figure 6.3. The Q matrix is the block-diagonal matrix given by

!

"
1 2

!

"
3 4

Figure 6.3 A transition rate diagram with four states.
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Q =


−α α 0 0

β −β 0 0

0 0 −α α

0 0 β −β

 .
This process is not irreducible, but rather the transition rate diagram can be

decomposed into two parts, each equivalent to the diagram for Example 6.2.

The equilibrium probability distributions are the probability distributions of the

form π =
(
λ β
α+β , λ

α
α+β , (1− λ) β

α+β , (1− λ) α
α+β

)
, where λ is the probability

placed on the subset {1, 2}.

Example 6.4 Consider the discrete-time Markov process with the transition

probability diagram in Figure 6.4. The one-step transition probability matrix P

1 2

3

1

11

Figure 6.4 A one-step transition probability diagram with three states.

is given by

P =

 0 1 0

0 0 1

1 0 0

 .
Solving the equation π = πP we find there is a unique equilibrium probability

vector, namely π = ( 1
3 ,

1
3 ,

1
3 ). On the other hand, if π(0) = (1, 0, 0), then

π(k) = π(0)P k =


(1, 0, 0) if k ≡ 0 mod 3

(0, 1, 0) if k ≡ 1 mod 3

(0, 0, 1) if k ≡ 2 mod 3

.

Therefore, π(k) does not converge as k →∞.

6.2 Classification and convergence of discrete-time Markov
processes

The following definition applies for either discrete time or continuous time.

definition 6.1 Let X be a time-homogeneous Markov process on the count-

able state space S. The process is said to be irreducible if for all i, j ∈ S, there

exists s > 0 so that pij(s) > 0.

The next definition is relevant only for discrete-time processes.
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definition 6.2 The period of a state i is GCD{k ≥ 0 : pii(k) > 0}, where

GCD stands for greatest common divisor. The set {k ≥ 0 : pii(k) > 0} is closed

under addition, which by a result in elementary algebra1 implies that the set

contains all sufficiently large integer multiples of the period. The Markov process

is called aperiodic if the period of all the states is one.

proposition 6.3 If X is irreducible, all states have the same period.

Proof Let i and j be two states. By irreducibility, there are integers k1 and

k2 so that pij(k1) > 0 and pji(k2) > 0. For any integer n, pii(n + k1 + k2) ≥
pij(k1)pjj(n)pji(k2), so {k ≥ 0 : pii(k) > 0} contains {k ≥ 0 : pjj(k) > 0}
translated up by k1 + k2. Thus the period of i is less than or equal to the period

of j. Since i and j were arbitrary states, the proposition follows.

For a fixed state i, define τi = min{k ≥ 1 : X(k) = i}, where we adopt the

convention that the minimum of an empty set is +∞. Let Mi = E[τi|X(0) = i].

If P (τi < +∞|X(0) = i) < 1, state i is called transient (and by convention,

Mi = +∞). Otherwise P(τi < +∞|X(0) = i) = 1, and i is said to be positive

recurrent if Mi < +∞ and to be null recurrent if Mi = +∞.

proposition 6.4 Suppose X is irreducible and aperiodic.

(a) All states are transient, or all are positive recurrent, or all are null recurrent.

(b) For any initial distribution π(0), limt→∞ πi(t) = 1/Mi, with the under-

standing that the limit is zero if Mi = +∞.

(c) An equilibrium probability distribution π exists if and only if all states are

positive recurrent.

(d) If it exists, the equilibrium probability distribution π is given by πi =

1/Mi. (In particular, if it exists, the equilibrium probability distribution

is unique).

Proof (a) Suppose state i is recurrent. Given X(0) = i, after leaving i the pro-

cess returns to state i at time τi. The process during the time interval {0, . . . , τi}
is the first excursion of X from state 0. From time τi onward, the process behaves

just as it did initially. Thus there is a second excursion from i, third excursion

from i, and so on. Let Tk for k ≥ 1 denote the length of the kth excursion. Then

the Tk’s are independent, and each has the same distribution as T1 = τi. Let j

be another state and let ε denote the probability that X visits state j during one

excursion from i. Since X is irreducible, ε > 0. The excursions are independent,

so state j is visited during the kth excursion with probability ε, independently

of whether j was visited in earlier excursions. Thus, the number of excursions

needed until state j is reached has the geometric distribution with parameter ε,

which has mean 1/ε. In particular, state j is eventually visited with probability

one. After j is visited the process eventually returns to state i, and then within

1 Such as the Euclidean algorithm, Chinese remainder theorem, or Bezout theorem
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an average of 1/ε additional excursions, it will return to state j again. Thus,

state j is also recurrent. Hence, if one state is recurrent, all states are recurrent.

The same argument shows that if i is positive recurrent, then j is positive

recurrent. Given X(0) = i, the mean time needed for the process to visit j and

then return to i is Mi/ε, since on average 1/ε excursions of mean length Mi are

needed. Thus, the mean time to hit j starting from i, and the mean time to hit i

starting from j, are both finite. Thus, j is positive recurrent. Hence, if one state

is positive recurrent, all states are positive recurrent.

(b) Part (b) of the proposition follows by an application of the renewal theo-

rem, which can be found in (Asmussen 2003).

(c) Suppose all states are positive recurrent. By the law of large numbers, for

any state j, the long run fraction of time the process is in state j is 1/Mj with

probability one. Similarly, for any states i and j, the long run fraction of time

the process is in state j is γij/Mi, where γij is the mean number of visits to j in

an excursion from i. Therefore 1/Mj = γij/Mi. This implies that
∑
i 1/Mi = 1.

That is, π defined by πi = 1/Mi is a probability distribution. The convergence for

each i separately given in part (b), together with the fact that π is a probability

distribution, imply that
∑
i |πi(t) − πi| → 0. Thus, taking s to infinity in the

equation π(s)H(t) = π(s + t) yields πH(t) = π, so that π is an equilibrium

probability distribution.

Conversely, if there is an equilibrium probability distribution π, consider run-

ning the process with initial state π. Then π(t) = π for all t. So by part (b), for

any state i, πi = 1/Mi. Taking a state i such that πi > 0, it follows that Mi <∞.

So state i is positive recurrent. By part (a), all states are positive recurrent.

(d) Part (d) was proved in the course of proving part (c).

We conclude this section by describing a technique to establish a rate of con-

vergence to the equilibrium distribution for finite-state Markov processes. Define

δ(P ) for a one-step transition probability matrix P by

δ(P ) = min
i,k

∑
j

pij ∧ pkj ,

where a ∧ b = min{a, b}. The number δ(P ) is known as Dobrushin’s coefficient

of ergodicity. Since a+ b− 2(a ∧ b) = |a− b| for a, b ≥ 0, we also have

1− 2δ(P ) = min
i,k

∑
j

|pij − pkj |.

Let ‖µ‖1 for a vector µ denote the L1 norm: ‖µ‖1 =
∑
i |µi|.

proposition 6.5 For any probability vectors π and σ,

‖πP − σP‖1 ≤ (1 − δ(P ))‖π − σ‖1. Furthermore, if δ(P ) > 0 there is a unique

equilibrium distribution π∞, and for any other probability distribution π on S,

‖πP l − π∞‖1 ≤ 2(1− δ(P ))l.

Proof Let π̃i = πi − πi ∧ σi and σ̃i = σi − πi ∧ σi. Note that if πi ≥ σi then

π̃i = πi − σi and σ̃i = 0, and if πi ≤ σi then σ̃i = σi − πi and π̃i = 0. Also, ‖π̃‖1
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and ‖σ̃‖1 are both equal to 1 −
∑
i πi ∧ σi. Therefore, ‖π − σ‖1 = ‖π̃ − σ̃‖1 =

2‖π̃‖1 = 2‖σ̃‖1. Furthermore,

‖πP − σP‖1 = ‖π̃P − σ̃P‖1
=
∑
j

‖
∑
i

π̃iPij −
∑
k

σ̃kPkj‖1

= (1/‖π̃‖1)
∑
j

∣∣∣∣∑
i,k

π̃iσ̃k(Pij − Pkj)
∣∣∣∣

≤ (1/‖π̃‖1)
∑
i,k

π̃iσ̃k
∑
j

|Pij − Pkj |

≤ ‖π̃‖1(2− 2δ(P )) = ‖π − σ‖1(1− δ(P )),

which proves the first part of the proposition. Iterating the inequality just proved

yields that

‖πP l − σP l‖1 ≤ (1− δ(P ))l‖π − σ‖1 ≤ 2(1− δ(P ))l. (6.1)

This inequality for σ = πPn yields that ‖πP l − πP l+n‖1 ≤ 2(1 − δ(P ))l. Thus

the sequence πP l is a Cauchy sequence and has a limit π∞, and π∞P = π∞.

Finally, taking σ in (6.1) equal to π∞ yields the last part of the proposition.

Proposition 6.5 typically does not yield the exact asymptotic rate ‖πl− π∞‖1
tends to zero. The asymptotic behavior can be investigated by computing

(I − zP )−1, and matching powers of z in the identity (I − zP )−1 =
∑∞
n=0 z

nPn.

6.3 Classification and convergence of continuous-time Markov
processes

Chapter 4 discusses Markov processes in continuous time with a finite number

of states. Here we extend the coverage of continuous-time Markov processes to

include countably infinitely many states. For example, the state of a simple queue

could be the number of customers in the queue, and if there is no upper bound

on the number of customers that can be waiting in the queue, the state space is

Z+. One possible complication, that rarely arises in practice, is that a continuous

time process can make infinitely many jumps in a finite amount of time.

Let S be a finite or countably infinite set with 4 6∈ S. A pure-jump function

is a function x : R+ → S ∪ {4} such that for some sequence of times,

0 = τ0 < τ1 < . . . , and sequence of states, s0, s1, . . . with si ∈ S, and

si 6= si+1, i ≥ 0, it holds that

x(t) =

{
si if τi ≤ t < τi+1 i ≥ 0

4 if t ≥ τ∗ , (6.2)

where τ∗ = limi→∞ τi. If τ∗ is finite it is said to be the explosion time of the

function x, and if τ∗ = +∞ the function is said to be nonexplosive. An example

with S = {1, 2, . . .}, si = i+ 1 for all i, and τ∗ finite, is pictured in Fig. 6.5.
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Figure 6.5 A pure-jump function with an explosion time.

definition 6.6 A pure-jump Markov process (Xt : t ≥ 0) is a Markov process

such that, with probability one, its sample paths are pure-jump functions. Such

a process is said to be nonexplosive if its sample paths are nonexplosive, with

probability one.

Generator matrices are defined for countable-state Markov processes just as

they are for finite-state Markov processes. A pure-jump, time-homogeneous Markov

process X has generator matrix Q = (qij : i, j ∈ S) if

lim
h↘0

(pij(h)− I{i=j})/h = qij i, j ∈ S (6.3)

or equivalently

pij(h) = I{i=j} + hqij + o(h) i, j ∈ S, (6.4)

where o(h) represents a quantity such that limh→0 o(h)/h = 0.

The space-time properties for continuous-time Markov processes with a count-

ably infinite number of states are the same as for a finite number of states. There

is a discrete-time jump process, and the holding times, given the jump process,

are exponentially distributed. Also, the following holds.

proposition 6.7 Given a matrix Q = (qij : i, j ∈ S) satisfying qij ≥ 0 for

distinct states i and j, and qii = −
∑
j∈S,j 6=i qij for each state i, and a probabil-

ity distribution π(0) = (πi(0) : i ∈ S), there is a pure-jump, time-homogeneous

Markov process with generator matrix Q and initial distribution π(0). The finite-

dimensional distributions of the process are uniquely determined by π(0) and

Q. The Chapman-Kolmogorov equations, H(s, t) = H(s, τ)H(τ, t), and the Kol-

mogorov forward equations,
∂πj(t)
∂t =

∑
i∈S πi(t)qij , hold.

Example 6.5 (Birth-death processes) A useful class of countable-state Markov

processes is the set of birth-death processes. A (continuous-time) birth-death

process with parameters (λ0, λ2, . . .) and (µ1, µ2, . . .) (also set λ−1 = µ0 = 0) is

a pure-jump Markov process with state space S = Z+ and generator matrix Q

defined by qkk+1 = λk, qkk = −(µk + λk), and qkk−1 = µk for k ≥ 0, and qij = 0

if |i − j| ≥ 2. The transition rate diagram is shown in Fig. 6.6. The space-time

structure, as defined in Section 4.10, of such a process is as follows. Given the

process is in state k at time t, the next state visited is k + 1 with probability
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Figure 6.6 Transition rate diagram of a birth-death process.

λk/(λk +µk) and k− 1 with probability µk/(λk +µk). The holding time of state

k is exponential with parameter λk +µk. The Kolmogorov forward equations for

birth-death processes are

∂πk(t)

∂t
= λk−1πk−1(t)− (λk + µk)πk(t) + µk+1πk+1(t). (6.5)

Example 6.6 (Description of a Poisson process as a Markov process) Let λ >

0 and consider a birth-death process N with λk = λ and µk = 0 for all k,

with initial state zero. The space-time structure of this Markov process is rather

simple. Each transition is an upward jump of size one, so the jump process

is deterministic: NJ(k) = k for all k. Ordinarily, the holding times are only

conditionally independent given the jump process, but since the jump process is

deterministic, the holding times are independent. Also, since qk,k = −λ for all

k, each holding time is exponentially distributed with parameter λ. Therefore,

N satisfies condition (b) of Proposition 4.5, so that N is a Poisson process with

rate λ.

Define τoi = min{t > 0 : X(t) 6= i} and τi = min{t > τoi : X(t) = i}, for i ∈ S.
If X(0) = i, τi is the first time the process returns to state i, with the exception

that τi = +∞ if the process never returns to state i. The following definitions

are the same as when X is a discrete-time process. Let Mi = E[τi|X(0) = i].

If P{τi < +∞} < 1, state i is called transient. Otherwise P{τi < +∞} = 1,

and i is said to be positive recurrent if Mi < +∞ and to be null recurrent if

Mi = +∞. The following propositions are analogous to those for discrete-time

Markov processes. Proofs can be found in (Asmussen 2003, Norris 1997).

proposition 6.8 Suppose X is irreducible.

(a) All states are transient, or all are positive recurrent, or all are null recurrent.

(b) For any initial distribution π(0), limt→+∞ πi(t) = 1/(−qiiMi), with the

understanding that the limit is zero if Mi = +∞.

proposition 6.9 Suppose X is irreducible and nonexplosive.

(a) A probability distribution π is an equilibrium distribution if and only if

πQ = 0.
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(b) An equilibrium probability distribution exists if and only if all states are

positive recurrent.

(c) If all states are positive recurrent, the equilibrium probability distribution

is given by πi = 1/(−qiiMi). (In particular, if it exists, the equilibrium

probability distribution is unique).

The assumption that X be nonexplosive is needed for Proposition 6.9(a) (per

Problem 6.14), but the following proposition shows that the Markov processes

encountered in most applications are nonexplosive.

proposition 6.10 Suppose X is irreducible. Fix a state io and for k ≥ 1

let Sk denote the set of states reachable from io in k jumps. Suppose for each

k ≥ 1 there is a constant γk so that the jump intensities on Sk are bounded by

γk, that is, suppose −qii ≤ γk for i ∈ Sk. If
∑∞
k=1

1
γk

= +∞, the process X is

nonexplosive.

6.4 Classification of birth-death processes

The classification of birth-death processes, introduced in Example 6.5, is rela-

tively simple. To avoid trivialities, consider a birth-death process such that the

birth rates, (λi : i ≥ 0) and death rates (µi : i ≥ 1) are all strictly positive. Then

the process is irreducible.

First, investigate whether the process is nonexplosive, because this is a nec-

essary condition for both recurrence and positive recurrence. This is usually a

simple matter, because if the rates are bounded or grow at most linearly, the

process is nonexplosive by Proposition 6.10. In some cases, even if Proposition

6.10 doesn’t apply, it can be shown by some other means that the process is

nonexplosive. For example, a test is given below for the process to be recurrent,

and if it is recurrent, it is not explosive.

Next, investigate whether X is positive recurrent. Suppose we already know

that the process is nonexplosive. Then the process is positive recurrent if and

only if πQ = 0 for some probability distribution π, and if it is positive recurrent,

π is the equilibrium distribution. Now πQ = 0 if and only if flow balance holds

for any state k:

(λk + µk)πk = λk−1πk−1 + µk+1πk+1. (6.6)

Equivalently, flow balance must hold for all sets of the form {0, . . . , n− 1} (just

sum each side of (6.6) over k ∈ {1, . . . , n − 1}). Therefore, πQ = 0 if and only

if πn−1λn−1 = πnµn for n ≥ 1, which holds if and only if there is a probability

distribution π with πn = π0λ0 . . . λn−1/(µ1 . . . µn) for n ≥ 1. Thus, a probability

distribution π with πQ = 0 exists if and only if S1 < +∞, where

S1 =

∞∑
i=0

λ0 . . . λi−1

µ1 . . . µi
, (6.7)
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with the understanding that the i = 0 term in the sum defining S1 is one. Thus,

under the assumption that X is nonexplosive, X is positive recurrent if and only

if S1 < ∞, and if X is positive recurrent, the equilibrium distribution is given

by πn = (λ0 . . . λn−1)/(S1µ1 . . . µn).

Finally, investigate whether X is recurrent. This step is not necessary if we

already know that X is positive recurrent, because a positive recurrent process is

recurrent. The following test for recurrence is valid whether or not X is explosive.

Since all states have the same classification, the process is recurrent if and only if

state 0 is recurrent. Thus, the process is recurrent if the probability the process

never hits 0, for initial state 1, is zero. We shall first find the probability of never

hitting state zero for a modified process, which stops upon reaching a large state

n, and then let n → ∞ to find the probability the original process never hits

state 0. Let bin denote the probability, for initial state i, the process does not

reach zero before reaching n. Set the boundary conditions, b0n = 0 and bnn = 1.

Fix i with 1 ≤ i ≤ n − 1, and derive an expression for bin by first conditioning

on the state reached by the first jump of the process, starting from state i. By

the space-time structure, the probability the first jump is up is λi/(λi + µi) and

the probability the first jump is down is µi/(λi + µi). Thus,

bin =
λi

λi + µi
bi+1,n +

µi
λi + µi

bi−1,n,

which can be rewritten as µi(bin − bi−1,n) = λi(bi+1,n − bi,n). In particular,

b2n − b1n = b1nµ1/λ1 and b3n − b2n = b1nµ1µ2/(λ1λ2), and so on, which upon

summing yields the expression

bkn = b1n

k−1∑
i=0

µ1µ2 . . . µi
λ1λ2 . . . λi

.

with the convention that the i = 0 term in the sum is one. Finally, the condition

bnn = 1 yields the solution

b1n =
1∑n−1

i=0
µ1µ2...µi
λ1λ2...λi

. (6.8)

Note that b1n is the probability, for initial state 1, of the event Bn that state n

is reached without an earlier visit to state 0. Since Bn+1 ⊂ Bn for all n ≥ 1,

P (∩n≥1Bn|X(0) = 1) = lim
n→∞

b1n = 1/S2 (6.9)

where

S2 =

∞∑
i=0

µ1µ2 . . . µi
λ1λ2 . . . λi

,

with the understanding that the i = 0 term in the sum defining S2 is one. Due

to the definition of pure jump processes used, whenever X visits a state in S
the number of jumps up until that time is finite. Thus, on the event ∩n≥1Bn,

state zero is never reached. Conversely, if state zero is never reached, either the
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process remains bounded (which has probability zero) or ∩n≥1Bn is true. Thus,

P (zero is never reached|X(0) = 1) = 1/S2. Consequently, X is recurrent if and

only if S2 =∞.

In summary, the following proposition is proved.

proposition 6.11 Suppose X is a continuous-time birth-death process with

strictly positive birth rates and death rates. If X is nonexplosive (for example,

if the rates are bounded or grow at most linearly with n, or if S2 = ∞) then

X is positive recurrent if and only if S1 < +∞. If X is positive recurrent the

equilibrium probability distribution is given by πn = (λ0 . . . λn−1)/(S1µ1 . . . µn).

The process X is recurrent if and only if S2 =∞.

Discrete-time birth-death processes have a similar characterization. They are

discrete-time, time-homogeneous Markov processes with state space equal to the

set of nonnegative integers. Let nonnegative birth probabilities (λk : k ≥ 0) and

death probabilities (µk : k ≥ 1) satisfy λ0 ≤ 1, and λk + µk ≤ 1 for k ≥ 1. The

one-step transition probability matrix P = (pij : i, j ≥ 0) is given by

pij =


λi if j = i+ 1

µi if j = i− 1

1− λi − µi if j = i ≥ 1

1− λ0 if j = i = 0

0 else.

(6.10)

Implicit in the specification of P is that births and deaths can’t happen simul-

taneously. If the birth and death probabilities are strictly positive, Proposition

6.11 holds as before, with the exception that the discrete-time process cannot be

explosive.2

6.5 Time averages vs. statistical averages

Let X be a positive recurrent, irreducible, time-homogeneous Markov process

with equilibrium probability distribution π. To be definite, suppose X is a

continuous-time process, with pure-jump sample paths and generator matrix

Q. The results of this section apply with minor modifications to the discrete-

time setting as well. Above it is noted that limt→∞ πi(t) = πi = 1/(−qiiMi),

where Mi is the mean “cycle time” of state i. A related consideration is conver-

gence of the empirical distribution of the Markov process, where the empirical

distribution is the distribution observed over a (usually large) time interval.

For a fixed state i, the fraction of time the process spends in state i during

[0, t] is

1

t

∫ t

0

I{X(s)=i}ds.

2 If in addition λi + µi = 1 for all i, the discrete-time process has period 2.
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Let T0 denote the time that the process is first in state i, and let Tk for k ≥ 1

denote the time that the process jumps to state i for the kth time after T0. The

cycle times Tk+1 − Tk, k ≥ 0 are independent and identically distributed, with

mean Mi. Therefore, by the law of large numbers, with probability one,

lim
k→∞

Tk/(kMi) = lim
k→∞

1

kMi

k−1∑
l=0

(Tl+1 − Tl) = 1.

Furthermore, during the kth cycle interval [Tk, Tk+1), the amount of time spent

by the process in state i is exponentially distributed with mean −1/qii, and

the time spent in the state during disjoint cycles is independent. Thus, with

probability one,

lim
k→∞

1

kMi

∫ Tk

0

I{X(s)=i}ds = lim
k→∞

1

kMi

k−1∑
l=0

∫ Tl+1

Tl

I{X(s)=i}ds

=
1

Mi
E

[∫ T1

T0

I{X(s)=i}ds

]
= 1/(−qiiMi).

Combining these two observations yields that

lim
t→∞

1

t

∫ t

0

I{X(s)=i}ds = 1/(−qiiMi) = πi (6.11)

with probability one. In short, the limit (6.11) is expected, because the process

spends on average −1/qii time units in state i per cycle from state i, and the

cycle rate is 1/Mi. Of course, since state i is arbitrary, if j is any other state,

lim
t→∞

1

t

∫ t

0

I{X(s)=j}ds = 1/(−qjjMj) = πj . (6.12)

By considering how the time in state j is distributed among the cycles from state

i, it follows that the mean time spent in state j per cycle from state i is Miπj .

So for any nonnegative function ϕ on S,

lim
t→∞

1

t

∫ t

0

ϕ(X(s))ds = lim
k→∞

1

kMi

∫ Tk

0

ϕ(X(s))ds

=
1

Mi
E

[∫ T1

T0

ϕ(X(s))ds

]

=
1

Mi
E

∑
j∈S

ϕ(j)

∫ T1

T0

I{X(s)=j}ds


=

1

Mi

∑
j∈S

ϕ(j)E

[∫ T1

T0

I{X(s)=j}

]
ds

=
∑
j∈S

ϕ(j)πj . (6.13)
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Finally, for an arbitrary function ϕ on S, (6.13) holds for both ϕ+ and ϕ−. So if

either
∑
j∈S ϕ+(j)πj <∞ or

∑
j∈S ϕ−(j)πj <∞, then (6.13) holds for ϕ itself.

6.6 Queueing systems, M/M/1 queue and Little’s law

Some basic terminology of queueing theory will now be explained. A simple type

of queueing system is pictured in Figure 6.7. Notice that the system is comprised

of a queue and a server. Ordinarily whenever the system is not empty, there is

a customer in the server, and any other customers in the system are waiting

in the queue. When the service of a customer is complete it departs from the

server and then another customer from the queue, if any, immediately enters

the server. The choice of which customer to be served next depends on the

service discipline. Common service disciplines are first-come first-served (FCFS)

in which customers are served in the order of their arrival, or last-come first-

served (LCFS) in which the customer that arrived most recently is served next.

Some of the more complicated service disciplines involve priority classes, or the

notion of “processor sharing” in which all customers present in the system receive

equal attention from the server.

queue server

system

Figure 6.7 A single server queueing system.

Often models of queueing systems involve a stochastic description. For exam-

ple, given positive parameters λ and µ, we may declare that the arrival process

is a Poisson process with rate λ, and that the service times of the customers are

independent and exponentially distributed with parameter µ. Many queueing

systems are given labels of the form A/B/s, where “A” is chosen to denote the

type of arrival process, “B” is used to denote the type of departure process, and

s is the number of servers in the system. In particular, the system just described

is called an M/M/1 queueing system, so-named because the arrival process is

memoryless (i.e. a Poisson arrival process), the service times are memoryless

(i.e. are exponentially distributed), and there is a single server. Other labels for

queueing systems have a fourth descriptor and thus have the form A/B/s/b,

where b denotes the maximum number of customers that can be in the system.

Thus, an M/M/1 system is also an M/M/1/∞ system, because there is no finite

bound on the number of customers in the system.
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A second way to specify an M/M/1 queueing system with parameters λ and

µ is to let A(t) and D(t) be independent Poisson processes with rates λ and

µ respectively. Process A marks customer arrival times and process D marks

potential customer departure times. The number of customers in the system,

starting from some initial value N(0), evolves as follows. Each time there is a

jump of A, a customer arrives to the system. Each time there is a jump of D,

there is a potential departure, meaning that if there is a customer in the server

at the time of the jump then the customer departs. If a potential departure

occurs when the system is empty then the potential departure has no effect on

the system. The number of customers in the system N can thus be expressed as

N(t) = N(0) +A(t) +

∫ t

0

I{N(s−)≥1}dD(s).

It is easy to verify that the resulting process N is Markov, which leads to the

third specification of an M/M/1 queueing system.

A third way to specify an M/M/1 queuing system is that the number of cus-

tomers in the system N(t) is a birth-death process with λk = λ and µk = µ for

all k, for some parameters λ and µ. Let ρ = λ/µ. Using the classification criteria

derived for birth-death processes, it is easy to see that the system is recurrent if

and only if ρ ≤ 1, and that it is positive recurrent if and only if ρ < 1. Moreover,

if ρ < 1 the equilibrium distribution for the number of customers in the system

is given by πk = (1−ρ)ρk for k ≥ 0. This is the geometric distribution with zero

as a possible value, and with mean

N =

∞∑
k=0

kπk = (1− ρ)ρ

∞∑
k=1

ρk−1k = (1− ρ)ρ(
1

1− ρ
)′ =

ρ

1− ρ
.

The probability the server is busy, which is also the mean number of customers

in the server, is 1− π0 = ρ. The mean number of customers in the queue is thus

given by ρ/(1−ρ)−ρ = ρ2/(1−ρ). This third specification is the most commonly

used way to define an M/M/1 queueing process.

Since the M/M/1 process N(t) is positive recurrent, the Markov ergodic con-

vergence theorem implies that the statistical averages just computed, such as

N , are also equal to the limit of the time-averaged number of customers in the

system as the averaging interval tends to infinity.

An important performance measure for a queueing system is the mean time

spent in the system or the mean time spent in the queue. Littles’ law, described

next, is a quite general and useful relationship that aids in computing mean

transit time.

Little’s law can be applied in a great variety of circumstances involving flow

through a system with delay. In the context of queueing systems we speak of a

flow of customers, but the same principle applies to a flow of water through a

pipe. Little’s law is that λT = N where λ is the mean flow rate, T is the mean

delay in the system, and N is the mean content of the system. For example, if

water flows through a pipe with volume one cubic meter at the rate of two cubic
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meters per minute, the mean time (averaged over all drops of water) that water

spends in the pipe is T = N/λ = 1/2 minute. This is clear if water flows through

the pipe without mixing, because the transit time of each drop of water is 1/2

minute. However, mixing within the pipe does not effect the average transit time.

t

!

" ss

s

N(s) 

Figure 6.8 Cumulative arrival and departure processes and their difference

Little’s law is actually a set of results, each with somewhat different mathe-

matical assumptions. The following version is quite general. Figure 6.8 pictures

the cumulative number of arrivals (α(t)) and the cumulative number of depar-

tures (δ(t)) versus time, for a queueing system assumed to be initially empty.

Note that the number of customers in the system at any time s is given by

the difference N(s) = α(s) − δ(s), which is the vertical distance between the

arrival and departure graphs in the figure. On the other hand, assuming that

customers are served in first-come first-served order, the horizontal distance be-

tween the graphs gives the times in system for the customers. Given a (usually

large) t > 0, let γt denote the area of the region between the two graphs over

the interval [0, t]. This is the shaded region indicated in the figure. It is natural

to define the time-averaged values of arrival rate and system content as

λt = α(t)/t and N t =
1

t

∫ t

0

N(s)ds = γt/t.

Finally, the average, over the α(t) customers that arrive during the interval [0, t],

of the time spent in the system up to time t, is given by

T t = γt/α(t).

Once these definitions are accepted, we have the following obvious proposition.

proposition 6.12 (Little’s law, expressed using averages over time) For any

t > 0,

N t = λtT t. (6.14)

Furthermore, if any two of the three variables in (6.14) converge to a positive

finite limit as t → ∞, then so does the third variable, and the limits satisfy

N∞ = λ∞T∞.
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For example, the number of customers in an M/M/1 queue is a positive recur-

rent Markov process so that

lim
t→∞

N t = N = ρ/(1− ρ),

where calculation of the statistical mean N was previously discussed. Also, by

the law of large numbers applied to interarrival times, we have that the Poisson

arrival process for an M/M/1 queue satisfies limt→∞ λt = λ with probability

one. Thus, with probability one,

lim
t→∞

T t = N/λ =
1

µ− λ
.

In this sense, the average waiting time in an M/M/1 system is 1/(µ − λ). The

average time in service is 1/µ (this follows from the third description of an

M/M/1 queue, or also from Little’s law applied to the server alone) so that the

average waiting time in queue is given by W = 1/(µ − λ) − 1/µ = ρ/(µ − λ).

This final result also follows from Little’s law applied to the queue alone.

6.7 Mean arrival rate, distributions seen by arrivals, and PASTA

The mean arrival rate for the M/M/1 system is λ, the parameter of the Poisson

arrival process. However for some queueing systems the arrival rate depends on

the number of customers in the system. In such cases the mean arrival rate is

still typically meaningful, and it can be used in Little’s law.

Suppose the number of customers in a queuing system is modeled by a birth

death process with arrival rates (λk) and departure rates (µk). Suppose in ad-

dition that the process is positive recurrent. Intuitively, the process spends a

fraction of time πk in state k and while in state k the arrival rate is λk. There-

fore, the average arrival rate is

λ =

∞∑
k=0

πkλk.

Similarly the average departure rate is

µ =

∞∑
k=1

πkµk

and of course λ = µ because both are equal to the throughput of the system.

Often the distribution of a system at particular system-related sampling times

are more important than the distribution in equilibrium. For example, the dis-

tribution seen by arriving customers may be the most relevant distribution, as

far as the customers are concerned. If the arrival rate depends on the number of

customers in the system then the distribution seen by arrivals need not be the

same as the equilibrium distribution. Intuitively, πkλk is the long-term frequency
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of arrivals which occur when there are k customers in the system, so that the

fraction of customers that see k customers in the system upon arrival is given by

rk =
πkλk

λ
.

The following is an example of a system with variable arrival rate.

Example 6.7 (Single-server, discouraged arrivals) Suppose λk = α/(k+ 1) and

µk = µ for all k, where µ and α are positive constants. Then

S2 =

∞∑
k=0

(k + 1)!µk

αk
=∞ and S1 =

∞∑
k=0

αk

k!µk
= exp

(
α

µ

)
<∞

so that the number of customers in the system is a positive recurrent Markov

process, with no additional restrictions on α and µ. Moreover, the equilibrium

probability distribution is given by πk = (α/µ)k exp(−α/µ)/k!, which is the

Poisson distribution with mean N = α/µ. The mean arrival rate is

λ =

∞∑
k=0

πkα

k + 1
= µ exp(−α/µ)

∞∑
k=0

(α/µ)k+1

(k + 1)!

= µ exp(−α/µ)(exp(α/µ)− 1) = µ(1− exp(−α/µ)).

This expression derived for λ is clearly equal to µ, because the departure rate is

µ with probability 1− π0 and zero otherwise. The distribution of the number of

customers in the system seen by arrivals, (rk) is given by

rk =
πkα

(k + 1)λ
=

(α/µ)k+1 exp(−α/µ)

(k + 1)!(1− exp(−α/µ))
for k ≥ 0,

which in words can be described as the result of removing the probability mass at

zero in the Poisson distribution, shifting the distribution down by one, and then

renormalizing. The mean number of customers in the queue seen by a typical

arrival is therefore (α/µ−1)/(1− exp(−α/µ)). This mean is somewhat less than

N because, roughly speaking, the customer arrival rate is higher when the system

is more lightly loaded.

The equivalence of time-averages and statistical averages for computing the

mean arrival rate and the distribution seen by arrivals can be shown by appli-

cation of ergodic properties of the processes involved. The associated formal ap-

proach is described next, in slightly more generality. Let X denote an irreducible,

positive-recurrent pure-jump Markov process. If the process makes a jump from

state i to state j at time t, say that a transition of type (i, j) occurs. The sequence

of transitions of X forms a new Markov process, Y . The process Y is a discrete-

time Markov process with state space {(i, j) ∈ S × S : qij > 0}, and it can be
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described in terms of the jump process for X, by Y (k) = (XJ(k− 1), XJ(k)) for

k ≥ 0. (Let XJ(−1) be defined arbitrarily.)

The one-step transition probability matrix of the jump process XJ is given

by πJij = qij/(−qii), and XJ is recurrent because X is recurrent. Its equilibrium

distribution πJ (if it exists) is proportional to −πiqii (see Problem 6.3), and XJ

is positive recurrent if and only if this distribution can be normalized to make

a probability distribution, i.e. if and only if R = −
∑
i πiqii < ∞. Assume for

simplicity that XJ is positive recurrent. Then πJi = −πiqii/R is the equilib-

rium probability distribution of XJ . Furthermore, Y is positive recurrent and

its equilibrium distribution is given by

πYij = πJi p
J
ij

=
−πiqii
R

qij
−qii

=
πiqij
R

.

Since limiting time averages equal statistical averages for Y ,

lim
n→∞

(number of first n transitions of X that are type (i, j))/n = πiqij/R

with probability one. Therefore, if A ⊂ S × S, and if (i, j) ∈ A,

lim
n→∞

number of first n transitions of X that are type (i, j)

number of first n transitions of X with type in A
=

πiqij∑
(i′,j′)∈A πi′qi′j′

.

To apply this setup to the special case of a queueing system in which the

number of customers in the system is a Markov birth-death processes, let the set

A be the set of transitions of the form (i, i + 1). Then deduce that the fraction

of the first n arrivals that see i customers in the system upon arrival converges

to πiλi/
∑
j πjλj with probability one.

Note that if λi = λ for all i, then λ = λ and π = r. The condition λi = λ

also implies that the arrival process is Poisson. This situation is called “Poisson

Arrivals See Time Averages” (PASTA).

6.8 More examples of queueing systems modeled as Markov
birth-death processes

For each of the four examples of this section it is assumed that new customers

are offered to the system according to a Poisson process with rate λ, so that the

PASTA property holds. Also, when there are k customers in the system then the

service rate is µk for some given numbers µk. The number of customers in the

system is a Markov birth-death process with λk = λ for all k. Since the number

of transitions of the process up to any given time t is at most twice the number of

customers that arrived by time t, the Markov process is not explosive. Therefore
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the process is positive recurrent if and only if S1 is finite, where

S1 =

∞∑
k=0

λk

µ1µ2 . . . µk
.

Special cases of this example are presented in the next four examples.

Example 6.8 (M/M/m systems) An M/M/m queueing system consists of a

single queue and m servers. The arrival process is Poisson with some rate λ and

the customer service times are independent and exponentially distributed with

mean µ for some µ > 0. The total number of customers in the system is a birth-

death process with µk = µmin(k,m). Let ρ = λ/(mµ). Since µk = mµ for all k

large enough it is easy to check that the process is positive recurrent if and only

if ρ < 1. Assume now that ρ < 1. Then the equilibrium distribution is given by

πk =
(λ/µ)k

S1k!
for 0 ≤ k ≤ m

πm+j = πmρ
j for j ≥ 1

where S1 makes the probabilities sum to one (use 1 + ρ+ ρ2 . . . = 1/(1− ρ)):

S1 =

(
m−1∑
k=0

(λ/µ)k

k!

)
+

(λ/µ)m

m!(1− ρ)
.

An arriving customer must join the queue (rather that go directly to a server)

if and only if the system has m or more customers in it. By the PASTA property,

this is the same as the equilibrium probability of having m or more customers

in the system:

PQ =

∞∑
j=0

πm+j = πm/(1− ρ).

This formula is called the Erlang C formula for probability of queueing.

Example 6.9 (M/M/m/m systems) An M/M/m/m queueing system consists

of m servers. The arrival process is Poisson with some rate λ and the customer

service times are independent and exponentially distributed with mean µ for

some µ > 0. Since there is no queue, if a customer arrives when there are already

m customers in the system, the arrival is blocked and cleared from the system.

The total number of customers in the system is a birth death process, but with

the state space reduced to {0, 1, . . . ,m}, and with µk = kµ for 1 ≤ k ≤ m. The

unique equilibrium distribution is given by

πk =
(λ/µ)k

S1k!
for 0 ≤ k ≤ m,

where S1 is chosen to make the probabilities sum to one.

An arriving customer is blocked and cleared from the system if and only if the
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system already has m customers in it. By the PASTA property, this is the same

as the equilibrium probability of having m customers in the system:

PB = πm =
(λ/µ)m

m!∑m
j=0

(λ/µ)j

j!

.

This formula is called the Erlang B formula for probability of blocking.

Example 6.10 (A system with a discouraged server) The number of customers

in this system is a birth-death process with constant birth rate λ and death rates

µk = 1/k. It is is easy to check that all states are transient for any positive value

of λ (to verify this it suffices to check that S2 < ∞). It is not difficult to show

that N(t) converges to +∞ with probability one as t→∞.

Example 6.11 (A barely stable system) The number of customers in this system

is a birth-death process with constant birth rate λ and death rates µk = λ(1+k2)
1+(k−1)2

for all k ≥ 1. Since the departure rates are barely larger than the arrival rates,

this system is near the borderline between recurrence and transience. However,

S1 =

∞∑
k=0

1

1 + k2
<∞,

so N(t) is positive recurrent with equilibrium distribution πk = 1/(S1(1 + k2)).

The mean number of customers in the system is

N =

∞∑
k=0

k

S1(1 + k2)
=∞.

By Little’s law the mean time customers spend in the system is also infinite. It

is debatable whether this system should be thought of as “stable” even though

all states are positive recurrent and all waiting times are finite with probability

one.

6.9 Foster-Lyapunov stability criterion and moment bounds

Communication network models can become quite complex, especially when dy-

namic scheduling, congestion, and physical layer effects such as fading wireless

channel models are included. It is thus useful to have methods to give approxi-

mations or bounds on key performance parameters. The criteria for stability and

related moment bounds discussed in this chapter are useful for providing such

bounds.

Aleksandr Mikhailovich Lyapunov (1857-1918) contributed significantly to the

theory of stability of dynamical systems. Although a dynamical system may

evolve on a complicated, multiple dimensional state space, a recurring theme
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of dynamical systems theory is that stability questions can often be settled by

studying the potential of a system for some nonnegative potential function V . Po-

tential functions used for stability analysis are widely called Lyapunov functions.

Similar stability conditions have been developed by many authors for stochastic

systems. Below we present the well known criteria due to Foster (Foster 1953)

for recurrence and positive recurrence. In addition we present associated bounds

on the moments, which are expectations of some functions on the state space,

computed with respect to the equilibrium probability distribution.3

Subsection 6.9.1 discusses the discrete-time tools, and presents examples in-

volving load balancing routing, and input queued crossbar switches. Subsection

6.9.2 presents the continuous time tools, and an example.

6.9.1 Stability criteria for discrete-time processes

Consider an irreducible discrete-time Markov process X on a countable state

space S, with one-step transition probability matrix P . If f is a function on S,

Pf represents the function obtained by multiplication of the vector f by the

matrix P : Pf(i) =
∑
j∈S pijf(j). If f is nonnegative, Pf is well defined, with

the understanding that Pf(i) = +∞ is possible for some, or all, values of i.

An important property of Pf is that Pf(i) = E[f(X(t + 1)|X(t) = i]. Let V

be a nonnegative function on S, to serve as the Lyapunov function. The drift

vector of V (X(t)) is defined by d(i) = E[V (X(t+ 1))|X(t) = i]− V (i). That is,

d = PV −V . Note that d(i) is always well-defined, if the value +∞ is permitted.

The drift vector is also given by

d(i) =
∑
j:j 6=i

pij(V (j)− V (i)). (6.15)

proposition 6.13 (Foster-Lyapunov stability criterion) Suppose V : S → R+

and C is a finite subset of S.

(a) If {i : V (i) ≤ K} is finite for all K, and if PV − V ≤ 0 on S − C, then X

is recurrent.

(b) If ε > 0 and b is a constant such that PV −V ≤ −ε+ bIC , then X is positive

recurrent.

proposition 6.14 (Moment bound) Suppose V , f , and g are nonnegative

functions on S and suppose

PV (i)− V (i) ≤ −f(i) + g(i) for all i ∈ S. (6.16)

In addition, suppose X is positive recurrent, so that the means, f = πf and

3 A version of these moment bounds was given by Tweedie (Tweedie 1983), and a version of
the moment bound method was used by Kingman (Kingman 1962) in a queueing context.
As noted in (Meyn & Tweedie 1993), the moment bound method is closely related to
Dynkin’s formula. The works (Tassiulas & Ephremides 1992, Tassiulas &

Ephremides 1993, Kumar & Meyn 1995, Tassiulas 1997), and many others, have
demonstrated the wide applicability of the stability methods in various queueing network
contexts, using quadratic Lyapunov functions.
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g = πg are well-defined. Then f ≤ g. (In particular, if g is bounded, then g is

finite, and therefore f is finite.)

corollary 6.15 (Combined Foster-Lyapunov stability criterion and moment

bound) Suppose V, f, and g are nonnegative functions on S such that

PV (i)− V (i) ≤ −f(i) + g(i) for all i ∈ S. (6.17)

In addition, suppose for some ε > 0 that C defined by C = {i : f(i) < g(i) + ε}
is finite. Then X is positive recurrent and f ≤ g. (In particular, if g is bounded,

then g is finite, and therefore f is finite.)

Proof Let b = max{g(i) + ε − f(i) : i ∈ C}. Then V,C, b, and ε satisfy the

hypotheses of Proposition 6.13(b), so that X is positive recurrent. Therefore the

hypotheses of Proposition 6.14 are satisfied, so that f ≤ g.

The assumptions in Propositions 6.13 and 6.14 and Corollary 6.15 do not imply

that V is finite. Even so, since V is nonnegative, for a given initial state X(0),

the long term average drift of V (X(t)) is nonnegative. This gives an intuitive

reason why the mean downward part of the drift, f , must be less than or equal

to the mean upward part of the drift, g.

Example 6.12 (Probabilistic routing to two queues) Consider the routing sce-

nario with two queues, queue 1 and queue 2, fed by a single stream of packets,

as pictured in Figure 6.9. Here, 0 ≤ a, u, d1, d2 ≤ 1, and u = 1 − u. The state

u

queue 1

queue 2 2d

1d

a
u

Figure 6.9 Two queues fed by a single arrival stream.

space for the process is S = Z2
+, where the state x = (x1, x2) denotes x1 packets

in queue 1 and x2 packets in queue 2. In each time slot, a new arrival is gener-

ated with probability a, and then is routed to queue 1 with probability u and

to queue 2 with probability u. Then each queue i, if not empty, has a departure

with probability di. Note that we allow a packet to arrive and depart in the same

slot. Thus, if Xi(t) is the number of packets in queue i at the beginning of slot

t, then the system dynamics can be described as follows:

Xi(t+ 1) = Xi(t) +Ai(t)−Di(t) + Li(t) for i ∈ {0, 1} (6.18)

where
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• A(t) = (A1(t), A2(t)) is equal to (1, 0) with probability au, (0, 1) with proba-

bility au, and A(t) = (0, 0) otherwise.

• Di(t) : t ≥ 0, are Bernoulli(di) random variables, for i ∈ {0, 1}
• All the A(t)’s, D1(t)’s, and D2(t)’s are mutually independent

• Li(t) = (−(Xi(t) +Ai(t)−Di(t)))+ (see explanation next)

If Xi(t) + Ai(t) = 0, there can be no actual departure from queue i. However,

we still allow Di(t) to equal one. To keep the queue length process from going

negative, we add the random variable Li(t) in (6.18). Thus, Di(t) is the potential

number of departures from queue i during the slot, and Di(t)−Li(t) is the actual

number of departures. This completes the specification of the one-step transition

probabilities of the Markov process.

A necessary condition for positive recurrence is, for any routing policy, a <

d1 + d2, because the total arrival rate must be less than the total departure

rate. We seek to show that this necessary condition is also sufficient, under the

random routing policy.

Let us calculate the drift of V (X(t)) for the choice V (x) = (x2
1 + x2

2)/2. Note

that (Xi(t+ 1))2 = (Xi(t) + Ai(t)−Di(t) + Li(t))
2 ≤ (Xi(t) + Ai(t)−Di(t))

2,

because addition of the variable Li(t) can only push Xi(t) +Ai(t)−Di(t) closer

to zero. Thus,

PV (x)− V (x) = E[V (X(t+ 1))|X(t) = x]− V (x)

≤ 1

2

2∑
i=1

E[(xi +Ai(t)−Di(t))
2 − x2

i |X(t) = x]

=

2∑
i=1

xiE[Ai(t)−Di(t)|X(t) = x]

+
1

2
E[(Ai(t)−Di(t))

2|X(t) = x] (6.19)

≤

(
2∑
i=1

xiE[Ai(t)−Di(t)|X(t) = x]

)
+ 1

= − (x1(d1 − au) + x2(d2 − au)) + 1. (6.20)

Under the necessary condition a < d1 +d2, there are choices of u so that au < d1

and au < d2, and for such u the conditions of Corollary 6.15 are satisfied, with

f(x) = x1(d1 − au) + x2(d2 − au), g(x) = 1, and any ε > 0, implying that the

Markov process is positive recurrent. In addition, the first moments under the

equilibrium distribution satisfy:

(d1 − au)X1 + (d2 − au)X2 ≤ 1. (6.21)

In order to deduce an upper bound on X1 +X2, we select u∗ to maximize the

minimum of the two coefficients in (6.21). Intuitively, this entails selecting u to

minimize the absolute value of the difference between the two coefficients. We
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find:

ε = max
0≤u≤1

min{d1 − au, d2 − au}

= min{d1, d2,
d1 + d2 − a

2
}

and the corresponding value u∗ of u is given by

u∗ =


0 if d1 − d2 < −a

1
2 + d1−d2

2a if |d1 − d2| ≤ a
1 if d1 − d2 > a

.

For the system with u = u∗, (6.21) yields

X1 +X2 ≤
1

ε
. (6.22)

We remark that, in fact,

X1 +X2 ≤
2

d1 + d2 − a
. (6.23)

If |d1 − d2| ≤ a then the bounds (6.22) and (6.23) coincide, and otherwise, the

bound (6.23) is strictly tighter. If d1−d2 < −a then u∗ = 0, so that X1 = 0, and

(6.21) becomes (d2 − a)X2 ≤ 1 , which implies (6.23). Similarly, if d1 − d2 > a,

then u∗ = 1, so that X2 = 0, and (6.21) becomes (d1 − a)X1 ≤ 1, which implies

(6.23). Thus, (6.23) is proved.

Example 6.13 (Route-to-shorter policy) Consider a variation of the previous

example such that when a packet arrives, it is routed to the shorter queue. To

be definite, in case of a tie, the packet is routed to queue 1. Then the evolution

equation (6.18) still holds, but with with the description of the arrival variables

changed to the following:

• Given X(t) = (x1, x2), A(t) = (I{x1≤x2}, I{x1>x2}) with probability a, and

A(t) = (0, 0) otherwise.

Let PRS denote the one-step transition probability matrix when the route-to-

shorter policy is used. Proceeding as in (6.19) yields:

PRSV (x)− V (x) ≤
2∑
i=1

xiE[Ai(t)−Di(t))|X(t) = x] + 1

= a
(
x1I{x1≤x2} + x2I{x1>x2}

)
− d1x1 − d2x2 + 1.

Note that x1I{x1≤x2}+x2I{x1>x2} ≤ ux1+ux2 for any u ∈ [0, 1], with equality for

u = I{x1≤x2}. Therefore, the drift bound for V under the route-to-shorter policy

is less than or equal to the drift bound (6.20), for V for any choice of probabilistic

splitting. In fact, route-to-shorter routing can be viewed as a controlled version

of the independent splitting model, for which the control policy is selected to
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minimize the bound on the drift of V in each state. It follows that the route-to-

shorter process is positive recurrent as long as a < d1 + d2, and (6.21) holds for

any value of u such that au < d1 and au ≤ d2. In particular, (6.22) holds for the

route-to-shorter process.

We remark that the stronger bound (6.23) is not always true for the route-to-

shorter policy. The problem is that even if d1 − d2 < −a, the route-to-shorter

policy can still route to queue 1, and so X1 6= 0. In fact, if a and d2 are fixed

with 0 < a < d2 < 1, then X1 → ∞ as d1 → 0 for the route-to-shorter policy.

Intuitively, that is because occasionally there will be a large number of customers

in the system due to statistical fluctuations, and then there will be many cus-

tomers in queue 1. But if d2 << 1, those customers will remain in queue 2 for a

very long time.

Example 6.14 (An input queued switch with probabilistic switching) 4 Con-

sider a packet switch with N inputs and N outputs, as pictured in Figure 6.10.

Suppose there are N2 queues – N at each input – with queue i, j containing

input 4

1,3
1,4

1,2
1,1

2,1
2,2
2,3
2,4

3,1
3,2
3,3
3,4

4,1
4,2
4,3
4,4

output 1

output 2

output 3

output 4

input 1

input 2

input 3

Figure 6.10 A 4× 4 input queued switch.

packets that arrived at input i and are destined for output j, for i, j ∈ E,

where E = {1, · · · , N}. Suppose the packets are all the same length, and adopt

a discrete-time model, so that during one time slot, a transfer of packets can

occur, such that at most one packet can be transferred from each input, and at

most one packet can be transferred to each output. A permutation σ of E has

the form σ = (σ1, . . . , σN ), where σ1, . . . , σN are distinct elements of E. Let Π

denote the set of all N ! such permutations. Given σ ∈ Π, let R(σ) be the N ×N
switching matrix defined by Rij = I{σi=j}. Thus, Rij(σ) = 1 means that under

permutation σ, input i is connected to output j, or, equivalently, a packet in

queue i, j is to depart, if there is any such packet. A state x of the system has

4 Tassiulas (Tassiulas 1997) originally developed the results of Examples 6.14 and 6.15, in

the context of wireless networks. The paper (McKeown, Mekkittikul, Anantharam &
Walrand 1999) presents similar results in the context of a packet switch.
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the form x = (xij : i, j ∈ E), where xij denotes the number of packets in queue

i, j.

The evolution of the system over a time slot [t, t+ 1) is described as follows:

Xij(t+ 1) = Xij(t) +Aij(t)−Rij(σ(t)) + Lij(t),

where

• Aij(t) is the number of packets arriving at input i, destined for output j, in

the slot. Assume that the variables (Aij(t) : i, j ∈ E, t ≥ 0) are mutually

independent, and for each i, j, the random variables (Aij(t) : t ≥ 0) are

independent, identically distributed, with mean λij and E[A2
ij ] ≤ Kij , for

some constants λij and Kij . Let Λ = (λij : i, j ∈ E).

• σ(t) is the switch state used during the slot

• Lij = (−(Xij(t) + Aij(t) − Rij(σ(t)))+, which takes value one if there was

an unused potential departure at queue ij during the slot, and is zero

otherwise.

The number of packets at input i at the beginning of the slot is given by the

row sum
∑
j∈E Xij(t), its mean is given by the row sum

∑
j∈E λij , and at most

one packet at input i can be served in a time slot. Similarly, the set of packets

waiting for output j, called the virtual queue for output j, has size given by

the column sum
∑
i∈E Xij(t). The mean number of arrivals to the virtual queue

for output j is
∑
i∈E λij(t), and at most one packet in the virtual queue can

be served in a time slot. These considerations lead us to impose the following

restrictions on Λ:∑
j∈E

λij < 1 for all i and
∑
i∈E

λij < 1 for all j. (6.24)

Except for trivial cases involving deterministic arrival sequences, the conditions

(6.24) are necessary for stable operation, for any choice of the switch schedule

(σ(t) : t ≥ 0).

Let’s first explore random, independent and identically distributed (i.i.d.)

switching. That is, given a probability distribution u on Π, let (σ(t) : t ≥ 0)

be independent with common probability distribution u. Once the distributions

of the Aij ’s and u are fixed, we have a discrete-time Markov process model.

Given Λ satisfying (6.24), we wish to determine a choice of u so that the process

with i.i.d. switch selection is positive recurrent.

Some standard background from switching theory is given in this paragraph.

A line sum of a matrix M is either a row sum,
∑
jMij , or a column sum,∑

iMij . A square matrix M is called doubly stochastic if it has nonnegative

entries and if all of its line sums are one. Birkhoff’s theorem, celebrated in the

theory of switching, states that any doubly stochastic matrix M is a convex

combination of switching matrices. That is, such an M can be represented as

M =
∑
σ∈ΠR(σ)u(σ), where u = (u(σ) : σ ∈ Π) is a probability distribution

on Π. If M̃ is a nonnegative matrix with all line sums less than or equal to one,

then if some of the entries of M̃ are increased appropriately, a doubly stochastic
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matrix can be obtained. That is, there exists a doubly stochastic matrix M so

that M̃ij ≤ Mij for all i, j. Applying Birkhoff’s theorem to M yields that there

is a probability distribution u so that M̃ij ≤
∑
σ∈ΠR(σ)u(σ) for all i, j.

Suppose Λ satisfies the necessary conditions (6.24). That is, suppose that all

the line sums of Λ are less than one. Then with ε defined by

ε =
1− (maximum line sum of Λ)

N
,

each line sum of (λij + ε : i, j ∈ E) is less than or equal to one. Thus, by

the observation at the end of the previous paragraph, there is a probability

distribution u∗ on Π so that λij + ε ≤ µij(u∗), where

µij(u) =
∑
σ∈Π

Rij(σ)u(σ).

We consider the system using probability distribution u∗ for the switch states.

That is, let (σ(t) : t ≥ 0) be independent, each with distribution u∗. Then

for each ij, the random variables Rij(σ(t)) are independent, Bernoulli(µij(u
∗))

random variables.

Consider the quadratic Lyapunov function V given by V (x) = 1
2

∑
i,j x

2
ij . As

in (6.19),

PV (x)− V (x) ≤
∑
i,j

xijE[Aij(t)−Rij(σ(t))|Xij(t) = x]

+
1

2

∑
i,j

E[(Aij(t)−Rij(σ(t)))2|X(t) = x].

Now

E[Aij(t)−Rij(σ(t))|Xij(t) = x] = E[Aij(t)−Rij(σ(t))] = λij − µij(u∗) ≤ −ε

and

1

2

∑
i,j

E[(Aij(t)−Rij(σ(t)))2|X(t) = x] ≤ 1

2

∑
i,j

E[(Aij(t))
2 + (Rij(σ(t)))2] ≤ K

where K = 1
2 (N +

∑
i,j Kij). Thus,

PV (x)− V (x) ≤ −ε

∑
ij

xij

+K. (6.25)

Therefore, by Corollary 6.15, the process is positive recurrent, and∑
ij

Xij ≤
K

ε
. (6.26)

That is, the necessary condition (6.24) is also sufficient for positive recurrence

and finite mean queue length in equilibrium, under i.i.d. random switching, for

an appropriate probability distribution u∗ on the set of permutations.
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Example 6.15 (An input queued switch with maximum weight switching) The

random switching policy used in Example 2a depends on the arrival rate matrix

Λ, which may be unknown a priori. Also, the policy allocates potential departures

to a given queue ij, whether or not the queue is empty, even if other queues could

be served instead. This suggests using a dynamic switching policy, such as the

maximum weight switching policy, defined by σ(t) = σMW (X(t)), where for a

state x,

σMW (x) = arg max
σ∈Π

∑
ij

xijRij(σ). (6.27)

The use of “arg max” here means that σMW (x) is selected to be a value of σ that

maximizes the sum on the right hand side of (6.27), which is the weight of per-

mutation σ with edge weights xij . In order to obtain a particular Markov model,

we assume that the set of permutations Π is numbered from 1 to N ! in some

fashion, and in case there is a tie between two or more permutations for having

the maximum weight, the lowest numbered permutation is used. Let PMW de-

note the one-step transition probability matrix when the route-to-shorter policy

is used.

Letting V and K be as in Example 2a, we find under the maximum weight

policy,

PMWV (x)− V (x) ≤
∑
ij

xij(λij −Rij(σMW (x))) +K.

The maximum of a function is greater than or equal to the average of the function,

so that for any probability distribution u on Π∑
ij

xijRij(σ
MW (t)) ≥

∑
σ

u(σ)
∑
ij

xijRij(σ) (6.28)

=
∑
ij

xijµij(u).

with equality in (6.28) if and only if u is concentrated on the set of maximum

weight permutations. In particular, the choice u = u∗ shows that∑
ij

xijRij(σ
MW (t)) ≥

∑
ij

xijµij(u∗) ≥
∑
ij

xij(λij + ε)

Therefore, if P is replaced by PMW , (6.25) still holds. Therefore, by Corollary

6.15, the process is positive recurrent, and the same moment bound, (6.26),

holds, as for the randomized switching strategy of Example 2a. On one hand,

implementing the maximum weight algorithm does not require knowledge of the

arrival rates, but on the other hand, it requires that queue length information

be shared, and that a maximization problem be solved for each time slot. Much

recent work has gone towards reduced complexity dynamic switching algorithms.
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6.9.2 Stability criteria for continuous time processes

Here is a continuous time version of the Foster-Lyapunov stability criteria and

the moment bounds. Suppose X is a time-homogeneous, irreducible, continuous-

time Markov process with generator matrix Q. The drift vector of V (X(t)) is

the vector QV . This definition is motivated by the fact that the mean drift of X

for an interval of duration h is given by

dh(i) =
E[V (X(t+ h))|X(t) = i]− V (i)

h

=
∑
j∈S

(
pij(h)− δij

h

)
V (j)

=
∑
j∈S

(
qij +

o(h)

h

)
V (j), (6.29)

so that if the limit as h → 0 can be taken inside the summation in (6.29), then

dh(i) → QV (i) as h → 0. The following useful expression for QV follows from

the fact that the row sums of Q are zero:

QV (i) =
∑
j:j 6=i

qij(V (j)− V (i)). (6.30)

Formula (6.30) is quite similar to the formula (6.15) for the drift vector for a

discrete-time process. The proof of the following proposition can be found in

(Hajek 2006).

proposition 6.16 (Foster-Lyapunov stability criterion–continuous time) Sup-

pose V : S → R+ and C is a finite subset of S.

(a) If QV ≤ 0 on S − C, and {i : V (i) ≤ K} is finite for all K then X is

recurrent.

(b) Suppose for some b > 0 and ε > 0 that

QV (i) ≤ −ε+ bIC(i) for all i ∈ S. (6.31)

Suppose further that {i : V (i) ≤ K} is finite for all K, or that X is nonexplosive.

Then X is positive recurrent.

Example 6.16 Suppose X has state space S = Z+, with qi0 = µ for all i ≥ 1,

qii+1 = λi for all i ≥ 0, and all other off-diagonal entries of the rate matrix Q

equal to zero, where µ > 0 and λi > 0 such that
∑
i≥0

1
λi
< +∞. Let C = {0},

V (0) = 0, and V (i) = 1 for i ≥ 0. Then QV = −µ + (λ0 + µ)IC , so that (6.31)

is satisfied with ε = µ and b = λ0 + µ. However, X is not positive recurrent. In

fact, X is explosive. To see this, note that pJii+1 = λi
µ+λi

≥ exp(− µ
λi

). Let δ be

the probability that, starting from state 0, the jump process does not return to

zero. Then δ =
∏∞
i=0 p

J
ii+1 ≥ exp(−µ

∑∞
i=0

1
λi

) > 0. Thus, XJ is transient. After

the last visit to state zero, all the jumps of XJ are up one. The corresponding
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mean holding times of X are 1
λi+µ

which have a finite sum, so that the process

X is explosive. This example illustrates the need for the assumption just after

(6.31) in Proposition 6.16.

As for the case of discrete time, the drift conditions imply moment bounds.

proposition 6.17 (Moment bound–continuous time) Suppose V , f , and g are

nonnegative functions on S, and suppose QV (i) ≤ −f(i) + g(i) for all i ∈ S. In

addition, suppose X is positive recurrent, so that the means, f = πf and g = πg

are well-defined. Then f ≤ g.

corollary 6.18 (Combined Foster-Lyapunov stability criterion and moment

bound–continuous time) Suppose V , f , and g are nonnegative functions on S
such that QV (i) ≤ −f(i) + g(i) for all i ∈ S, and, for some ε > 0, the set C

defined by C = {i : f(i) < g(i) + ε} is finite. Suppose also that {i : V (i) ≤ K} is

finite for all K. Then X is positive recurrent and f ≤ g.

Example 6.17 (Random server allocation with two servers) Consider the sys-

tem shown in Figure 6.11. Suppose that each queue i is fed by a Poisson arrival

2

queue 1

queue 2

queue 3

1

2

3

2

1

!

!

!

m

m
u1

1 u

u2

u

Figure 6.11 A system of three queues with two servers.

process with rate λi, and suppose there are two potential departure processes,

D1 and D2, which are Poisson processes with rates m1 and m2, respectively. The

five Poisson processes are assumed to be independent. No matter how the poten-

tial departures are allocated to the permitted queues, the following conditions

are necessary for stability:

λ1 < m1, λ3 < m2, and λ1 + λ2 + λ3 < m1 +m2. (6.32)

That is because server 1 is the only one that can serve queue 1, server 2 is the only

one that can serve queue 3, and the sum of the potential service rates must exceed



6.9 Foster-Lyapunov stability criterion and moment bounds 207

the sum of the potential arrival rates for stability. A vector x = (x1, x2, x2) ∈ Z3
+

corresponds to xi packets in queue i for each i. Let us consider random selection,

so that when Di has a jump, the queue served is chosen at random, with the

probabilities determined by u = (u1, u2). As indicated in Figure 6.11, a potential

service by server 1 is given to queue 1 with probability u1, and to queue 2 with

probability u1. Similarly, a potential service by server 2 is given to queue 2 with

probability u2, and to queue 3 with probability u2. The rates of potential service

at the three stations are given by

µ1(u) = u1m1

µ2(u) = u1m1 + u2m2

µ3(u) = u2m2.

Let V (x) = 1
2 (x2

1 + x2
2 + x2

3). Using (6.30), we find that the drift vector QV is

given by

QV (x) =
1

2

(
3∑
i=1

((xi + 1)2 − x2
i )λi

)
+

1

2

(
3∑
i=1

((xi − 1)2
+ − x2

i )µi(u)

)
.

Now (xi − 1)2
+ ≤ (xi − 1)2, so that

QV (x) ≤

(
3∑
i=1

xi(λi − µi(u))

)
+
γ

2
, (6.33)

where γ is the total rate of events, given by γ = λ1+λ2+λ3+µ1(u)+µ2(u)+µ3(u),

or equivalently, γ = λ1 +λ2 +λ3 +m1 +m2. Suppose that the necessary condition

(6.32) holds. Then there exists some ε > 0 and choice of u so that

λi + ε ≤ µi(u) for 1 ≤ i ≤ 3

and the largest such choice of ε is ε = min{m1 − λ1,m2 − λ3,
m1+m2−λ1−λ2−λ3

3 }
(Showing this is Problem 6.25). So QV (x) ≤ −ε(x1 + x2 + x3) + γ for all x, so

Corollary 6.18 implies that X is positive recurrent and X1 +X2 +X3 ≤ γ
2ε .

Example 6.18 (Longer first server allocation with two servers) This is a con-

tinuation of Example 6.17, concerned with the system shown in Figure 6.11.

Examine the right hand side of (6.33). Rather than taking a fixed value of u,

suppose that the choice of u could be specified as a function of the state x. The

maximum of a function is greater than or equal to the average of the function,

so that for any probability distribution u,

3∑
i=1

xiµi(u) ≤ max
u′

∑
i

xiµi(u
′) (6.34)

= max
u′

m1(x1u
′
1 + x2u′1) +m2(x2u

′
2 + x3u′2)

= m1(x1 ∨ x2) +m2(x2 ∨ x3)

with equality in (6.34) for a given state x if and only if a longer first policy
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is used: each service opportunity is allocated to the longer queue connected to

the server. Let QLF denote the one-step transition probability matrix when the

longest first policy is used. Then (6.33) continues to hold for any fixed u, when

Q is replaced by QLF . Therefore if the necessary condition (6.32) holds, ε can

be taken as in Example 6.17, and QLFV (x) ≤ −ε(x1 + x2 + x3) + γ for all x. So

Corollary 6.18 implies that X is positive recurrent under the longer first policy,

and X1 +X2 +X3 ≤ γ
2ε . (Note: We see that

QLFV (x) ≤

(
3∑
i=1

xiλi

)
−m1(x1 ∨ x2)−m2(x2 ∨ x3) +

γ

2
,

but for obtaining a bound on X1 + X2 + X3 it was simpler to compare to the

case of random service allocation.)

Problems

6.1 Mean hitting time for a simple Markov process Let (X(n) : n ≥ 0) de-

note a discrete-time, time-homogeneous Markov chain with state space {0, 1, 2, 3}
and one-step transition probability matrix

P =


0 1 0 0

1− a 0 a 0

0 0.5 0 0.5

0 0 1 0


for some constant a with 0 ≤ a ≤ 1. (a) Sketch the transition probability diagram

for X and give the equilibrium probability vector. If the equilibrium vector is

not unique, describe all the equilibrium probability vectors.

(b) Compute E[min{n ≥ 1 : X(n) = 3}|X(0) = 0].

6.2 A two station pipeline in continuous time This is a continuous-time ver-

sion of Example 4.8. Consider a pipeline consisting of two single-buffer stages

in series. Model the system as a continuous-time Markov process. Suppose new

packets are offered to the first stage according to a rate λ Poisson process. A

new packet is accepted at stage one if the buffer in stage one is empty at the

time of arrival. Otherwise the new packet is lost. If at a fixed time t there is a

packet in stage one and no packet in stage two, then the packet is transfered

during [t, t+ h) to stage two with probability hµ1 + o(h). Similarly, if at time t

the second stage has a packet, then the packet leaves the system during [t, t+h)

with probability hµ2 + o(h), independently of the state of stage one. Finally, the

probability of two or more arrival, transfer, or departure events during [t, t+ h)

is o(h). (a) What is an appropriate state-space for this model? (b) Sketch a tran-

sition rate diagram. (c) Write down the Q matrix. (d) Derive the throughput,

assuming that λ = µ1 = µ2 = 1. (e) Still assuming λ = µ1 = µ2 = 1. Suppose

the system starts with one packet in each stage. What is the expected time until

both buffers are empty?
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6.3 Equilibrium distribution of the jump chain Suppose that π is the equilib-

rium distribution for a time-homogeneous Markov process with transition rate

matrix Q. Suppose that B−1 =
∑
i−qiiπi, where the sum is over all i in the

state space, is finite. Show that the equilibrium distribution for the jump chain

(XJ(k) : k ≥ 0) (defined in Section 4.10) is given by πJi = −Bqiiπi. (So π and

πJ are identical if and only if qii is the same for all i.)

6.4 A simple Poisson process calculation Let (N(t) : t ≥ 0) be a Poisson ran-

dom process with rate λ > 0. Compute P (N(s) = i|N(t) = k) where 0 < s < t

and i and k are nonnegative integers. (Caution: note order of s and t carefully).

6.5 A simple question of periods Consider a discrete-time Markov process with

the nonzero one-step transition probabilities indicated by the following graph.

8

3

4

1 2

5 6

7

(a) What is the period of state 4?

(b) What is the period of state 6?

6.6 On distributions of three discrete-time Markov processes For each of the

Markov processes with indicated one-step transition probability diagrams, deter-

mine the set of equilibrium distributions and whether limt→∞ πn(t) exists for all

choices of the initial distribution, π(0), and all states n.

1

1 1

1

0.5

0.5
0 1 2 3

(a) 

. . .
0 1 2 3

(b)
1/2

2/3

1/31

1/2 3/4

1/4

. . .
0 1 2 3 3/4

1/4

2/3

1/3

1/2

1/2

(c)

6.7 A simple birth-death Markov process Consider a continuous time Markov

process with the transition rate diagram shown.

4
. . .1 765432

1 4

1 1 1 8 8 8 8

4 4 42

(a) What is the generator matrix Q?

(b) What is the equilibrium distribution?

(c) What is the mean time to reach state 1 starting in state 2?
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6.8 A Markov process on a ring Consider a continuous time Markov process

with the transition rate diagram shown, where a, b, and c are strictly positive

constants.

2

a

3

c

1

b

11

1

(a) Write down the Q matrix and verify that the equilibrium probability dis-

tribution π is proportional to (1 + c+ cb, 1 + a+ ac, 1 + b+ ba).

(b) Depending on the values of a, b and c, the process may tend to cycle

clockwise, cycle counter clockwise, or tend to be cycle neutral. For example, it

is cycle neutral if a = b = c = 1. Let θ denote the long term rate of cycles per

second in the clockwise direction per unit time. (A negative value indicates a

long term rate of rotation in the counter clockwise direction.) For example, if

a = b = c then θ = (a− 1)/3. Give a simple expression for θ in terms of π, a, b,

and c.

(c) Express θ in terms of a, b, and c. What condition on a, b and c is equivalent

to the mean net cycle rate being zero?

6.9 Generating a random spanning tree Let G = (V,E) be an undirected,

connected graph with n vertices and m edges (so |V | = n and |E| = m). Suppose

that m ≥ n, so the graph has at least one cycle. A spanning tree of G is a subset

T of E with cardinality n− 1 and no cycles. Let S denote the set of all spanning

trees of G. We shall consider a Markov process with state space S; the one-step

transition probabilities are described as follows. Given a state T , an edge e is

selected at random from among the m − n + 1 edges in E − T, with all such

edges having equal probability. The set T ∪ {e} then has a single cycle. One of

the edges in the cycle (possibly edge e) is selected at random, with all edges in

the cycle having equal probability of being selected, and is removed from T ∪{e}
to produce the next state, T ′.

(a) Is the Markov process irreducible (for any choice of G satisfying the condi-

tions given)? Justify your answer.

(b) Is the Markov process aperiodic (for any graph G satisfying the conditions

given)?

(c) Show that the one-step transition probability matrix P = (pT,T ′ : T, T ′ ∈ S)

is symmetric.

(d) Show that the equilibrium distribution assigns equal probability to all states

in S. Hence, a method for generating an approximately uniformly distributed

spanning tree is to run the Markov process a long time and occasionally sample

it.

6.10 A mean hitting time problem Let (X(t) : t ≥ 0) be a time-homogeneous,
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pure-jump Markov process with state space {0, 1, 2} and Q matrix

Q =

 −4 2 2

1 −2 1

2 0 −2

 .

(a) Write down the state transition diagram and compute the equilibrium dis-

tribution.

(b) Compute ai = E[min{t ≥ 0 : X(t) = 1}|X(0) = i] for i = 0, 1, 2. If possible,

use an approach that can be applied to larger state spaces.

(c) Derive a variation of the Kolmogorov forward differential equations for the

quantities: αi(t) = P (X(s) 6= 2 for 0 ≤ s ≤ t and X(t) = i|X(0) = 0) for

0 ≤ i ≤ 2. (You need not solve the equations.)

(d) The forward Kolmogorov equations describe the evolution of an initial prob-

ability distribution going forward in time, given an initial. In other problems, a

boundary condition is given at a final time, and a differential equation working

backwards in time from a final condition is called for (called Kolmogorov back-

ward equations). Derive a backward differential equation for: βj(t) = P (X(s) 6=
2 for t ≤ s ≤ tf |X(t) = j), for 0 ≤ j ≤ 2 and t ≤ tf for some fixed time tf .

(Hint: Express βi(t − h) in terms of the βj(t)’s for t ≤ tf , and let h → 0. You

need not solve the equations.)

6.11 A birth-death process with periodic rates Consider a single server queue-

ing system in which the number in the system is modeled as a continuous time

birth-death process with the transition rate diagram shown, where λa, λb, µa,

and µb are strictly positive constants.

a

31 20 . . .4

! ! !!

µ

!

µµ µ µ

a a ab b

a b a b

(a) Under what additional assumptions on these four parameters is the process

positive recurrent?

(b) Assuming the system is positive recurrent, under what conditions on λa, λb, µa,

and µb is it true that the distribution of the number in the system at the time

of a typical arrival is the same as the equilibrium distribution of the number in

the system?

6.12 Markov model for a link with resets Suppose that a regulated commu-

nication link resets at a sequence of times forming a Poisson process with rate

µ. Packets are offered to the link according to a Poisson process with rate λ.

Suppose the link shuts down after three packets pass in the absence of resets.

Once the link is shut down, additional offered packets are dropped, until the link

is reset again, at which time the process begins anew.
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!

µ

(a) Sketch a transition rate diagram for a finite state Markov process describing

the system state.

(b) Express the dropping probability (same as the long term fraction of packets

dropped) in terms of λ and µ.

6.13 An unusual birth-death process Consider the birth-death processX with

arrival rates λk = (p/(1−p))k/ak and death rates µk = (p/(1−p))k−1/ak, where

.5 < p < 1, and a = (a0, a1, . . .) is a probability distribution on the nonnega-

tive integers with ak > 0 for all k. (a) Classify the states for the process X as

transient, null recurrent or positive recurrent. (b) Check that aQ = 0. Is a an

equilibrium distribution for X? Explain. (c) Find the one-step transition prob-

abilities for the jump-chain, XJ (d) Classify the states for the process XJ as

transient, null recurrent or positive recurrent.

6.14 A queue with decreasing service rate Consider a queueing system in

which the arrival process is a Poisson process with rate λ. Suppose the instanta-

neous completion rate is µ when there are K or fewer customers in the system,

and µ/2 when there are K + 1 or more customers in the system. The number in

the system is modeled as a birth-death Markov process. (a) Sketch the transition

rate diagram. (b) Under what condition on λ and µ are all states positive recur-

rent? Under this condition, give the equilibrium distribution. (c) Suppose that

λ = (2/3)µ. Describe in words the typical behavior of the system, given that it

is initially empty.

6.15 Limit of a discrete time queueing system Model a queue by a discrete-

time Markov chain by recording the queue state after intervals of q seconds each.

Assume the queue evolves during one of the atomic intervals as follows: There

is an arrival during the interval with probability αq, and no arrival otherwise. If

there is a customer in the queue at the beginning of the interval then a single

departure will occur during the interval with probability βq. Otherwise no de-

parture occurs. Suppose that it is impossible to have an arrival and a departure

in a single atomic interval. (a) Find ak=P(an interarrival time is kq) and bk=P(a

service time is kq). (b) Find the equilibrium distribution, p = (pk : k ≥ 0), of

the number of customers in the system at the end of an atomic interval. What

happens as q → 0?

6.16 An M/M/1 queue with impatient customers Consider an M/M/1 queue

with parameters λ and µ with the following modification. Each customer in the

queue will defect (i.e. depart without service) with probability αh + o(h) in an

interval of length h, independently of the other customers in the queue. Once a

customer makes it to the server it no longer has a chance to defect and simply

waits until its service is completed and then departs from the system. Let N(t)

denote the number of customers in the system (queue plus server) at time t. (a)
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Give the transition rate diagram and generator matrix Q for the Markov chain

N = (N(t) : t ≥ 0). (b) Under what conditions are all states positive recurrent?

Under this condition, find the equilibrium distribution for N . (You need not

explicitly sum the series.) (c) Suppose that α = µ. Find an explicit expression

for pD, the probability that a typical arriving customer defects instead of being

served. Does your answer make sense as λ/µ converges to zero or to infinity?

6.17 Statistical multiplexing Consider the following scenario regarding a one-

way link in a store-and-forward packet communication network. Suppose that the

link supports eight connections, each generating traffic at 5 kilobits per second

(kbps). The data for each connection is assumed to be in packets exponentially

distributed in length with mean packet size 1 kilobit. The packet lengths are

assumed mutually independent and the packets for each stream arrive according

to a Poisson process. Packets are queued at the beginning of the link if necessary,

and queue space is unlimited. Compute the mean delay (queueing plus transmis-

sion time–neglect propagation delay) for each of the following three scenarios.

Compare your answers. (a) (Full multiplexing) The link transmit speed is 50

kbps. (b) The link is replaced by two 25 kbps links, and each of the two links

carries four sessions. (Of course the delay would be larger if the sessions were not

evenly divided.) (c) (Multiplexing over two links) The link is replaced by two 25

kbps links. Each packet is transmitted on one link or the other, and neither link

is idle whenever a packet from any session is waiting.

6.18 A queue with blocking (M/M/1/5 system) Consider an M/M/1 queue

with service rate µ, arrival rate λ, and the modification that at any time, at

most five customers can be in the system (including the one in service, if any).

If a customer arrives and the system is full (i.e. already has five customers in

it) then the customer is dropped, and is said to be blocked. Let N(t) denote

the number of customers in the system at time t. Then (N(t) : t ≥ 0) is a

Markov chain. (a) Indicate the transition rate diagram of the chain and find

the equilibrium probability distribution. (b) What is the probability, pB , that a

typical customer is blocked? (c) What is the mean waiting time in queue, W , of

a typical customer that is not blocked? (d) Give a simple method to numerically

calculate, or give a simple expression for, the mean length of a busy period of

the system. (A busy period begins with the arrival of a customer to an empty

system and ends when the system is again empty.)

6.19 Three queues and an autonomously traveling server Consider three sta-

tions that are served by a single rotating server, as pictured.
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Customers arrive to station i according to a Poisson process of rate λi for 1 ≤ i ≤
3, and the total service requirement of each customer is exponentially distributed,

with mean one. The rotation of the server is modeled by a three state Markov

process with the transition rates α, β, and γ as indicated by the dashed lines.

When at a station, the server works at unit rate, or is idle if the station is empty.

If the service to a customer is interrupted because the server moves to the next

station, the service is resumed when the server returns.

(a) Under what condition is the system stable? Briefly justify your answer.

(b) Identify a method for computing the mean customer waiting time at station

one.

6.20 On two distributions seen by customers Consider a queueing system in

which the number in the system only changes in steps of plus one or minus

one. Let D(k, t) denote the number of customers that depart in the interval

[0,t] that leave behind exactly k customers, and let R(k,t) denote the number

of customers that arrive in the interval [0,t] to find exactly k customers already

in the system. (a) Show that |D(k, t) − R(k, t)| ≤ 1 for all k and t. (b) Let

αt (respectively δt ) denote the number of arrivals (departures) up to time t.

Suppose that αt →∞ and αt/δt → 1 as t→∞. Show that if the following two

limits exist for a given value k, then they are equal: rk = limt→∞R(k, t)/αt and

dk = limt→∞D(k, t)/δt.

6.21 Recurrence of mean zero random walks (a) Suppose B1, B2, . . . is a se-

quence of independent, mean zero, integer valued random variables, which are

bounded, i.e. P{|Bi| ≤M} = 1 for some M .

(a) Let X0 = 0 and Xn = B1 + · · ·+Bn for n ≥ 0. Show that X is recurrent.

(b) Suppose Y0 = 0 and Yn+1 = Yn +Bn +Ln, where Ln = (−(Yn +Bn))+. The

process Y is a reflected version of X. Show that Y is recurrent.

6.22 Positive recurrence of reflected random walk with negative drift

Suppose B1, B2, . . . is a sequence of independent, integer valued random vari-

ables, each with mean B < 0 and second moment B2 < +∞. Suppose X0 = 0

and Xn+1 = Xn + Bn + Ln, where Ln = (−(Xn + Bn))+. Show that X is pos-

itive recurrent, and give an upper bound on the mean under the equilibrium

distribution, X. (Note, it is not assumed that the B’s are bounded.)
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6.23 Routing with two arrival streams (a) Generalize Example 6.12 to the sce-

nario shown.

1

queue 1

queue 2 2d

1d

d

1

2

u

u

 u

u2
queue 3 3

2a

a1

where ai, dj ∈ (0, 1) for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3. In particular, determine

conditions on a1 and a2 that insure there is a choice of u = (u1, u2) which makes

the system positive recurrent. Under those conditions, find an upper bound on

X1 +X2 +X3, and select u to minimize the bound.

(b) Generalize Example 1.b to the scenario shown. In particular, can you find

a version of route-to-shorter routing so that the bound found in part (a) still

holds?

6.24 An inadequacy of a linear potential function Consider the system of Ex-

ample 6.13 (a discrete-time model, using the route to shorter policy, with ties

broken in favor of queue 1, so u = I{x1≤x2}):

u

queue 1

queue 2 2d

1d

a
u

Assume a = 0.7 and d1 = d2 = 0.4. The system is positive recurrent. Explain

why the function V (x) = x1 + x2 does not satisfy the Foster-Lyapunov stability

criteria for positive recurrence, for any choice of the constant b and the finite set

C.

6.25 Allocation of service Prove the claim in Example 6.17 about the largest

value of ε.

6.26 Opportunistic scheduling (Based on (Tassiulas & Ephremides 1993)) Sup-

pose N queues are in parallel, and suppose the arrivals to a queue i form an

independent, identically distributed sequence, with the number of arrivals in a

given slot having mean ai > 0 and finite second moment Ki. Let S(t) for each

t be a subset of E = {1, . . . , N} and t ≥ 0. The random sets S(t) : t ≥ 0 are

assumed to be independent with common distribution w. The interpretation is

that there is a single server, and in slot i, it can serve one packet from one of

the queues in S(t). For example, the queues might be in the base station of a

wireless network with packets queued for N mobile users, and S(t) denotes the
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set of mobile users that have working channels for time slot [t, t + 1). See the

illustration:

state s

queue 11

queue 2
2

N queue N

a

.

.

.

a

a

Fading

channel

(a) Explain why the following condition is necessary for stability: For all s ⊂ E

with s 6= ∅, ∑
i∈s

ai <
∑

B:B∩s6=∅

w(B). (6.35)

(b) Consider u of the form u = (u(i, s) : i ∈ E, s ⊂ E), with u(i, s) ≥ 0,

u(i, s) = 0 if i 6∈ s, and
∑
i∈E u(i, s) = I{s6=∅}. Suppose that given S(t) = s, the

queue that is given a potential service opportunity has probability distribution

(u(i, s) : i ∈ E). Then the probability of a potential service at queue i is given

by µi(u) =
∑
s u(i, s)w(s) for i ∈ E. Show that under the condition (6.35), for

some ε > 0, u can be selected to that ai + ε ≤ µi(u) for i ∈ E. (Hint: Apply the

min-cut, max-flow theorem to an appropriate graph.)

(c) Show that using the u found in part (b) that the process is positive recurrent.

(d) Suggest a dynamic scheduling method which does not require knowledge of

the arrival rates or the distribution w, which yields the same bound on the mean

sum of queue lengths found in part (b).

6.27 Routing to two queues – continuous time model Give a continuous time

analog of Examples 6.12 and 6.13. In particular, suppose that the arrival process

is Poisson with rate λ and the potential departure processes are Poisson with

rates µ1 and µ2.

6.28 Stability of two queues with transfers Let (λ1, λ2, ν, µ1, µ2) be a vector

of strictly positive parameters, and consider a system of two service stations with

transfers as pictured.

2

station 1

station 2

 u!

2"

" 1 µ 1

µ

Station i has Poisson arrivals at rate λi and an exponential type server, with
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rate µi. In addition, customers are transferred from station 1 to station 2 at rate

uν, where u is a constant with u ∈ U = [0, 1]. (Rather than applying dynamic

programming here, we will apply the method of Foster-Lyapunov stability the-

ory in continuous time.) The system is described by a continuous-time Markov

process on Z2
+ with some transition rate matrix Q. (You don’t need to write out

Q.)

(a) Under what condition on (λ1, λ2, ν, µ1, µ2) is there a choice of the constant

u such that the Markov process describing the system is positive recurrent?

(b) Let V be the quadratic Lyapunov function, V (x1, x2) =
x2
1

2 +
x2
2

2 . Compute

the drift vector QV .

(c) Under the condition of part (a), and using the moment bound associated

with the Foster-Lyapunov criteria, find an upper bound on the mean number in

the system in equilibrium, X1 +X2. (The smaller the bound the better.)

6.29 Stability of a system with two queues and modulated server Consider

two queues, queue 1 and queue 2, such that in each time slot, queue i receives a

new packet with probability ai, where 0 < a1 < 1 and 0 < a2 < 1. Suppose the

server is described by a three state Markov process, with transition probabilities

depending on a constant b, with 0 < b < 1
2 , as shown.

2ba

a1

2

1

2

0 ï server longer

queue 1

queue 2

b 2b

b

If the server process is in state i for i ∈ {1, 2} at the beginning of a slot, then

a potential service is given to station i. If the server process is in state 0 at the

beginning of a slot, then a potential service is given to the longer queue (with

ties broken in favor of queue 1). Then during the slot, the server state jumps

with probability 2b.. (Note that a packet can arrive and depart in one time slot.)

For what values of a1 and a2 is the process stable? Briefly explain your answer

(but rigorous proof is not required).



7 Basic Calculus of Random
Processes

The calculus of deterministic functions revolves around continuous functions,

derivatives, and integrals. These concepts all involve the notion of limits. See

the appendix for a review of continuity, differentiation and integration. In this

chapter the same concepts are treated for random processes. We’ve seen four

different senses in which a sequence of random variables can converge: almost

surely (a.s.), in probability (p.), in mean square (m.s.), and in distribution (d.).

Of these senses, we will use the mean square sense of convergence the most, and

make use of the correlation version of the Cauchy criterion for m.s. convergence,

and the associated facts that for m.s. convergence, the means of the limits are the

limits of the means, and correlations of the limits are the limits of correlations

(Proposition 2.11 and Corollaries 2.12 and 2.13). Ergodicity and the Karhunen-

Loéve expansions are discussed as applications of integration of random processes

7.1 Continuity of random processes

The topic of this section is the definition of continuity of a continuous-time ran-

dom process, with a focus on continuity defined using m.s. convergence. Chapter

2 covers convergence of sequences. Limits for deterministic functions of a con-

tinuous variable can be defined in either of two equivalent ways. Specifically, a

function f on R has a limit y at to, written as lims→to f(s) = y, if either of the

two equivalent conditions is true:

(1) (Definition based on ε and δ) Given ε > 0, there exists δ > 0 so that

| f(s)− y |≤ ε whenever |s− to| ≤ δ.
(2) (Definition based on sequences) f(sn)→ y for any sequence (sn) such that

sn → to.

Let’s check that (1) and (2) are equivalent. Suppose (1) is true, and let (sn) be

such that sn → to. Let ε > 0 and then let δ be as in condition (1). Since sn → to,

it follows that there exists no so that |sn − to| ≤ δ for all n ≥ no. But then

|f(sn)− y| ≤ ε by the choice of δ. Thus, f(sn)→ y. That is, (1) implies (2).

For the converse direction, it suffices to prove the contrapositive: if (1) is not

true then (2) is not true. Suppose (1) is not true. Then there exists an ε > 0

so that, for any n ≥ 1, there exists a value sn with |sn − to| ≤ 1
n such that
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|f(sn) − y| > ε. But then sn → to, and yet f(sn) 6→ y, so (2) is false. That is,

not (1) implies not (2). This completes the proof that (1) and (2) are equivalent.

Similarly, and by essentially the same reasons, convergence for a continuous-

time random process can be defined using either ε and δ, or using sequences, at

least for limits in the p., m.s., or d. senses. As we will see, the situation is slightly

different for a.s. limits. Let X = (Xt : t ∈ T) be a random process such that the

index set T is equal to either all of R, or an interval in R, and fix to ∈ T.

definition 7.1 (Limits for continuous-time random processes.) The process

(Xt : t ∈ T) has limit Y at to :

(i) in the m.s. sense, written lims→to Xs = Y m.s., if for any ε > 0, there exists

δ > 0 so that E[(Xs − Y )2] < ε whenever s ∈ T and |s − to| < δ. An

equivalent condition is Xsn
m.s.→ Y as n→∞, whenever sn → to.

(ii) in probability, written lims→to Xs = Y p., if given any ε > 0, there exists

δ > 0 so that P{|Xs − Y | ≥ ε] < ε whenever s ∈ T and |s− to| < δ. An

equivalent condition is Xsn
p.→ Y as n→∞, whenever sn → to.

(iii) in distribution, written lims→to Xs = Y d., if given any continuity point c

of FY and any ε > 0, there exists δ > 0 so that |FX,1(c, s)− FY (c)| < ε

whenever s ∈ T and |s− to| < δ. An equivalent condition is Xsn
d.→ Y as

n→∞, whenever sn → to. (Recall that FX,1(c, s) = P{Xs ≤ c}.)
(iv) almost surely, written lims→to Xs = Y a.s., if there is an event Fto having

probability one such that Fto ⊂ {ω : lims→to Xs(ω) = Y (ω)}.1

The relationship among the above four types of convergence in continuous time

is the same as the relationship among the four types of convergence of sequences,

illustrated in Figure 2.8. That is, the following is true:

proposition 7.2 The following statements hold as s → to for a fixed to in

T : If either Xs
a.s.→ Y or Xs

m.s.→ Y then Xs
p.→ Y. If Xs

p.→ Y. then Xs
d.→ Y.

Also, if there is a random variable Z with E[Z2] < ∞ and |Xt| ≤ Z for all t,

and if Xs
p.→ Y then Xs

m.s.→ Y.

Proof As indicated in Definition 7.1, the first three types of convergence are

equivalent to convergence along sequences, in the corresponding senses. The

fourth type of convergence, namely a.s. convergence as s → to, implies con-

vergence along sequences (Example 7.1 shows that the converse is not true).

That is true because if (sn) is a sequence converging to to,

{ω : lim
s→to

Xt(ω) = Y (ω)} ⊂ {ω : lim
n→∞

Xsn(ω) = Y (ω)}.

1 This definition is complicated by the fact that the set {ω : lims→to Xs(ω) = Y (ω)} involves

uncountably many random variables, and it is not necessarily an event. There is a way to
simplify the definition as follows, but it requires an extra assumption. A probability space

(Ω,F , P ) is complete, if whenever N is an event having probability zero, all subsets of N

are events. If (Ω,F , P ) is complete, the definition of lims→to Xs = Y a.s., is equivalent to
the requirement that {ω : lims→to Xs(ω) = Y (ω)} be an event and have probability one.
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Therefore, if the first of these sets contains an event which has probability one,

the second of these sets is an event which has probability one. The proposition

then follows from the same relations for convergence of sequences. In particular,

a.s. convergence for continuous time implies a.s. convergence along sequences (as

just shown), which implies convergence in p. along sequences, which is the same

as convergence in probability. The other implications of the proposition follow

directly from the same implications for sequences, and the fact the first three

definitions of convergence for continuous time have a form based on sequences.

The following example shows that a.s. convergence as s→ to is strictly stronger

than a.s. convergence along sequences.

Example 7.1 Let U be uniformly distributed on the interval [0, 1]. Let Xt = 1

if t − U is a rational number, and Xt = 0 otherwise. Each sample path of X

takes values zero and one in any finite interval, so that X is not a.s. convergent

at any to. However, for any fixed t, P{Xt = 0} = 1. Therefore, for any sequence

sn, since there are only countably many terms, P{Xsn = 0 for all n} = 1 so that

Xsn → 0 a.s.

definition 7.3 (Four types of continuity at a point for a random process)

For each to ∈ T fixed, the random process X = (Xt : t ∈ T) is continuous at

to in any one of the four senses: m.s., p., a.s., or d., if lims→to Xs = Xto in the

corresponding sense.

The following is immediately implied by Proposition 7.2. It shows that for

convergence of a random process at a single point, the relations illustrated in

Figure 2.8 again hold.

corollary 7.4 If X is continuous at to in either the a.s. or m.s. sense, then

X is continuous at to in probability. If X is continuous at to in probability, then

X is continuous at to in distribution. Also, if there is a random variable Z with

E[Z2] < ∞ and |Xt| ≤ Z for all t, and if X is continuous at to in probability,

then it is continuous at to in the m.s. sense.

A deterministic function f on R is simply called continuous if it is contin-

uous at all points. Since we have four senses of continuity at a point for a

random process, this gives four types of continuity for random processes. Be-

fore stating them formally, we describe a fifth type of continuity of random

processes, which is often used in applications. Recall that for a fixed ω ∈ Ω,

the random process X gives a sample path, which is a function on T. Conti-

nuity of a sample path is thus defined as it is for any deterministic function.

The subset of Ω, {ω : Xt(ω) is a continuous function of t}, or more concisely,

{Xt is a continuous function of t}, is the set of ω such that the sample path for
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ω is continuous. The fifth type of continuity requires that the sample paths be

continuous, if a set of probability zero is ignored.

definition 7.5 (Five types of continuity for a whole random process) A ran-

dom process

X = (Xt : t ∈ T) is said to be

m.s. continuous if it is m.s. continuous at each t

continuous in p. if it is continuous in p. at each t

continuous in d. if it is continuous in d. at each t

a.s. continuous at each t, if it is a.s. continuous at each t.2

a.s. sample-path continuous, if F ⊂ {Xt is continuous in t} for some event F

with P (F ) = 1.

The relationships among the five types of continuity for a whole random pro-

cess are pictured in Figure 7.1 and summarized in the following proposition.

a.s. continuous at each t

p. d.

a fin
ite second moment.)

a sin
gle random variable with

m.s.  
(If p

rocess is
 dominated by

a.s. sample!path continuous

Figure 7.1 Relationships among five types of continuity of random processes.

proposition 7.6 If a process is a.s. sample-path continuous it is a.s. contin-

uous at each t. If a process is a.s. continuous at each t or m.s. continuous, it is

continuous in p. If a process is continuous in p. it is continuous in d. Also, if

there is a random variable Y with E[Y 2] < ∞ and |Xt| ≤ Y for all t, and if X

is continuous in p., then X is m.s. continuous.

Proof Suppose X is a.s. sample-path continuous. Then for any to ∈ T,

{ω : Xt(ω) is continuous at all t ∈ T} ⊂ {ω : Xt(ω) is continuous at to}. (7.1)

Since X is a.s. sample-path continuous, the set on the left-hand side of (7.1)

contains an event F with P (F ) = 1 and F is also a subset of the set on the the

2 We avoid using the terminology “a.s. continuous” for the whole random process, because
such terminology could too easily be confused with a.s. sample-path continuous
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right-hand side of (7.1). Thus, X is a.s. continuous at to. Since to was an arbi-

trary element of T, if follows that X is a.s. continuous at each t. The remaining

implications of the proposition follow from Corollary 7.4.

Example 7.2 (Shows a.s. sample-path continuity is strictly stronger than a.s.

continuity at each t.) Let X = (Xt : 0 ≤ t ≤ t) be given by Xt = I{t≥U}
for 0 ≤ t ≤ 1, where U is uniformly distributed over [0, 1]. Thus, each sample

path of X has a single upward jump of size one, at a random time U uniformly

distributed over [0, 1]. So every sample path is discontinuous, and therefore X

is not a.s. sample-path continuous. For any fixed t and ω, if U(ω) 6= t (i.e. if

the jump of X is not exactly at time t) then Xs(ω) → Xt(ω) as s → t. Since

P{U 6= t} = 1, it follows that X is a.s. continuous at each t. Therefore X is

also continuous in p. and d. senses. Finally, since |Xt| ≤ 1 for all t and X is

continuous in p., it is also m.s. continuous.

The remainder of this section focuses on m.s. continuity. Recall that the def-

inition of m.s. convergence of a sequence of random variables requires that the

random variables have finite second moments, and consequently the limit also has

a finite second moment. Thus, in order for a random process X = (Xt : t ∈ T) to

be continuous in the m.s. sense, it must be a second order process: E[X2
t ] < ∞

for all t ∈ T. Whether X is m.s. continuous depends only on the correlation

function RX , as shown in the following proposition.

proposition 7.7 Suppose (Xt : t ∈ T) is a second order process. The following

are equivalent:

(i) RX is continuous at all points of the form (t, t) (This condition involves RX
for points in and near the set of points of the form (t, t). It is stronger

than requiring RX(t, t) to be continuous in t–see example 7.3.)

(ii) X is m.s. continuous

(iii) RX is continuous over T× T.

If X is m.s. continuous, then the mean function, µX(t), is continuous. If X is

wide sense stationary, the following are equivalent:

(i′) RX(τ) is continuous at τ = 0

(ii′) X is m.s. continuous

(iii′) RX(τ) is continuous over all of R.

Proof ((i) implies (ii)) Fix t ∈ T and suppose that RX is continuous at the

point (t, t). Then RX(s, s), RX(s, t), and RX(t, s) all converge to RX(t, t) as

s→ t. Therefore, lims→tE[(Xs−Xt)
2] = lims→t(RX(s, s)−RX(s, t)−RX(t, s)+

RX(t, t)) = 0. So X is m.s. continuous at t. Therefore if RX is continuous at all
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points of the form (t, t) ∈ T×T, then X is m.s. continuous at all t ∈ T. Therefore

(i) implies (ii).

((ii) implies (iii)) Suppose condition (ii) is true. Let (s, t) ∈ T×T, and suppose

(sn, tn) ∈ T × T for all n ≥ 1 such that limn→∞(sn, tn) = (s, t). Therefore,

sn → s and tn → t as n→∞. By condition (b), it follows that Xsn
m.s.→ Xs and

Xtn
m.s.→ Xt as n → ∞. Since the limit of the correlations is the correlation of

the limit for a pair of m.s. convergent sequences (Corollary 2.12) it follows that

RX(sn, tn)→ RX(s, t) as n→∞. Thus, RX is continuous at (s, t), where (s, t)

was an arbitrary point of T×T. Therefore RX is continuous over T×T, proving

that (ii) implies (iii).

Obviously (iii) implies (i), so the proof of the equivalence of (i)-(iii) is complete.

If X is m.s. continuous, then, by definition, for any t ∈ T, Xs
m.s.→ Xt as s→ t.

It thus follows that µX(s)→ µX(t), because the limit of the means is the mean of

the limit, for a m.s. convergent sequence (Corollary 2.13). Thus, m.s. continuity

of X implies that the deterministic mean function, µX , is continuous.

Finally, if X is WSS, then RX(s, t) = RX(τ) where τ = s − t, and the three

conditions (i)-(iii) become (i′)-(iii′), so the equivalence of (i)-(iii) implies the

equivalence of (i′)-(iii′).

Example 7.3 Let X = (Xt : t ∈ R) be defined by Xt = U for t < 0 and Xt = V

for t ≥ 0, where U and V are independent random variables with mean zero

and variance one. Let tn be a sequence of strictly negative numbers converging

to 0. Then Xtn = U for all n and X0 = V . Since P{|U − V | ≥ ε} 6= 0 for ε

small enough, Xtn does not converge to X0 in p. sense. So X is not continuous

in probability at zero. It is thus not continuous in the m.s or a.s. sense at zero

either. The only one of the five senses that the whole process could be continuous

is continuous in distribution. The process X is continuous in distribution if and

only if U and V have the same distribution. Finally, let us check the continuity

properties of the autocorrelation function. The autocorrelation function is given

by RX(s, t) = 1 if either s, t < 0 or if s, t ≥ 0, and RX(s, t) = 0 otherwise.

So RX is not continuous at (0, 0), because R( 1
n ,−

1
n ) = 0 for all n ≥ 1, so

R( 1
n ,−

1
n ) 6→ RX(0, 0) = 1. as n → ∞. However, it is true that RX(t, t) = 1

for all t, so that RX(t, t) is a continuous function of t. This illustrates the fact

that continuity of the function of two variables, RX(s, t), at a particular point

of the form (to, to), is a stronger requirement than continuity of the function of

one variable, RX(t, t), at t = to.

Example 7.4 Let W = (Wt : t ≥ 0) be a Brownian motion with parameter σ2.

Then E[(Wt −Ws)
2] = σ2|t− s| → 0 as s→ t. Therefore W is m.s. continuous.

Another way to show W is m.s. continuous is to observe that the autocorrelation

function, RW (s, t) = σ2(s ∧ t), is continuous. Since W is m.s. continuous, it is
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also continuous in the p. and d. senses. As we stated in defining W , it is a.s.

sample-path continuous, and therefore a.s. continuous at each t ≥ 0, as well.

Example 7.5 Let N = (Nt : t ≥ 0) be a Poisson process with rate λ > 0. Then

for fixed t, E[(Nt−Ns)2] = λ(t−s)+(λ(t−s))2 → 0 as s→ t. Therefore N is m.s.

continuous. As required, RN , given by RN (s, t) = λ(s ∧ t) + λ2st, is continuous.

Since N is m.s. continuous, it is also continuous in the p. and d. senses. N is also

a.s. continuous at any fixed t, because the probability of a jump at exactly time

t is zero for any fixed t. However, N is not a.s. sample continuous. In fact,

P{N is continuous on [0, a]} = e−λa and so P{N is continuous on R+} = 0.

definition 7.8 A random process (Xt : t ∈ T), such that T is a bounded

interval (open, closed, or mixed) in R with endpoints a < b, is piecewise m.s.

continuous, if there exist n ≥ 1 and a = t0 < t1 < · · · < tn = b, such that,

for 1 ≤ k ≤ n: X is m.s. continuous over (tk−1, tk) and has m.s. limits at the

endpoints of (tk−1, tk).

More generally, if T is all of R or an interval in R, X is piecewise m.s. continuous

over T if it is piecewise m.s. continuous over every bounded subinterval of T.

7.2 Mean square differentiation of random processes

Before considering the m.s. derivative of a random process, we review the defi-

nition of the derivative of a function (also, see Appendix 11.4). Let the index set

T be either all of R or an interval in R. Suppose f is a deterministic function on

T. Recall that for a fixed t in T, f is differentiable at t if lims→t
f(s)−f(t)

s−t exists

and is finite, and if f is differentiable at t, the value of the limit is the derivative,

f ′(t). The whole function f is called differentiable if it is differentiable at all t.

The function f is called continuously differentiable if f is differentiable, and the

derivative function f ′ is continuous.

In many applications of calculus, it is important that a function f be not only

differentiable, but continuously differentiable. In much of the applied literature,

when there is an assumption that a function is differentiable, it is understood

that the function is continuously differentiable. For example, by the fundamental

theorem of calculus,

f(b)− f(a) =

∫ b

a

f ′(s)ds (7.2)

holds if f is a continuously differentiable function with derivative f ′. Example

11.6 shows that (7.2) might not hold if f is simply assumed to be differentiable.

Let X = (Xt : t ∈ T) be a second order random process such that the index

set T is equal to either all of R or an interval in R. The following definition
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for m.s. derivatives is analogous to the definition of derivatives for deterministic

functions.

definition 7.9 For each t fixed, the random process X = (Xt : t ∈ T) is

mean square (m.s.) differentiable at t if the following limit exists:

lim
s→t

Xs−Xt
s−t m.s.

The limit, if it exists, is the m.s. derivative of X at t, denoted by X ′t. The whole

random processX is said to be m.s. differentiable if it is m.s. differentiable at each

t, and it is said to be m.s. continuously differentiable if it is m.s. differentiable

and the derivative process X ′ is m.s. continuous.

Let ∂i denote the operation of taking the partial derivative with respect to

the ith argument. For example, if f(x, y) = x2y3 then ∂2f(x, y) = 3x2y2 and

∂1∂2f(x, y) = 6xy2. The partial derivative of a function is the same as the

ordinary derivative with respect to one variable, with the other variables held

fixed. We shall be applying ∂1 and ∂2 to an autocorrelation function RX =

(RX(s, t) : (s, t) ∈ T× T}, which is a function of two variables.

proposition 7.10 (a) (The derivative of the mean is the mean of the deriva-

tive) If X is m.s. differentiable, then the mean function µX is differen-

tiable, and µ′X(t) = µX′(t). (i.e. the operations of (i) taking expectation,

which basically involves integrating over ω, and (ii) differentiation with

respect to t, can be done in either order.)

(b) If X is m.s. differentiable, the cross correlation functions are given by

RX′X = ∂1RX and RXX′ = ∂2RX , and the autocorrelation function of

X ′ is given by RX′ = ∂1∂2RX = ∂2∂1RX . (In particular, the indicated

partial derivatives exist.)

(c) X is m.s. differentiable at t if and only if the following limit exists and is

finite:

lim
s,s′→t

RX(s, s′)−RX(s, t)−RX(t, s′) +RX(t, t)

(s− t)(s′ − t)
. (7.3)

(Therefore, the whole process X is m.s. differentiable if and only if the

limit in (7.3) exists and is finite for all t ∈ T.)
(d) X is m.s. continuously differentiable if and only if RX , ∂2RX , and ∂1∂2RX

exist and are continuous. (By symmetry, if X is m.s. continuously dif-

ferentiable, then also ∂1RX is continuous.)

(e) (Specialization of (d) for WSS case) Suppose X is WSS. Then X is m.s.

continuously differentiable if and only if RX(τ), R′X(τ), and R′′X(τ) ex-

ist and are continuous functions of τ . If X is m.s. continuously dif-

ferentiable then X and X ′ are jointly WSS, X ′ has mean zero (i.e.

µX′ = 0) and autocorrelation function given by RX′(τ) = −R′′X(τ),

and the cross correlation functions are given by RX′X(τ) = R′X(τ) and

RXX′(τ) = −R′X(τ).
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(f) (A necessary condition for m.s. differentiability) If X is WSS and m.s.

differentiable, then R′X(0) exists and R′X(0) = 0.

(g) If X is a m.s. differentiable Gaussian process, then X and its derivative

process X ′ are jointly Gaussian.

Proof (a) Suppose X is m.s. differentiable. Then for any t fixed,

Xs −Xt

s− t
m.s.→ X ′t as s→ t.

It thus follows that

µX(s)− µX(t)

s− t
→ µX′(t) as s→ t, (7.4)

because the limit of the means is the mean of the limit, for a m.s. convergent

sequence (Corollary 2.13). But (7.4) is just the definition of the statement that

the derivative of µX at t is equal to µX′(t). That is, dµXdt (t) = µX′(t) for all t, or

more concisely, µ′X = µX′ .

(b) Suppose X is m.s. differentiable. Since the limit of the correlations is

the correlation of the limits for m.s. convergent sequences (Corollary 2.12), for

t, t′ ∈ T,

RX′X(t, t′) = lim
s→t

E

[(
X(s)−X(t)

s− t

)
X(t′)

]
= lim
s→t

RX(s, t′)−RX(t, t′)

s− t
= ∂1RX(t, t′).

Thus, RX′X = ∂1RX , and in particular, the partial derivative ∂1RX exists.

Similarly, RXX′ = ∂2RX . Also, by the same reasoning,

RX′(t, t
′) = lim

s′→t′
E

[
X ′(t)

(
X(s′)−X(t′)

s′ − t′

)]
= lim
s′→t′

RX′X(t, s′)−RX′X(t, t′)

s′ − t′
= ∂2RX′X(t, t′) = ∂2∂1RX(t, t′),

so that RX′ = ∂2∂1RX . Similarly, RX′ = ∂1∂1RX .

(c) By the correlation form of the Cauchy criterion, (Proposition 2.11), X is

m.s. differentiable at t if and only if the following limit exists and is finite:

lim
s,s′→t

E

[(
X(s)−X(t)

s− t

)(
X(s′)−X(t)

s′ − t

)]
. (7.5)

Multiplying out the terms in the numerator in the right side of (7.5) and using

E[X(s)X(s′)] = RX(s, s′), E[X(s)X(t)] = RX(s, t), and so on, shows that (7.5)

is equivalent to (7.3). So part (c) is proved.

(d) The numerator in (7.3) involves RX evaluated at the four corners of the

rectangle [t, s]×[t, s′], shown in Figure 7.2. Suppose RX , ∂2RX and ∂1∂2RX exist
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Figure 7.2 Sampling points of RX .

and are continuous functions. Then by the fundamental theorem of calculus,

(RX(s, s′)−RX(s, t))− (RX(t, s′)−RX(t, t))

=

∫ s′

t

∂2RX(s, v)dv −
∫ s′

t

∂2RX(t, v)dv

=

∫ s′

t

[∂2RX(s, v)− ∂2RX(t, v)] dv

=

∫ s′

t

∫ s

t

∂1∂2RX(u, v)dudv. (7.6)

Therefore, the ratio in (7.3) is the average value of ∂1∂2RX over the rectangle

[t, s]× [t, s′]. Since ∂1∂2RX is assumed to be continuous, the limit in (7.3) exists

and it is equal to ∂1∂2RX(t, t). Therefore, by part (c) already proved, X is m.s.

differentiable. By part (b), the autocorrelation function of X ′ is ∂1∂2RX . Since

this is assumed to be continuous, it follows that X ′ is m.s. continuous. Thus, X

is m.s. continuously differentiable.

(e) If X is WSS, then RX(s − t) = RX(τ) where τ = s − t. Suppose RX(τ),

R′X(τ) and R′′X(τ) exist and are continuous functions of τ . Then

∂1RX(s, t) = R′X(τ) and ∂2∂1RX(s, t) = −R′′X(τ). (7.7)

The minus sign in (7.7) appears because RX(s, t) = RX(τ) where τ = s − t,
and the derivative of with respect to t is −1. So, the hypotheses of part (d)

hold, so that X is m.s. differentiable. Since X is WSS, its mean function µX is

constant, which has derivative zero, so X ′ has mean zero. Also by part (c) and

(7.7), RX′X(τ) = R′X(τ) and RX′X′ = −R′′X . Similarly, RXX′(τ) = −R′X(τ).

Note that X and X ′ are each WSS and the cross correlation functions depend

on τ alone, so X and X ′ are jointly WSS.

(f) If X is WSS then

E

[(
X(t)−X(0)

t

)2
]

= −2(RX(t)−RX(0))

t2
. (7.8)

Therefore, if X is m.s. differentiable then the right side of (7.8) must converge to
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a finite limit as t→ 0, so in particular it is necessary that (RX(t)−RX(0))/t→ 0

as t→ 0. Therefore R′X(0) = 0.

(g) The derivative process X ′ is obtained by taking linear combinations and

m.s. limits of random variables in X = (Xt; t ∈ T). Therefore, (g) follows from

the fact that the joint Gaussian property is preserved under linear combinations

and limits (Proposition 3.8(c)).

Example 7.6 Let f(t) = t2 sin(1/t2) for t 6= 0 and f(0) = 0 as in Example

11.6, and let X = (Xt : t ∈ R) be the deterministic random process such that

X(t) = f(t) for all t ∈ R. Since X is differentiable as an ordinary function, it

is also m.s. differentiable, and its m.s. derivative X ′ is equal to f ′. Since X ′, as

a deterministic function, is not continuous at zero, it is also not continuous at

zero in the m.s. sense. We have RX(s, t) = f(s)f(t) and ∂2RX(s, t) = f(s)f ′(t),

which is not continuous. So indeed the conditions of Proposition 7.10(d) do not

hold, as required.

Example 7.7 A Brownian motion W = (Wt : t ≥ 0) is not m.s. differentiable. If

it were, then for any fixed t ≥ 0, W (s)−W (t)
s−t would converge in the m.s. sense as

s→ t to a random variable with a finite second moment. For a m.s. convergent

sequence, the second moments of the variables in the sequence converge to the

second moment of the limit random variable, which is finite. But W (s) −W (t)

has mean zero and variance σ2|s− t|, so that

lim
s→t

E

[(
W (s)−W (t)

s− t

)2
]

= lim
s→t

σ2

|s− t|
= +∞. (7.9)

Thus, W is not m.s. differentiable at any t. For another approach, we could

appeal to Proposition 7.10 to deduce this result. The limit in (7.9) is the same

as the limit in (7.5), but with s and s′ restricted to be equal. Hence (7.5), or

equivalently (7.3), is not a finite limit, implying that W is not differentiable at

t.

Similarly, a Poisson process is not m.s. differentiable at any t. A WSS process

X with RX(τ) = e−α|τ | is not m.s. differentiable because R′X(0) does not exist.

A WSS process X with RX(τ) = 1
1+τ2 is m.s. differentiable, and its derivative

process X ′ is WSS with mean 0 and covariance function

RX′(τ) = −
(

1

1 + τ2

)′′
=

2− 6τ2

(1 + τ2)3
.

proposition 7.11 Suppose X is a m.s. differentiable random process and f

is a differentiable function. Then the product Xf = (X(t)f(t) : t ∈ R) is mean

square differentiable and (Xf)′ = X ′f +Xf ′.
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Proof:
Fix t. Then for each s 6= t,

X(s)f(s)−X(t)f(t)

s− t
=

(X(s)−X(t))f(s)

s− t
+
X(t)(f(s)− f(t))

s− t
m.s.→ X ′(t)f(t) +X(t)f ′(t) as s→ t.

definition 7.12 A random process X on a bounded interval (open, closed,

or mixed) with endpoints a < b is continuous and piecewise continuously differ-

entiable in the m.s. sense, if X is m.s. continuous over the interval, and if there

exists n ≥ 1 and a = t0 < t1 < · · · < tn = b, such that, for 1 ≤ k ≤ n: X

is m.s. continuously differentiable over (tk−1, tk) and X ′ has finite limits at the

endpoints of (tk−1, tk).

More generally, if T is all of R or a subinterval of R, then a random process

X = (Xt : t ∈ T) is continuous and piecewise continuously differentiable in the

m.s. sense if its restriction to any bounded interval is continuous and piecewise

continuously differentiable in the m.s. sense.

7.3 Integration of random processes

Let X = (Xt : a ≤ t ≤ b) be a random process and let h be a function on a finite

interval [a, b]. How shall we define the following integral?∫ b
a
Xth(t)dt. (7.10)

One approach is to note that for each fixed ω, Xt(ω) is a deterministic function

of time, and so the integral can be defined as the integral of a deterministic

function for each ω. We shall focus on another approach, namely mean square

(m.s.) integration. An advantage of m.s. integration is that it relies much less on

properties of sample paths of random processes.

As for integration of deterministic functions, the m.s. Riemann integrals are

based on Riemann sums, defined as follows. Given:

• A partition of (a, b] of the form (t0, t1], (t1, t2], · · · , (tn−1, tn], where n ≥ 0 and

a = t0 < t1 · · · < tn = b

• A sampling point from each subinterval, vk ∈ (tk−1, tk], for 1 ≤ k ≤ n,

the corresponding Riemann sum for Xh is defined by

n∑
k=1

Xvkh(vk)(tk − tk−1).

The norm of the partition is defined to be maxk |tk − tk−1|.

definition 7.13 The Riemann integral
∫ b
a
Xth(t)dt is said to exist in the m.s.

sense and its value is the random variable I if the following is true. Given any

ε > 0, there is a δ > 0 so that E[(
∑n
k=1Xvkh(vk)(tk − tk−1)− I)2] ≤ ε whenever
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the norm of the partition is less than or equal to δ. This definition is equivalent

to the following condition, expressed using convergence of sequences. The m.s.

Riemann integral exists and is equal to I, if for any sequence of partitions,

specified by ((tm1 , t
m
2 , . . . , t

m
nm) : m ≥ 1), with corresponding sampling points

((vm1 , . . . , v
m
nm) : m ≥ 1), such that norm of the mth partition converges to zero

as m →∞, the corresponding sequence of Riemann sums converges in the m.s.

sense to I as m→∞. The process Xth(t) is said to be m.s. Riemann integrable

over (a, b] if the integral
∫ b
a
Xth(t)dt exists and is finite.

Next, supposeXth(t) is defined over the whole real line. IfXth(t) is m.s. Riemann

integrable over every bounded interval [a, b], then the Riemann integral of Xth(t)

over R is defined by∫ ∞
−∞

Xth(t)dt = lim
a,b→∞

∫ b

−a
Xth(t)dt m.s.

provided that the indicated limit exist as a, b jointly converge to +∞.

Whether an integral exists in the m.s. sense is determined by the autocorre-

lation function of the random process involved, as shown next. The condition

involves Riemann integration of a deterministic function of two variables. As

reviewed in Appendix 11.5, a two-dimensional Riemann integral over a bounded

rectangle is defined as the limit of Riemann sums corresponding to a partition

of the rectangle into subrectangles and choices of sampling points within the

subrectangles. If the sampling points for the Riemann sums are required to be

horizontally and vertically aligned, then we say the two-dimensional Riemann

integral exists with aligned sampling.

proposition 7.14 The integral
∫ b
a
Xth(t)dt exists in the m.s. Riemann sense

if and only if ∫ b
a

∫ b
a
RX(s, t)h(s)h(t)dsdt (7.11)

exists as a two dimensional Riemann integral with aligned sampling. The m.s.

integral exists, in particular, if X is m.s. piecewise continuous over [a, b] and h

is piecewise continuous over [a, b].

Proof By definition, the m.s. integral of Xth(t) exists if and only if the Riemann

sums converge in the m.s. sense for an arbitrary sequence of partitions and

sampling points, such that the norms of the partitions converge to zero. So

consider an arbitrary sequence of partitions of (a, b] into intervals specified by

the collection of endpoints, ((tm0 , t
m
1 , . . . , t

m
nm) : m ≥ 1), with corresponding

sampling point vmk ∈ (tmk−1, t
m
k ] for each m and 1 ≤ k ≤ nm, such that the norm

of the mth partition converges to zero as m→∞. For each m ≥ 1, let Sm denote

the corresponding Riemann sum:

Sm =

nm∑
k=1

Xvmk
h(vmk )(tmk − tmk−1).
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By the correlation form of the Cauchy criterion for m.s. convergence (Proposi-

tion 2.11), the sequence (Sm : m ≥ 1) converges in the m.s. sense if and only if

limm,m′→∞E[SmSm′ ] exists and is finite. Note that

E[SmSm′ ] =

nm∑
j=1

nm
′∑

k=1

RX(vmj , v
m′

k )h(vmj )h(vm
′

k )(tmj − tmj−1)(tm
′

k − tm
′

k−1), (7.12)

and the right-hand side of (7.12) is the Riemann sum for the integral (7.11), for

the partition of (a, b]×(a, b] into rectangles of the form (tmj−1, t
m
j ]×(tm

′

k−1, t
m′

k ] and

the sampling points (vmj , v
m′

k ). Note that the mm′ sampling points are aligned,

in that they are determined by the m+m′ numbers vm1 , . . . , v
m
nm , v

m′

1 , . . . , vm
′

nm′
.

Moreover, any Riemann sum for the integral (7.11) with aligned sampling can

arise in this way. Further, as m,m′ → ∞, the norm of this partition, which is

the maximum length or width of any rectangle of the partition, converges to

zero. Thus, the limit limm,m′→∞E[SmSm′ ] exists for any sequence of partitions

and sampling points if and only if the integral (7.11) exists as a two-dimensional

Riemann integral with aligned sampling.

Finally, if X is piecewise m.s. continuous over [a, b] and h is piecewise con-

tinuous over [a, b], then there is a partition of [a, b] into intervals of the form

(sk−1, sk] such that X is m.s. continuous over (sk−1, sk) with m.s. limits at the

endpoints, and h is continuous over (sk−1, sk) with finite limits at the endpoints.

Therefore, RX(s, t)h(s)h(t) restricted to each rectangle of the form (sj−1, sj)×
(sk−1, sk), is the restriction of a continuous function on [sj−1, sj ] × [sk−1, sk].

Thus RX(s, t)h(s)h(t) is Riemann integrable over [a, b]× [a, b].

proposition 7.15 Suppose Xth(t) and Ytk(t) are both m.s. integrable over

[a, b]. Then

E

[∫ b

a

Xth(t)dt

]
=

∫ b

a

µX(t)h(t)dt (7.13)

E

(∫ b

a

Xth(t)dt

)2
 =

∫ b

a

∫ b

a

RX(s, t)h(s)h(t)dsdt (7.14)

Var

(∫ b

a

Xth(t)dt

)
=

∫ b

a

∫ b

a

CX(s, t)h(s)h(t)dsdt. (7.15)

E

[(∫ b

a

Xsh(s)ds

)(∫ b

a

Ytk(t)dt

)]
=

∫ b

a

∫ b

a

RXY (s, t)h(s)k(t)dsdt (7.16)

Cov

(∫ b

a

Xsh(s)ds,

∫ b

a

Ytk(t)dt

)
=

∫ b

a

∫ b

a

CXY (s, t)h(s)k(t)dsdt (7.17)

∫ b

a

Xth(t) + Ytk(t)dt =

∫ b

a

Xth(t)dt +

∫ b

a

Ytk(t))dt. (7.18)

Proof Let (Sm) denote the sequence of Riemann sums appearing in the proof
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of Proposition 7.14. Since the mean of a m.s. convergent sequence of random

variables is the limit of the means (Corollary 2.13),

E

[∫ b

a

Xth(t)dt

]
= lim
m→∞

E[Sm]

= lim
m→∞

nm∑
k=1

µX(vmk )h(vmk )(tmk − tmk−1). (7.19)

The right-hand side of (7.19) is a limit of Riemann sums for
∫ b
a
µX(t)h(t)dt. Since

this limit exists and is equal to E
[∫ b
a
Xth(t)dt

]
for any sequence of partitions

and sample points, it follows that
∫ b
a
µX(t)h(t)dt exists as a Riemann integral,

and is equal to E
[∫ b
a
Xth(t)dt

]
, so (7.13) is proved.

The second moment of the m.s. limit of (Sm : m ≥ 0) is limm,m′→∞E[SmSm′ ],

by the correlation form of the Cauchy criterion for m.s. convergence (Proposi-

tion 2.11), which implies (7.14). It follows from (7.13) that

E

[(∫ b

a

Xth(t)dt

)]2

=

∫ b

a

∫ b

a

µX(s)µX(t)h(s)h(t)dsdt.

Subtracting each side of this from the corresponding side of (7.14) yields (7.15).

The proofs of (7.16) and (7.17) are similar to the proofs of (7.14) and (7.15),

and are left to the reader.

For any partition of [a, b] and choice of sampling points, the Riemann sums

for the three integrals appearing (7.17) satisfy the corresponding additivity con-

dition, implying (7.17).

The fundamental theorem of calculus, stated in Appendix 11.5, states the in-

crements of a continuous, piecewise continuously differentiable function are equal

to integrals of the derivative of the function. The following is the generalization

of the fundamental theorem of calculus to the m.s. calculus.

theorem 7.16 (Fundamental Theorem of m.s. Calculus) Let X be a m.s.

continuously differentiable random process. Then for a < b,

Xb −Xa =

∫ b

a

X ′tdt (m.s. Riemann integral). (7.20)

More generally, if X is continuous and piecewise continuously differentiable,

(11.4) holds with X ′t replaced by the right-hand derivative, D+Xt. (Note that

D+Xt = X ′t whenever X ′t is defined.)

Proof The m.s. Riemann integral in (7.20) exists because X ′ is assumed to be

m.s. continuous. Let B = Xb −Xa −
∫ b
a
X ′tdt, and let Y be an arbitrary random

variable with a finite second moment. It suffices to show that E[Y B] = 0, because
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a possible choice of Y is B itself. Let ϕ(t) = E[Y Xt]. Then for s 6= t,

ϕ(s)− ϕ(t)

s− t
= E

[
Y

(
Xs −Xt

s− t

)]
.

Taking a limit as s→ t and using the fact the correlation of a limit is the limit of

the correlations for m.s. convergent sequences, it follows that ϕ is differentiable

and ϕ′(t) = E[Y X ′t]. Since X ′ is m.s. continuous, it similarly follows that ϕ′ is

continuous.

Next, we use the fact that the integral in (7.20) is the m.s. limit of Riemann

sums, with each Riemann sum corresponding to a partition of (a, b] specified by

some n ≥ 1 and a = t0 < · · · < tn = b and sampling points vk ∈ (tk−1, tk] for

a ≤ k ≤ n. Since the limit of the correlation is the correlation of the limit for

m.s. convergence,

E

[
Y

∫ b

a

X ′tdt

]
= lim
|tk−tk−1|→0

E

[
Y

n∑
k=1

X ′vk(tk − tk−1)

]

= lim
|tk−tk−1|→0

n∑
k=1

ϕ′(vk)(tk − tk−1) =

∫ b

a

ϕ′(t)dt.

Therefore, E[Y B] = ϕ(b)− ϕ(a)−
∫ b
a
ϕ′(t)dt, which is equal to zero by the fun-

damental theorem of calculus for deterministic continuously differentiable func-

tions. This establishes (7.20) in case X is m.s. continuously differentiable. If X is

m.s. continuous and only piecewise continuously differentiable, we can use essen-

tially the same proof, observing that ϕ is continuous and piecewise continuously

differentiable, so that E[Y B] = ϕ(b)−ϕ(a)−
∫ b
a
ϕ′(t)dt = 0 by the fundamental

theorem of calculus for deterministic continuous, piecewise continuously differ-

ential functions.

proposition 7.17 Suppose X is a Gaussian random process. Then X, to-

gether with all mean square derivatives of X that exist, and all m.s. Riemann

integrals of X of the form I(a, b) =
∫ b
a
Xth(t)dt that exist, are jointly Gaussian.

Proof The m.s. derivatives and integrals of X are obtained by taking m.s. limits

of linear combinations ofX = (Xt; t ∈ T). Therefore, the proposition follows from

the fact that the joint Gaussian property is preserved under linear combinations

and limits (Proposition 3.8(c)).

Theoretical Exercise
Suppose X = (Xt : t ≥ 0) is a random process such that RX is continuous. Let

Yt =
∫ t

0
Xsds. Show that Y is m.s. differentiable, and P{Y ′t = Xt} = 1 for t ≥ 0.

Example 7.8 Let (Wt : t ≥ 0) be a Brownian motion with σ2 = 1, and let

Xt =
∫ t

0
Wsds for t ≥ 0. Let us find RX and P{|Xt| ≥ t} for t > 0. Since
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RW (u, v) = u ∧ v,

RX(s, t) = E

[∫ s

0

Wudu

∫ t

0

Wvdv

]
=

∫ s

0

∫ t

0

(u ∧ v)dvdu.

To proceed, consider first the case s ≥ t and partition the region of integration

into three parts as shown in Figure 7.3. The contributions from the two triangular

u

v

s

u<v
u>v

t

t

Figure 7.3 Partition of region of integration.

subregions is the same, so

RX(s, t) = 2

∫ t

0

∫ u

0

vdvdu+

∫ s

t

∫ t

0

vdvdu

=
t3

3
+
t2(s− t)

2
=

t2s

2
− t3

6
.

Still assuming that s ≥ t, this expression can be rewritten as

RX(s, t) =
st(s ∧ t)

2
− (s ∧ t)3

6
. (7.21)

Although we have found (7.21) only for s ≥ t, both sides are symmetric in s and

t. Thus (7.21) holds for all s, t.

Since W is a Gaussian process, X is a Gaussian process. Also, E[Xt] = 0

(because W is mean zero) and E[X2
t ] = RX(t, t) = t3

3 . Thus,

P{|Xt| ≥ t} = 2P

 Xt√
t3

3

≥ t√
t3

3

 = 2Q

(√
3

t

)
.

Note that P{Xt| ≥ t} → 1 as t→ +∞.

Example 7.9 Let N = (Nt : t ≥ 0) be a second order process with a continuous

autocorrelation function RN and let x0 be a constant. Consider the problem of

finding a m.s. differentiable random process X = (Xt : t ≥ 0) satisfying the

linear differential equation

X ′t = −Xt +Nt, X0 = x0. (7.22)
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Guided by the case that Nt is a smooth nonrandom function, we write

Xt = x0e
−t +

∫ t

0

e−(t−v)Nvdv (7.23)

or

Xt = x0e
−t + e−t

∫ t

0

evNvdv. (7.24)

Using Proposition 7.11, it is not difficult to check that (7.24) indeed gives the

solution to (7.22).

Next, let us find the mean and autocovariance functions of X in terms of those

of N . Taking the expectation on each side of (7.23) yields

µX(t) = x0e
−t +

∫ t

0

e−(t−v)µN (v)dv. (7.25)

A different way to derive (7.25) is to take expectations in (7.22) to yield the

deterministic linear differential equation:

µ′X(t) = −µX(t) + µN (t); µX(0) = x0

which can be solved to yield (7.25). To summarize, we found two methods to

start with the stochastic differential equation (7.23) to derive (7.25), thereby

expressing the mean function of the solution X in terms of the mean function

of the driving process N . The first is to solve (7.22) to obtain (7.23) and then

take expectations, the second is to take expectations first and then solve the

deterministic differential equation for µX .

The same two methods can be used to express the covariance function of X

in terms of the covariance function of N . For the first method, we use (7.23) to

obtain

CX(s, t) = Cov

(
x0e
−s +

∫ s

0

e−(s−u)Nudu, x0e
−t +

∫ t

0

e−(t−v)Nvdv

)
=

∫ s

0

∫ t

0

e−(s−u)e−(t−v)CN (u, v)dvdu. (7.26)

The second method is to derive deterministic differential equations. To begin,

note that

∂1CX(s, t) = Cov (X ′s, Xt) = Cov (−Xs +Ns, Xt)

so

∂1CX(s, t) = −CX(s, t) + CNX(s, t). (7.27)

For t fixed, this is a differential equation in s. Also, CX(0, t) = 0. If somehow

the cross covariance function CNX is found, (7.27) and the boundary condition

CX(0, t) = 0 can be used to find CX . So we turn next to finding a differential

equation for CNX .

∂2CNX(s, t) = Cov(Ns, X
′
t) = Cov(Ns,−Xt +Nt)
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so

∂2CNX(s, t) = −CNX(s, t) + CN (s, t). (7.28)

For s fixed, this is a differential equation in t with initial condition CNX(s, 0) = 0.

Solving (7.28) yields

CNX(s, t) =

∫ t

0

e−(t−v)CN (s, v)dv. (7.29)

Using (7.29) to replace CNX in (7.27) and solving (7.27) yields (7.26).

7.4 Ergodicity

Let X be a stationary or WSS random process. Ergodicity generally means that

certain time averages are asymptotically equal to certain statistical averages. For

example, suppose

X = (Xt : t ∈ R) is WSS and m.s. continuous. The mean µX is defined as a

statistical average: µX = E[Xt] for any t ∈ R.

The time average of X over the interval [0, t] is given by

1
t

∫ t
0
Xudu.

Of course, for t fixed, the time average is a random variable, and is typically

not equal to the statistical average µX . The random process X is called mean

ergodic (in the m.s. sense) if

lim
t→∞

1

t

∫ t

0

Xudu = µX m.s.

A discrete time WSS random process X is similarly called mean ergodic (in the

m.s. sense) if

lim
n→∞

1

n

n∑
i=1

Xi = µX m.s. (7.30)

For example, by the m.s. version of the law of large numbers, if X = (Xn : n ∈ Z)

is WSS with CX(n) = I{n=0} (so that the Xi’s are uncorrelated) then (7.30) is

true. For another example, if CX(n) = 1 for all n, it means that X0 has variance

one and P{Xk = X0} = 1 for all k (because equality holds in the Schwarz

inequality: CX(n) ≤ CX(0)). Then for all n ≥ 1,

1

n

n∑
k=1

Xk = X0.

Since X0 has variance one, the process X is not ergodic if CX(n) = 1 for all

n. In general, whether X is m.s. ergodic in the m.s. sense is determined by the

autocovariance function, CX . The result is stated and proved next for continuous

time, and the discrete-time version is true as well.
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proposition 7.18 Let X be a real-valued, WSS, m.s. continuous random

process. Then X is mean ergodic (in the m.s. sense) if and only if

lim
t→∞

2

t

∫ t

0

(
t− τ
t

)
CX(τ)dτ = 0. (7.31)

Sufficient conditions are

(a) limτ→∞ CX(τ) = 0. (This condition is also necessary if limτ→∞ CX(τ)

exists.)

(b)
∫∞
−∞ |CX(τ)|dτ < +∞.

(c) limτ→∞RX(τ) = 0.

(d)
∫∞
−∞ |RX(τ)|dτ < +∞.

Proof By the definition of m.s. convergence, X is mean ergodic if and only if

lim
t→∞

E

[(
1

t

∫ t

0

Xudu− µX
)2
]

= 0. (7.32)

Since E
[

1
t

∫ t
0
Xudu

]
= 1

t

∫ t
0
µXdu = µX , (7.32) is equivalent to the condition

Var
(

1
t

∫ t
0
Xudu

)
→ 0 as t→∞. By the properties of m.s. integrals,

Var

(
1

t

∫ t

0

Xudu

)
= Cov

(
1

t

∫ t

0

Xudu,
1

t

∫ t

0

Xvdv

)
=

1

t2

∫ t

0

∫ t

0

CX(u− v)dudv (7.33)

=
1

t2

∫ t

0

∫ t−v

−v
CX(τ)dτdv (7.34)

=
1

t2

∫ t

0

∫ t−τ

0

CX(τ)dvdτ +

∫ 0

−t

∫ t

−τ
CX(τ)dvdτ (7.35)

=
1

t

∫ t

−t

(
t− |τ |
t

)
CX(τ)dτ

=
2

t

∫ t

0

(
t− τ
t

)
CX(τ)dτ,

where for v fixed the variable τ = u − v was introduced, and we use the fact

that in both (7.34) and (7.35), the pair (v, τ) ranges over the region pictured in

Figure 7.4. This establishes the first statement of the proposition.

For the remainder of the proof, it is important to keep in mind that the integral

in (7.33) is simply the average of CX(u − v) over the square [0, t] × [0, t]. The

function CX(u− v) is equal to CX(0) along the diagonal of the square, and the

magnitude of the function is bounded by CX(0) everywhere in the square. Thus,

if CX(u, v) is small for u− v larger than some constant, if t is large, the average

of CX(u−v) over the square will be small. The integral in (7.31) is equivalent to

the integral in (7.33), and both can be viewed as a weighted average of CX(τ),

with a triangular weighting function.
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!t

t

t

v

!

Figure 7.4 Region of integration for (7.34) and (7.35).

It remains to prove the assertions regarding (a)-(d). Suppose CX(τ) → c as

τ →∞. We claim the left side of (7.31) is equal to c. Indeed, given ε > 0 there

exists L > 0 so that |CX(τ)− c| ≤ ε whenever τ ≥ L. For 0 ≤ τ ≤ L we can use

the Schwarz inequality to bound CX(τ), namely |CX(τ)| ≤ CX(0). Therefore for

t ≥ L,∣∣∣∣2t
∫ t

0

(
t− τ
t

)
CX(τ)dτ − c

∣∣∣∣ =

∣∣∣∣2t
∫ t

0

(
t− τ
t

)
(CX(τ)− c) dτ

∣∣∣∣
≤ 2

t

∫ t

0

(
t− τ
t

)
|CX(τ)− c| dτ

≤ 2

t

∫ L

0

(CX(0) + |c|) dτ +
2ε

t

∫ t

L

t− τ
t

dτ

≤ 2L (CX(0) + |c|)
t

+
2ε

L

∫ t

0

t− τ
t

dτ

=
2L (CX(0) + |c|)

t
+ ε

≤ 2ε for t large enough.

Thus the left side of (7.31) is equal to c, as claimed. Hence if limτ→∞ CX(τ) = c,

(7.31) holds if and only if c = 0. It remains to prove that (b), (c) and (d) each

imply (7.31).

Suppose condition (b) holds. Then∣∣∣∣2t
∫ t

0

(
t− τ
t

)
CX(τ)dτ

∣∣∣∣ ≤ 2

t

∫ t

0

|CX(τ)|dτ

≤ 1

t

∫ ∞
−∞
|CX(τ)|dτ → 0 as t→∞

so that (7.31) holds.

Suppose either condition (c) or condition (d) holds. By the same arguments
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applied to CX for parts (a) and (b), it follows that

2

t

∫ t

0

(
t− τ
t

)
RX(τ)dτ → 0 as t→∞.

Since the integral in (7.31) is the variance of a random variable, it is nonnegative.

Also, the integral is a weighted average of CX(τ), and CX(τ) = RX(τ) − µ2
X .

Therefore,

0 ≤ 2

t

∫ t

0

(
t− τ
t

)
CX(τ)dt

= −µ2
X +

2

t

∫ t

0

(
t− τ
t

)
RX(τ)dτ → −µ2

X as t→∞.

Thus, (7.31) holds, so that X is mean ergodic in the m.s. sense. In addition, we

see that conditions (c) and (d) also each imply that µX = 0.

Example 7.10 Let fc be a nonzero constant, let Θ be a random variable such

that cos(Θ), sin(Θ), cos(2Θ), and sin(2Θ) have mean zero, and let A be a random

variable independent of Θ such that E[A2] < +∞. Let X = (Xt : t ∈ R)

be defined by Xt = A cos(2πfct + Θ). Then X is WSS with mean zero and

RX(τ) = CX(τ) = E[A2] cos(2πfcτ)
2 . Condition (7.31) is satisfied, so X is mean

ergodic. Mean ergodicity can also be directly verified:∣∣∣∣1t
∫ t

0

Xudu

∣∣∣∣ =

∣∣∣∣At
∫ t

0

cos(2πfcu+ Θ)du

∣∣∣∣
=

∣∣∣∣A(sin(2πfct+ Θ)− sin(Θ))

2πfct

∣∣∣∣
≤ |A|
πfct

→ 0 m.s. as t→∞.

Example 7.11 (Composite binary source) A student has two biased coins, each

with a zero on one side and a one on the other. Whenever the first coin is flipped

the outcome is a one with probability 3
4 . Whenever the second coin is flipped the

outcome is a one with probability 1
4 . Consider a random process (Wk : k ∈ Z)

formed as follows. First, the student selects one of the coins, each coin being

selected with equal probability. Then the selected coin is used to generate the

Wk’s — the other coin is not used at all.

This scenario can be modeled as in Figure 7.5, using the following random

variables:

• (Uk : k ∈ Z) are independent Be
(

3
4

)
random variables

• (Vk : k ∈ Z) are independent Be
(

1
4

)
random variables

• S is a Be
(

1
2

)
random variable

• The above random variables are all independent

• Wk = (1− S)Uk + SVk.
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Uk

Vk

WkS=0

S=1

Figure 7.5 A composite binary source.

The variable S can be thought of as a switch state. Value S = 0 corresponds to

using the coin with probability of heads equal to 3
4 for each flip.

Clearly W is stationary, and hence also WSS. Is W mean ergodic? One ap-

proach to answering this is the direct one. Clearly

µW = E[Wk] = E[Wk|S = 0]P{S = 0}+ E[Wk | S = 1]P{S = 1}

=
3

4
· 1

2
+

1

4
· 1

2
=

1

2
.

So the question is whether

1

n

n∑
k=1

Wk
?→ 1

2
m.s.

But by the strong law of large numbers

1

n

n∑
k=1

Wk =
1

n

n∑
k=1

((1− S)Uk + SVk)

= (1− S)

(
1

n

n∑
k=1

Uk

)
+ S

(
1

n

n∑
k=1

Vk

)
m.s.→ (1− S)

3

4
+ S

1

4
=

3

4
− S

2
.

Thus, the limit is a random variable, rather than the constant 1
2 . Intuitively,

the process W has such strong memory due to the switch mechanism that even

averaging over long time intervals does not diminish the randomness due to the

switch.

Another way to show that W is not mean ergodic is to find the covariance

function CW and use the necessary and sufficient condition (7.31) for mean

ergodicity. Note that for k fixed, W 2
k = Wk with probability one, so E[W 2

k ] = 1
2 .
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If k 6= l, then

E[WkWl] = E[WkWl | S = 0]P{S = 0}+ E[WkWl | S = 1]P{S = 1}

= E[UkUl]
1

2
+ E[VkVl]

1

2

= E[Uk]E[Ul]
1

2
+ E[Vk]E[Vl]

1

2

=

(
3

4

)2
1

2
+

(
1

4

)2
1

2
=

5

16
.

Therefore,

CW (n) =

{
1
4 if n = 0
1
16 if n 6= 0

.

Since limn→∞ CW (n) exists and is not zero, W is not mean ergodic.

In many applications, we are interested in averages of functions that depend

on multiple random variables. We discuss this topic for a discrete time stationary

random process, (Xn : n ∈ Z). Let h be a bounded, Borel measurable function on

Rk for some k. What time average would we expect to be a good approximation

to the statistical average E[h(X1, . . . , Xk)]? A natural choice is

1
n

∑n
j=1 h(Xj , Xj+1, . . . , Xj+k−1).

We define a stationary random process (Xn : n ∈ Z) to be ergodic if

lim
n→∞

1

n

n∑
j=1

h(Xj , . . . , Xj+k−1) = E[h(X1, . . . , Xk)]

for every k ≥ 1 and for every bounded Borel measurable function h on Rk, where

the limit is taken in any of the three senses a.s., p. or m.s.3 An interpretation of

the definition is that if X is ergodic then all of its finite dimensional distributions

are determined as time averages.

As an example, suppose

h(x1, x2) =

{
1 if x1 > 0 ≥ x2

0 else
.

Then h(X1, X2) is one if the process (Xk) makes a “down crossing” of level 0

between times one and two. If X is ergodic then with probability 1,

lim
n→∞

1

n

(
number of down crossings

between times 1 and n+ 1

)
= P{X1 > 0 ≥ X2}. (7.36)

Equation (7.36) relates quantities that are quite different in nature. The left

3 The mathematics literature uses a different definition of ergodicity for stationary processes,
which is equivalent. There are also definitions of ergodicity that do not require stationarity.
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hand side of (7.36) is the long time-average downcrossing rate, whereas the right

hand side of (7.36) involves only the joint statistics of two consecutive values of

the process.

Ergodicity is a strong property. Two types of ergodic random processes are

the following:

• a process X = (Xk) such that the Xk’s are iid.

• a stationary Gaussian random process X such that limn→∞RX(n) = 0 or,

limn→∞ CX(n) = 0.

7.5 Complexification, Part I

In some application areas, primarily in connection with spectral analysis as we

shall see, complex valued random variables naturally arise. Vectors and matrices

over C are reviewed in the appendix. A complex random variable X = U + jV

can be thought of as essentially a two dimensional random variable with real

coordinates U and V . Similarly, a random complex n-dimensional vector X can

be written as X = U + jV , where U and V are each n-dimensional real vectors.

As far as distributions are concerned, a random vector in n-dimensional complex

space Cn is equivalent to a random vector with 2n real dimensions. For example,

if the 2n real variables in U and V are jointly continuous, then X is a continuous

type complex random vector and its density is given by a function fX(x) for

x ∈ Cn. The density fX is related to the joint density of U and V by fX(u+jv) =

fUV (u, v) for all u, v ∈ Rn.

As far as moments are concerned, all the second order analysis covered in

the notes up to this point can be easily modified to hold for complex random

variables, simply by inserting complex conjugates in appropriate places. To be-

gin, if X and Y are complex random variables, we define their correlation by

E[XY ∗] and similarly their covariance as E[(X −E[X])(Y −E[Y ])∗], where ∗ is

used to denote the operation on vectors or matrices of taking the transpose and

then taking the complex conjugate of each coordinate. The Schwarz inequality

becomes |E[XY ∗]| ≤
√
E[|X|2]E[|Y |2] and its proof is essentially the same as

for real valued random variables. The cross correlation matrix for two complex

random vectors X and Y is given by E[XY ∗], and similarly the cross covari-

ance matrix is given by Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])∗]. As before,

Cov(X) = Cov(X,X). The various formulas for covariance still apply. For ex-

ample, if A and C are complex matrices and b and d are complex vectors, then

Cov(AX+b, CY +d) = ACov(X,Y )C∗. Just as in the case of real valued random

variables, a matrix K is a valid covariance matrix (in other words, there exits

some random vector X such that K = Cov(X)) if and only if K is Hermitian

symmetric and positive semidefinite.

Complex valued random variables X and Y with finite second moments are

said to be orthogonal if E[XY ∗] = 0, and with this definition the orthogonality
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principle holds for complex valued random variables. If X and Y are complex

random vectors, then again E[X|Y ] is the MMSE estimator of X given Y , and

the covariance matrix of the error vector is given by Cov(X) − Cov(E[X|Y ]).

The MMSE estimator for X of the form AY + b (i.e. the best linear estimator

of X based on Y ) and the covariance of the corresponding error vector are given

just as for vectors made of real random variables:

Ê[X|Y ] = E[X] + Cov(X,Y )Cov(Y )−1(Y − E[Y ])

Cov(X − Ê[X|Y ]) = Cov(X)− Cov(X,Y )Cov(Y )−1Cov(Y,X).

By definition, a sequence X1, X2, . . . of complex valued random variables con-

verges in the m.s. sense to a random variable X if E[|Xn|2] < ∞ for all n and

if limn→∞E[|Xn −X|2] = 0. The various Cauchy criteria still hold with minor

modification. A sequence with E[|Xn|2] < ∞ for all n is a Cauchy sequence in

the m.s. sense if limm,n→∞E[|Xn −Xm|2] = 0. As before, a sequence converges

in the m.s. sense if and only if it is a Cauchy sequence. In addition, a sequence

X1, X2, . . . of complex valued random variables with E[|Xn|2] <∞ for all n con-

verges in the m.s. sense if and only if limm,n→∞E[XmX
∗
n] exits and is a finite

constant c. If the m.s. limit exists, then the limiting random variable X satisfies

E[|X|2] = c.

Let X = (Xt : t ∈ T) be a complex random process. We can write Xt =

Ut + jVt where U and V are each real valued random processes. The process X

is defined to be a second order process if E[|Xt|2] < ∞ for all t. Since |Xt|2 =

U2
t + V 2

t for each t, X being a second order process is equivalent to both U

and V being second order processes. The correlation function of a second order

complex random process X is defined by RX(s, t) = E[XsX
∗
t ]. The covariance

function is given by CX(s, t) = Cov(Xs, Xt) where the definition of Cov for

complex random variables is used. The definitions and results given for m.s.

continuity, m.s. differentiation, and m.s. integration all carry over to the case of

complex processes, because they are based on the use of the Cauchy criteria for

m.s. convergence which also carries over. For example, a complex valued random

process is m.s. continuous if and only if its correlation function RX is continuous.

Similarly the cross correlation function for two second order random processes

X and Y is defined by RXY (s, t) = E[XsY
∗
t ]. Note that RXY (s, t) = R∗Y X(t, s).

Let X = (Xt : t ∈ T) be a complex random process such that T is either the

real line or the set of integers, and write Xt = Ut + jVt where U and V are each

real valued random processes. By definition, X is stationary if and only if for

any t1, . . . , tn ∈ T, the joint distribution of (Xt1+s, . . . , Xtn+s) is the same for all

s ∈ T. Equivalently, X is stationary if and only if U and V are jointly stationary.

The process X is defined to be WSS if X is a second order process such that

E[Xt] does not depend on t, and RX(s, t) is a function of s − t alone. If X is

WSS we use RX(τ) to denote RX(s, t), where τ = s−t. A pair of complex-valued

random processes X and Y are defined to be jointly WSS if both X and Y are
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WSS and if the cross correlation function RXY (s, t) is a function of s − t. If X

and Y are jointly WSS then RXY (−τ) = R∗Y X(τ).

In summary, everything we’ve discussed in this section regarding complex ran-

dom variables, vectors, and processes can be considered a simple matter of no-

tation. One simply needs to use |X|2 instead of X2, and to use a star “∗” for

Hermitian transpose in place of “T” for transpose. We shall begin using the no-

tation at this point, and return to a discussion of the topic of complex valued

random processes in Section 8.6. In particular, we will examine complex normal

random vectors and their densities, and we shall see that there is somewhat more

to complexification than just notation.

7.6 The Karhunen-Loève expansion

We’ve seen that under a change of coordinates, an n-dimensional random vector

X is transformed into a vector Y = U∗X such that the coordinates of Y are

orthogonal random variables. Here U is the unitary matrix such that E[XX∗] =

UΛU∗. The columns of U are eigenvectors of the Hermitian symmetric matrix

E[XX∗] and the corresponding nonnegative eigenvalues of E[XX∗] comprise the

diagonal of the diagonal matrix Λ. The columns of U form an orthonormal basis

for Cn. The Karhunen-Loève expansion gives a similar change of coordinates for

a random process on a finite interval, using an orthonormal basis of functions

instead of an orthonormal basis of vectors.

Fix a finite interval [a, b]. The L2 norm of a real or complex valued function f

on the interval [a, b] is defined by

||f || =

√∫ b

a

|f(t)|2dt.

We write L2[a, b] for the set of all functions on [a, b] which have finite L2 norm.

The inner product of two functions f and g in L2[a, b] is defined by

〈f, g〉 =

∫ b

a

f(t)g∗(t)dt.

The functions f and g are said to be orthogonal if 〈f, g〉 = 0. Note that ||f || =√
〈f, f〉 and the Schwarz inequality holds: |〈f, g〉| ≤ ||f || · ||g||. A finite or infinite

set of functions (ϕn) in L2[a, b] is said to be an orthonormal system if the func-

tions in the set are mutually orthogonal and have norm one, or in other words,

〈ϕi, ϕj〉 = I{i=j} for all i and j.

In many applications it is useful to use representations of the form

f(t) =

N∑
n=1

cnϕn(t), (7.37)

for some orthonormal system ϕ1, . . . , ϕN . In such a case, we think of (c1, . . . , cN )
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as the coordinates of f relative to the orthonormal system (ϕn), and we might

write f ↔ (c1, . . . , cN ). For example, transmitted signals in many digital com-

munication systems have this form, where the coordinate vector (c1, , . . . , cN )

represents a data symbol. The geometry of the space of all functions f of the

form (7.37) for the fixed orthonormal system ϕ1, . . . , ϕN is equivalent to the ge-

ometry of the coordinates vectors. For example, if g has a similar representation,

g(t) =

N∑
n=1

dnϕn(t),

or equivalently g ↔ (d1, . . . , dN ), then f + g ↔ (c1, . . . , cN ) + (d1, . . . , dN ) and

〈f, g〉 =

∫ b

a

{
N∑
m=1

cmϕm(t)

}{
N∑
n=1

d∗nϕ
∗
n(t)

}
dt

=

N∑
m=1

N∑
n=1

cmd
∗
n

∫ b

a

ϕm(t)ϕ∗n(t)dt

=

N∑
m=1

N∑
n=1

cmd
∗
n〈ϕm, ϕn〉

=

N∑
m=1

cmd
∗
m. (7.38)

That is, the inner product of the functions, 〈f, g〉, is equal to the inner product

of their coordinate vectors. Note that for 1 ≤ n ≤ N , ϕn ↔ (0, . . . , 0, 1, 0, . . . , 0),

such that the one is in the nth position. If f ↔ (c1, . . . , cN ), then the nth coor-

dinate of f is the inner product of f and ϕn :

〈f, ϕn〉 =

∫ b

a

(
N∑
m=1

cmϕm(t)

)
ϕ∗n(t)dt =

N∑
m=1

cm〈ϕm, ϕn〉 = cn.

Another way to derive that 〈f, ϕn〉 = cn is to note that f ↔ (c1, . . . , cN ) and

ϕn ↔ (0, . . . , 0, 1, 0, . . . , 0), so 〈f, ϕn〉 is the inner product of (c1, . . . , cN ) and

(0, . . . , 0, 1, 0, . . . , 0), or cn. Thus, the coordinate vector for f is given by f ↔
(〈f, ϕ1〉, . . . , 〈f, ϕN 〉).

The dimension of the space L2[a, b] is infinite, meaning that there are orthonor-

mal systems (ϕn : n ≥ 1) with infinitely many functions. For such a system, a

function f can have the representation

f(t) =

∞∑
n=1

cnϕn(t). (7.39)

In many instances encountered in practice, the sum (7.39) converges for each t,

but in general what is meant is that the convergence is in the sense of the L2[a, b]

norm:

lim
N→∞

∫ b

a

∣∣∣∣f(t)−
N∑
n=1

cnϕn(t)

∣∣∣∣2dt = 0,
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or equivalently,

lim
N→∞

∣∣∣∣∣∣∣∣f − N∑
n=1

cnϕn

∣∣∣∣∣∣∣∣ = 0.

The span of a set of functions ϕ1, . . . , ϕN is the set of all functions of the

form a1ϕ1(t) + · · ·+ aNϕN (t). If the functions ϕ1, . . . , ϕN form an orthonormal

system and if f ∈ L2[a, b], then the function f ] in the span of ϕ1, . . . , ϕN that

minimizes ||f − f ]|| is given by f ](t) =
∑N
n=1〈f, ϕn〉ϕn(t). In fact, it is easy to

check that f − f ] is orthogonal to ϕn for all n, implying that for any complex

numbers a1, . . . , aN ,

||f −
N∑
n=1

anϕn||2 = ||f − f ]||2 +

N∑
n=1

|〈f ], ϕn〉 − an|2.

Thus, the closest approximation is indeed given by an = 〈f ], ϕn〉. That is, f ]

given by f ](t) =
∑N
n=1〈f, ϕn〉ϕn(t) is the projection of f onto the span of the

ϕ’s. Furthermore,

||f − f ]||2 = ||f ||2 − ||f ]||2 = ||f ||2 −
N∑
n=1

|〈f, ϕn〉|2. (7.40)

The above reasoning is analogous to that in Proposition 3.5.

An orthonormal system (ϕn) is said to be an orthonormal basis for L2[a, b],

if any f ∈ L2[a, b] can be represented as in (7.39). If (ϕn) is an orthonormal

system then for any f, g ∈ L2[a, b], (7.38) still holds with N replaced by ∞ and

is known as Parseval’s relation:

〈f, g〉 =

∞∑
n=1

〈f, ϕn〉〈g, ϕn〉∗.

In particular,

||f ||2 =

∞∑
n=1

|〈f, ϕn〉|2.

A commonly used orthonormal basis is the following (with [a, b] = [0, T ] for

some T ≥ 0):

ϕ1(t) =
1√
T

; ϕ2k(t) =

√
2

T
cos

(
2πkt

T

)
,

ϕ2k+1(t) =

√
2

T
sin

(
2πkt

T

)
for k ≥ 1. (7.41)

What happens if f is replaced by a random process X = (Xt : a ≤ t ≤ b)?

Suppose (ϕn : 1 ≤ n ≤ N) is an orthonormal system consisting of continuous

functions, with N ≤ ∞. The system does not have to be a basis for L2[a, b], but if

it is then there are infinitely many functions in the system. Suppose thatX is m.s.

continuous, or equivalently, that RX is continuous as a function on [a, b]× [a, b].
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In particular, RX is bounded. Then E
[∫ b
a
|Xt|2dt

]
=
∫ b
a
RX(t, t)dt <∞, so that∫ b

a
|Xt|2dt is finite with probability one. Suppose that X can be represented as

Xt =

N∑
n=1

Cnϕn(t). (7.42)

Such a representation exists if (ϕn) is a basis for L2[a, b], but some random

processes have the form (7.42) even if N is finite or if N is infinite but the

system is not a basis. The representation (7.42) reduces the description of the

continuous-time random process to the description of the coefficients, (Cn). This

representation of X is much easier to work with if the coordinate random vari-

ables are orthogonal.

definition 7.19 A Karhunen-Loève (KL) expansion for a random process

X = (Xt : a ≤ t ≤ b) is a representation of the form (7.42) with N ≤ ∞ such

that:

(1) the functions (ϕn) are orthonormal: 〈ϕm, ϕn〉 = I{m=n}, and

(2) the coordinate random variables Cn are mutually orthogonal: E[CmC
∗
n] = 0.

Example 7.12 Let Xt = A for 0 ≤ t ≤ T, where A is a random variable with

0 < E[A2] < ∞. Then X has the form in (7.42) for [a, b] = [0, T ], N = 1,

C1 = A
√
T , and ϕ1(t) =

I{0≤t≤T}√
T

. This is trivially a KL expansion, with only

one term.

Example 7.13 Let Xt = A cos(2πt/T + Θ) for 0 ≤ t ≤ T, where A is a real-

valued random variable with 0 < E[A2] < ∞, and Θ is a random variable

uniformly distributed on [0, 2π] and independent of A. By the cosine angle addi-

tion formula, Xt = A cos(Θ) cos(2πt/T )− A sin(Θ) sin(2πt/T ). Then X has the

form in (7.42) for [a, b] = [0, T ], N = 2,

C1 = A
√

2T cos(Θ), C2 = −A
√

2T sin(Θ),

ϕ1(t) =
cos(2πt/T )√

2T
, ϕ2(t) =

sin(2πt/T )√
2T

.

In particular, ϕ1 and ϕ2 form an orthonormal system with N = 2 elements. To

check whether this is a KL expansion, we see if E[C1C
∗
2 ] = 0. Since E[C1C

∗
2 ] =

−2TE[A2]E[cos(Θ) sin(Θ)] = −TE[A2]E[sin(2Θ)] = 0, this is indeed a KL ex-

pansion, with two terms.

An important property of Karhunen-Loève (KL) expansions in practice is that

they identify the most accurate finite dimensional approximations of a random

process, as described in the following proposition. A random process Z = (Zt :
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a ≤ t ≤ b) is said to be N -dimensional if it has the form Zt =
∑N
n=1Bnψn(t)

for some N random variables B1, . . . , BN and N functions ψ1, . . . , ψN .

proposition 7.20 Suppose X has a Karhunen-Loève (KL) expansion Xt =∑∞
n=1 Cnϕn(t) (See Definition 7.19). Let λn = E[|Cn|2] and suppose the terms

are indexed so that λ1 ≥ λ2 ≥ · · · . For any finite N ≥ 1, the N th partial sum,

X(N)(t) =
∑N
n=1 Cnϕn(t), is a choice for Z that minimizes E[||X − Z||2] over

all N -dimensional random processes Z.

Proof Suppose Z is a random linear combination of N functions, ψ1, . . . , ψN .

Without loss of generality, assume that ψ1, . . . , ψN is an orthonormal system.

(If not, the Gram-Schmidt procedure could be applied to get an orthonormal

system of N functions with the same span.) We first identify the optimal choice

of random coefficients for the ψ’s fixed, and then consider the optimal choice of

the ψ’s. For a given choice of ψ’s and a sample path of X, the L2 norm ||X−Z||2
is minimized by projecting the sample path of X onto the span of the ψ’s, which

means taking Zt =
∑N
j=1〈X,ψj〉ψj(t). That is, the sample path of Z has the

form of f ] above, if f is the sample path of X. This determines the coefficients

to be used for a given choice of ψ’s; it remains to determine the ψ’s. By (7.40),

the (random) approximation error is

||X − Z||2 = ||X||2 −
N∑
j=1

|〈X,ψj〉|2.

Using the KL expansion for X yields

E[|〈X,ψj〉|2] = E

[∣∣∣∣ ∞∑
n=1

Cn〈ϕn, ψj〉
∣∣∣∣2
]

=

∞∑
n=1

λn|〈ϕn, ψj〉|2.

Therefore,

E
[
||X − Z||2

]
= E

[
||X||2

]
−
∞∑
n=1

λnbn (7.43)

where bn =
∑N
j=1 |〈ϕn, ψj〉|2. Note that (bn) satisfies the constraints 0 ≤ bn ≤ 1,

and
∑∞
n=1 bn = N. The right hand side of (7.43) is minimized over (bn) subject

to these constraints by taking bn = I{1≤n≤N}. That can be achieved by taking

ψj = ϕj for 1 ≤ j ≤ N , in which case 〈X,ψj〉 = Cj , and Z becomes X(N).

proposition 7.21 Suppose X = (Xt : a ≤ t ≤ b) is m.s. continuous and (ϕn)

is an orthonormal system of continuous functions. If (7.42) holds for some ran-

dom variables (Cn), it is a KL expansion (i.e., the coordinate random variables

are orthogonal) if and only if the ϕn’s are eigenfunctions of RX :

RXϕn = λnϕn, (7.44)

where for ϕ ∈ L2[a, b], RXϕ denotes the function (RXϕ)(s) =
∫ b
a
RX(s, t)ϕ(t)dt.

In case (7.42) is a KL expansion, the eigenvalues are given by λn = E[|Cn|2].
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Proof Suppose (7.42) holds. Then Cn = 〈X,ϕn〉 =
∫ b
a
Xtϕ

∗
n(t)dt, so that

E[CmC
∗
n] = E [〈X,ϕm〉〈X,ϕn〉∗]

= E

[(∫ b

a

Xsϕ
∗
m(s)ds

)(∫ b

a

Xtϕ
∗
n(t)dt

)∗]

=

∫ b

a

∫ b

a

RX(s, t)ϕ∗m(s)ϕn(t)dsdt

= 〈RXϕn, ϕm〉. (7.45)

Now, if the ϕn’s are eigenfunctions of RX , then E[CmC
∗
n] = 〈RXϕn, ϕm〉 =

〈λnϕn, ϕm〉 = λn〈ϕn, ϕm〉 = λnI{m=n}. In particular, E[CmC
∗
n] = 0 if n 6= m,

so that (7.42) is a KL expansion. Also, taking m = n yields E[|Cn|2] = λn.

Conversely, suppose (7.42) is a KL expansion. Without loss of generality, sup-

pose that the system (ϕn) is a basis of L2[a, b]. (If it weren’t, it could be extended

to a basis by augmenting it with functions from another basis and applying the

Gramm-Schmidt method of orthogonalizing.) Then for n fixed, 〈RXϕn, ϕm〉 = 0

for all m 6= n. By the fact (ϕn) is a basis, the function RXϕn has an expan-

sion of the form (7.39), but all terms except possibly the nth are zero. Hence,

Rnϕn = λnϕn for some constant λn, so the eigenrelations (7.44) hold. Again,

E[|Cn|2] = λn by the computation above.

The following theorem is stated without proof.

theorem 7.22 (Mercer’s theorem) If RX is the autocorrelation function of a

m.s. continuous random process X = (Xt : a ≤ t ≤ b) (equivalently, if RX is a

continuous function on [a, b]× [a, b] that is positive semi-definite, i.e. RX(ti, tj)

is a positive semidefinite matrix for any n and any a ≤ t1 < t2 < · · · < tn ≤ b),

then there exists an orthonormal basis for L2[a, b], (ϕn : n ≥ 1), of continuous

eigenfunctions and corresponding nonnegative eigenvalues (λn : n ≥ 1) for RX ,

and RX is given by the following series expansion:

RX(s, t) =

∞∑
n=1

λnϕn(s)ϕ∗n(t). (7.46)

The series converges uniformly in s, t, meaning that

lim
N→∞

max
s,t∈[a,b]

∣∣∣∣RX(s, t)−
N∑
n=1

λnϕn(s)ϕ∗n(t)

∣∣∣∣ = 0.

theorem 7.23 ( Karhunen-Loève expansion) If X = (Xt : a ≤ t ≤ b) is a

m.s. continuous random process it has a KL expansion,

Xt =

∞∑
n=1

ϕn(t)〈X,ϕn〉,

and the series converges in the m.s. sense, uniformly over t ∈ [a, b].
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Proof Use the orthonormal basis (ϕn) guaranteed by Mercer’s theorem. By

(7.45), E[〈X,ϕm〉∗〈X,ϕn〉] = 〈RXϕn, ϕm〉 = λnI{n=m}. Also,

E[Xt〈X,ϕn〉∗] = E[Xt

∫ b

a

X∗sϕn(s)ds]

=

∫ b

a

RX(t, s)ϕn(s)ds = λnϕn(t).

These facts imply that for finite N,

E

∣∣∣∣∣Xt −
N∑
n=1

ϕn(t)〈X,ϕn〉

∣∣∣∣∣
2
 = RX(t, t)−

N∑
n=1

λn|ϕn(t)|2, (7.47)

which, since the series on the right side of (7.47) converges uniformly in t as

n→∞, implies the stated convergence property for the representation of X.

Remarks (1) The means of the coordinates of X in a KL expansion can be

expressed using the mean function µX(t) = E[Xt] as follows:

E[〈X,ϕn〉] =

∫ b

a

µX(t)ϕ∗n(t)dt = 〈µX , ϕn〉.

Thus, the mean of the nth coordinate of X is the nth coordinate of the mean

function of X.

(2) Symbolically, mimicking matrix notation, we can write the representation

(7.46) of RX as

RX(s, t) = [ϕ1(s)|ϕ2(s)| · · · ]


λ1

λ2

λ3

. . .




ϕ∗1(t)

ϕ∗2(t)
...

 .

(3) If f ∈ L2[a, b] and f(t) represents a voltage or current across a resistor, then

the energy dissipated during the interval [a, b] is, up to a multiplicative constant,

given by

(Energy of f) = ||f ||2 =

∫ b

a

|f(t)|2dt =

∞∑
n=1

|〈f, ϕn〉|2.

The mean total energy of (Xt : a < t < b) is thus given by

E

[∫ b

a

|Xt|2dt

]
=

∫ b

a

RX(t, t)dt

=

∫ b

a

∞∑
n=1

λn|ϕn(t)|2dt

=

∞∑
n=1

λn.
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(4) If (Xt : a ≤ t ≤ b) is a real valued mean zero Gaussian process and if the

orthonormal basis functions are real valued, then the coordinates 〈X,ϕn〉 are

uncorrelated, real valued, jointly Gaussian random variables, and therefore are

independent.

Example 7.14 Let W = (Wt : t ≥ 0) be a Brownian motion with parameter

σ2. Let us find the KL expansion of W over the interval [0, T ]. Substituting

RX(s, t) = σ2(s ∧ t) into the eigenrelation (7.44) yields∫ t

0

σ2sϕn(s)ds+

∫ T

t

σ2tϕn(s)ds = λnϕn(t). (7.48)

Differentiating (7.48) with respect to t yields

σ2tϕn(t)− σ2tϕn(t) +

∫ T

t

σ2ϕn(s)ds = λnϕ
′
n(t), (7.49)

and differentiating a second time yields that the eigenfunctions satisfy the dif-

ferential equation λϕ′′ = −σ2ϕ. Also, setting t = 0 in (7.48) yields the boundary

condition ϕn(0) = 0, and setting t = T in (7.49) yields the boundary condition

ϕ′n(T ) = 0. Solving yields that the eigenvalue and eigenfunction pairs for W are

λn =
4σ2T 2

(2n+ 1)2π2
ϕn(t) =

√
2

T
sin

(
(2n+ 1)πt

2T

)
n ≥ 0.

It can be shown that these functions form an orthonormal basis for L2[0, T ].

Example 7.15 Let X be a white noise process. Such a process is not a random

process as defined in these notes, but can be defined as a generalized process

in the same way that a delta function can be defined as a generalized function.

Generalized random processes, just like generalized functions, only make sense

when multiplied by a suitable function and then integrated. For example, the

delta function δ is defined by the requirement that for any function f that is

continuous at t = 0, ∫ ∞
−∞

f(t)δ(t)dt = f(0).

A white noise process X is such that integrals of the form
∫∞
−∞ f(t)X(t)dt exist

for functions f with finite L2 norm ||f ||. The integrals are random variables with

finite second moments, mean zero and correlations given by

E

[(∫ ∞
−∞

f(s)Xsds

)(∫ ∞
−∞

g(t)Xtdt

)∗]
= σ2

∫ ∞
−∞

f(t)g∗(t)dt.

In a formal or symbolic sense, this means that X is a WSS process with mean zero

and autocorrelation function RX(s, t) = E[XsX
∗
t ] given by RX(τ) = σ2δ(τ).

What would the KL expansion be for a white noise process over some fixed

interval [a,b]? The eigenrelation (7.44) becomes simply σ2ϕ(t) = λnϕ(t) for all t
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in the interval. Thus, all the eigenvalues of a white noise process are equal to σ2,

and any function ϕ with finite norm is an eigenfunction. Thus, if (ϕn : n ≥ 1)

is an arbitrary orthonormal basis for L2[a, b], then the coordinates of the white

noise process X, formally given by Xn = 〈X,ϕn〉, satisfy

E[XnX
∗
m] = σ2I{n=m}. (7.50)

This offers a reasonable interpretation of white noise. It is a generalized random

process such that its coordinates (Xn : n ≥ 1) relative to an arbitrary orthonor-

mal basis for a finite interval have mean zero and satisfy (7.50).

7.7 Periodic WSS random processes

Let X = (Xt : t ∈ R) be a WSS random process and let T be a positive constant.

proposition 7.24 The following three conditions are equivalent:

(a) RX(T ) = RX(0)

(b) P{XT+τ = Xτ} = 1 for all τ ∈ R
(c) RX(T + τ) = RX(τ) for all τ ∈ R (i.e. periodic with period T ).

Proof Suppose (a) is true. Since RX(0) is real valued, so is RX(T ), yielding

E[|XT+τ −Xτ |2] = E[XT+τX
∗
T+τ −XT+τX

∗
τ −XτX

∗
T+τ +XτX

∗
τ ]

= RX(0)−RX(T )−R∗X(T ) +RX(0) = 0.

Therefore, (a) implies (b). Next, suppose (b) is true and let τ ∈ R. Since two

random variables that are equal with probability one have the same expectation,

(b) implies that

RX(T + τ) = E[XT+τX
∗
0 ] = E[XτX

∗
0 ] = RX(τ).

Therefore (b) implies (c). Trivially (c) implies (a), so the equivalence of (a)

through (c) is proved.

definition 7.25 We call X a periodic, WSS process of period T if X is WSS

and any of the three equivalent properties (a), (b), or (c) of Proposition 7.24

hold.

Property (b) almost implies that the sample paths of X are periodic. However,

for each τ it can be that Xτ 6= Xτ+T on an event of probability zero, and since

there are uncountably many real numbers τ , the sample paths need not be peri-

odic. However, suppose (b) is true and define a process Y by Yt = X
(t mod T )

.

(Recall that by definition, (t mod T ) is equal to t + nT , where n is selected so

that 0 ≤ t + nT < T .) Then Y has periodic sample paths, and Y is a version

of X, which by definition means that P{Xt = Yt} = 1 for any t ∈ R. Thus, the

properties (a) through (c) are equivalent to the condition that X is WSS and

there is a version of X with periodic sample paths of period T .
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Suppose X is a m.s. continuous, periodic, WSS random process. Due to the

periodicity of X, it is natural to consider the restriction of X to the interval

[0, T ]. The Karhunen-Loève expansion of X restricted to [0, T ] is described next.

Let ϕn be the function on [0, T ] defined by

ϕn(t) =
e2πjnt/T

√
T

.

The functions (ϕn : n ∈ Z) form an orthonormal basis for L2[0, T ].4 In addition,

for any n fixed, both RX(τ) and ϕn are periodic with period dividing T , so∫ T

0

RX(s, t)ϕn(t)dt =

∫ T

0

RX(s− t)ϕn(t)dt

=

∫ s

s−T
RX(t)ϕn(s− t)dt

=

∫ T

0

RX(t)ϕn(s− t)dt

=
1√
T

∫ T

0

RX(t)e2πjns/T e−2πjnt/T dt

= λnϕn(s).

where λn is given by

λn =

∫ T

0

RX(t)e−2πjnt/T dt =
√
T 〈RX , ϕn〉. (7.51)

Therefore ϕn is an eigenfunction of RX with eigenvalue λn. The Karhunen-Loève

expansion (5.20) of X over the interval [0, T ] can be written as

Xt =

∞∑
n=−∞

X̂ne
2πjnt/T (7.52)

where X̂n is defined by

X̂n =
1√
T
〈X,ϕn〉 =

1

T

∫ T

0

Xte
−2πjnt/T dt.

Note that

E[X̂mX̂
∗
n] =

1

T
E[〈X,ϕm〉〈X,ϕn〉∗] =

λn
T
I{m=n}.

Although the representation (7.52) has been derived only for 0 ≤ t ≤ T , both

sides of (7.52) are periodic with period T . Therefore, the representation (7.52)

holds for all t. It is called the spectral representation of the periodic, WSS process

X.

4 Here it is more convenient to index the functions by the integers, rather than by the

nonnegative integers. Sums of the form
∑∞
n=−∞ should be interpreted as limits of∑N

n=−N as N →∞.
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By (7.51), the series expansion (7.39) applied to the function RX over the

interval [0, T ] can be written as

RX(t) =

∞∑
n=−∞

λn
T
e2πjnt/T

=
∑
ω

pX(ω)ejωt, (7.53)

where pX is the function on the real line R = (ω : −∞ < ω <∞),5 defined by

pX(ω) =

{
λn/T ω = 2πn

T for some integer n

0 else

and the sum in (7.53) is only over ω such that pX(ω) 6= 0. The function pX is

called the power spectral mass function of X. It is similar to a probability mass

function, in that it is positive for at most a countable infinity of values. The

value pX( 2πn
T ) is equal to the power of the nth term in the representation (7.52):

E[|X̂ne
2πjnt/T |2] = E[|X̂n|2] = pX

(
2πn

T

)
and the total mass of pX is the total power of X, RX(0) = E[|Xt|2].

Periodicity is a rather restrictive assumption to place on a WSS process. In the

next chapter we shall further investigate spectral properties of WSS processes.

We shall see that many WSS random processes have a power spectral density.

A given random variable might have a pmf or a pdf, and it definitely has a

CDF. In the same way, a given WSS process might have a power spectral mass

function or a power spectral density function, and it definitely has a cumulative

power spectral distribution function. The periodic WSS processes of period T

are precisely those WSS processes that have a power spectral mass function that

is concentrated on the integer multiples of 2π
T .

Problems

7.1 Calculus for a simple Gaussian random process Define X = (Xt : t ∈ R)

by Xt = A+Bt+Ct2, where A,B,C are independent, N(0, 1) random variables.

(a) Verify directly that X is m.s. differentiable. (b) Express P
{∫ 1

0
Xsds ≥ 1

}
in

terms of Q, the standard normal complementary CDF.

7.2 Lack of sample path continuity of a Poisson process Let

N = (Nt : t ≥ 0) be a Poisson process with rate λ > 0. (a) Find the following two

probabilities, explaining your reasoning: P{N is continuous over the interval [0,T] }
for a fixed T > 0, and P{N is continuous over the interval [0,∞)}. (b) Is N sam-

ple path continuous a.s.? Is N m.s. continuous?

5 The Greek letter ω is used here as it is traditionally used for frequency measured in

radians per second. It is related to the frequency f measured in cycles per second by

ω = 2πf . Here ω is not the same as a typical element of the underlying space of all
outcomes, Ω. The meaning of ω should be clear from the context.
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7.3 Properties of a binary valued process Let Y = (Yt : t ≥ 0) be given by

Yt = (−1)Nt , where N is a Poisson process with rate λ > 0.

(a) Is Y a Markov process? If so, find the transition probability function pi,j(s, t)

and the transition rate matrix Q. (b) Is Y mean square continuous? (c) Is Y mean

square differentiable? (d) Does limT→∞
1
T

∫ T
0
ytdt exist in the m.s. sense? If so,

identify the limit.

7.4 Some statements related to the basic calculus of random processes

Classify each of the following statements as either true (meaning always holds)

or false, and justify your answers.

(a) Let Xt = Z, where Z is a Gaussian random variable. Then X = (Xt : t ∈ R)

is mean ergodic in the m.s. sense.

(b) The function RX defined by RX(τ) =

{
σ2 |τ | ≤ 1

0 τ > 1
is a valid autocorre-

lation function.

(c) Suppose X = (Xt : t ∈ R) is a mean zero stationary Gaussian random pro-

cess, and suppose X is m.s. differentiable. Then for any fixed time t, Xt and X ′t
are independent.

7.5 Differentiation of the square of a Gaussian random process (a) Show

that if random variables (An : n ≥ 0) are mean zero and jointly Gaussian

and if limn→∞An = A m.s., then limn→∞A2
n = A2 m.s. (Hint: If A,B,C,

and D are mean zero and jointly Gaussian, then E[ABCD] = E[AB]E[CD] +

E[AC]E[BD] + E[AD]E[BC].)

(b) Show that if random variables (An, Bn : n ≥ 0) are jointly Gaussian and

limn→∞An = A m.s. and limn→∞Bn = B m.s. then limn→∞AnBn = AB m.s.

(Hint: Use part (a) and the identity ab = (a+b)2−a2−b2
2 .)

(c) Let X be a mean zero, m.s. differentiable Gaussian random process, and let

Yt = X2
t for all t. Is Y m.s. differentiable? If so, justify your answer and express

the derivative in terms of Xt and X ′t.

7.6 Continuity of a process passing through a nonlinearity Suppose X is a

m.s. continuous random process and G is a bounded, continuous function on R.
Let Yt = G(Xt) for all t ∈ R.
(a) Prove Y is m.s. continuous. (Hint: Use the connections between continuity

in m.s. and p. senses. Also, a continuous function is uniformly continuous over

any finite interval, so for any interval [a, b] and ε > 0, there is a δ > 0 so that

|G(x)−G(x′)| ≤ ε whenever x, x′ ∈ [a, b] with |x− x′| ≤ δ.)
(b) Give an example with G bounded but not continuous, such that Y is not

m.s. continuous.

(c) Give an example with G continuous but not bounded, such that Y is not

m.s. continuous.

7.7 Mean square differentiability of some random processes For each

process described below, determine whether the process is m.s. differentiable in

the m.s. sense. Justify your reasoning.

(a) Xt =
∫ t

0
Nsds, where N is a Poisson random process with rate parameter

one.
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(b) Process Y, assumed to be a mean-zero Gaussian process with autocorrelation

function RY (s, t) =

{
1 if bsc = btc
0 else.

. Here “bxc” denotes the greatest integer

less than or equal to x.

(c) Process Z defined by the series (which converges uniformly in the m.s. sense)

Zt =
∑∞
n=1

Vn sin(nt)
n2 where the Vn’s are independent, N(0, 1) random variables.

7.8 Integral of OU process Suppose X is a stationary continuous-time Gaus-

sian process with autocorrelation function RX(τ) = Ae−|τ |, and let Yt =
∫ t

0
Xudu

for t ≥ 0. (It follows that X has mean zero and is a Markov process. It is some-

times called the standard Ornstein-Uhlenbeck process, and it provides a model

for the velocity of a particle moving in one dimension subject to random distur-

bances and friction, and thus Y would denote the position of the particle.)

(a) Find the mean and autocorrelation function of (Yt : t ≥ 0).

(b) Find g(t) for t > 0 so that P{|Yt| ≥ g(t)} = 0.5. (Hint: Q(0.81) ≈ 0.25,

where Q is the complementary CDF of the standard Gaussian distribution.)

(c) Find a function f(α) so that as α→∞, the finite dimensional distributions

of the process Zt
4
= f(α)Yαt converge to the finite dimensional distributions

of the standard Brownian motion process. (An interpretation is that f(α)Xαt

converges to white Gaussian noise.)

7.9 A two-state stationary Markov process SupposeX is a stationary Markov

process with mean zero, state space {−1, 1}, and transition rate matrix Q =(
−α α

α −α

)
, where α ≥ 0. Note that α = 0 is a possible case.

(a) Find the autocorrelation function, RX(τ).

(b) For what value(s) of α ≥ 0 is X m.s. continuous?

(c) For what value(s) of α ≥ 0 is X m.s. continuously differentiable?

(d) For what value(s) of α ≥ 0 is X mean ergodic in the m.s. sense?

7.10 Cross correlation between a process and its m.s. derivative SupposeX

is a m.s. differentiable random process. Show that RX′X = ∂1RX . (It follows, in

particular, that ∂1RX exists.)

7.11 Fundamental theorem of calculus for m.s. calculus Suppose

X = (Xt : t ≥ 0) is a m.s. continuous random process. Let Y be the process

defined by Yt =
∫ t

0
Xudu for t ≥ 0. Show that X is the m.s. derivative of Y . (It

follows, in particular, that Y is m.s. differentiable.)

7.12 A windowed Poisson process Let N = (Nt : t ≥ 0) be a Poisson process

with rate λ > 0, and let X = (Xt : t ≥ 0) be defined by Xt = Nt+1 −Nt. Thus,

Xt is the number of counts of N during the time window (t, t+ 1].

(a) Sketch a typical sample path of N , and the corresponding sample path of X.

(b) Find the mean function µX(t) and covariance function CX(s, t) for s, t ≥ 0.

Express your answer in a simple form.

(c) Is X Markov? Why or why not?

(d) Is X mean-square continuous? Why or why not?

(e) Determine whether 1
t

∫ t
0
Xsds converges in the mean square sense as t→∞.
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7.13 An integral of white noise times an exponential Let Xt =
∫ t

0
Zue

−udu,

for t ≥ 0, where Z is white Gaussian noise with autocorrelation function δ(τ)σ2,

for some σ2 > 0. (a) Find the autocorrelation function, RX(s, t) for s, t ≥ 0. (b)

Is X mean square differentiable? Justify your answer. (c) Does Xt converge in

the mean square sense as t→∞? Justify your answer.

7.14 A singular integral with a Brownian motion Consider
∫ 1

0
wt
t dt, where w

is a standard Brownian motion. Since Var(wtt ) = 1
t diverges as t→ 0, we define

the integral as limε→0

∫ 1

ε
wt
t dt m.s. if the limit exists.

(a) Does the limit exist? If so, what is the probability distribution of the limit?

(b) Similarly, we define
∫∞

1
wt
t dt to be limT→∞

∫ T
1

wt
t dt m.s. if the limit exists.

Does the limit exist? If so, what is the probability distribution of the limit?

7.15 An integrated Poisson process Let N = (Nt : t ≥ 0) denote a Poisson

process with rate λ > 0, and let Yt =
∫ t

0
Nsds for s ≥ 0. (a) Sketch a typical

sample path of Y . (b) Compute the mean function, µY (t), for t ≥ 0. (c) Compute

Var(Yt) for t ≥ 0. (d) Determine the value of the limit, limt→∞ P{Yt < t}.
7.16 Recognizing m.s. properties Suppose X is a mean zero random process.

For each choice of autocorrelation function shown, indicate which of the following

properties X has: m.s. continuous, m.s. differentiable, m.s. integrable over finite

length intervals, and mean ergodic in the the m.s. sense.

(a) X is WSS with RX(τ) = (1− |τ |)+,

(b) X is WSS with RX(τ) = 1 + (1− |τ |)+,

(c) X is WSS with RX(τ) = cos(20πτ) exp(−10|τ |),

(d) RX(s, t) =

{
1 if bsc = btc
0 else

, (not WSS, you don’t need to check for

mean ergodic property) (e) RX(s, t) =
√
s ∧ t for s, t ≥ 0. (not WSS, you don’t

need to check for mean ergodic property)

7.17 A random Taylor’s approximation Suppose X is a mean zero WSS ran-

dom process such that RX is twice continuously differentiable. Guided by Tay-

lor’s approximation for deterministic functions, we might propose the following

estimator of Xt given X0 and X ′0: X̂t = X0 + tX ′0.

(a) Express the covariance matrix for the vector (X0, X
′
0, Xt)

T in terms of the

function RX and its derivatives.

(b) Express the mean square error E[(Xt − X̂t)
2] in terms of the function RX

and its derivatives.

(c) Express the optimal linear estimator Ê[Xt|X0, X
′
0] in terms of X0, X

′
0, and

the function RX and its derivatives.

(d) (This part is optional - not required.) Compute and compare limt→0 (mean

square error)/t4 for the two estimators, under the assumption that RX is four

times continuously differentiable.

7.18 A stationary Gaussian process Let X = (Xt : t ∈ Z) be a real stationary

Gaussian process with mean zero and RX(t) = 1
1+t2 . Answer the following un-

related questions.

(a) Is X a Markov process? Justify your answer.
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(b) Find E[X3|X0] and express P{|X3 − E[X3|X0]| ≥ 10} in terms of Q, the

standard Gaussian complementary cumulative distribution function.

(c) Find the autocorrelation function of X ′, the m.s. derivative of X.

(d) Describe the joint probability density of (X0, X
′
0, X1)T . You need not write

it down in detail.

7.19 Integral of a Brownian bridge A standard Brownian bridge B can be de-

fined byBt = Wt−tW1 for 0 ≤ t ≤ 1, whereW is a Brownian motion with param-

eter σ2 = 1. A Brownian bridge is a mean zero, Gaussian random process which is

a.s. sample path continuous, and has autocorrelation function RB(s, t) = s(1−t)
for 0 ≤ s ≤ t ≤ 1.

(a) Why is the integral X =
∫ 1

0
Btdt well defined in the m.s. sense?

(b) Describe the joint distribution of the random variables X and W1.

7.20 Correlation ergodicity of Gaussian processes (a) A WSS random pro-

cess X is called correlation ergodic (in the m.s. sense) if for any constant h,

lim
t→∞

m.s.
1

t

∫ t

0

Xs+hXsds = E[Xs+hXs].

Suppose X is a mean zero, real-valued Gaussian process such that RX(τ) → 0

as |τ | → ∞. Show that X is correlation ergodic. (Hints: Let Yt = Xt+hXt. Then

correlation ergodicity of X is equivalent to mean ergodicity of Y . If A,B,C,

and D are mean zero, jointly Gaussian random variables, then E[ABCD] =

E[AB]E[CD] + E[AC]E[BD] + E[AD]E[BC].

(b) Give a simple example of a WSS random process that is mean ergodic in the

m.s. sense but is not correlation ergodic in the m.s. sense.

7.21 A random process which changes at a random time Let Y = (Yt : t ∈
R) and Z = (Zt : t ∈ R) be stationary Gaussian Markov processes with mean

zero and autocorrelation functions RY (τ) = RZ(τ) = e−|τ |. Let U be a real-

valued random variable and suppose Y , Z, and U , are mutually independent.

Finally, let X = (Xt : t ∈ R) be defined by

Xt =

{
Yt t < U

Zt t ≥ U .

(a) Sketch a typical sample path of X.

(b) Find the first order distributions of X.

(c) Express the mean and autocorrelation function of X in terms of the CDF,

FU , of U .

(d) Under what condition on FU is X m.s. continuous?

(e) Under what condition on FU is X a Gaussian random process?

7.22 Gaussian review question Let X = (Xt : t ∈ R) be a real-valued sta-

tionary Gauss-Markov process with mean zero and autocorrelation function

CX(τ) = 9 exp(−|τ |).
(a) A fourth degree polynomial of two variables is given by p(x, y) = a + bx +

cy+dxy+ex2y+fxy2 + ... such that all terms have the form cxiyj with i+j ≤ 4.

Suppose X2 is to be estimated by an estimator of the form p(X0, X1). Find the
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fourth degree polynomial p to minimize the MSE: E[(X2−p(X0, X1))2] and find

the resulting MMSE. (Hint: Think! Very little computation is needed.)

(b) Find P (X2 ≥ 4|X0 = 1
π , X1 = 3). You can express your answer using the

Gaussian Q function Q(c) =
∫∞
c

1√
2π
e−u

2/2du. (Hint: Think! Very little compu-

tation is needed.)

7.23 First order differential equation driven by Gaussian white noise Let X

be the solution of the ordinary differential equation X ′ = −X +N , with initial

condition x0, where N = (Nt : t ≥ 0) is a real valued Gaussian white noise

with RN (τ) = σ2δ(τ) for some constant σ2 > 0. Although N is not an ordinary

random process, we can interpret this as the condition that N is a Gaussian

random process with mean µN = 0 and correlation function RN (τ) = σ2δ(τ).

(a) Find the mean function µX(t) and covariance function CX(s, t).

(b) Verify that X is a Markov process by checking the necessary and sufficient

condition: CX(r, s)CX(s, t) = CX(r, t)CX(s, s) whenever r < s < t. (Note: The

very definition of X also suggests that X is a Markov process, because if t is the

“present time,” the future of X depends only on Xt and the future of the white

noise. The future of the white noise is independent of the past (Xs : s ≤ t).

Thus, the present value Xt contains all the information from the past of X that

is relevant to the future of X. This is the continuous-time analog of the discrete-

time Kalman state equation.)

(c) Find the limits of µX(t) and RX(t + τ, t) as t → ∞. (Because these limits

exist, X is said to be asymptotically WSS.)

7.24 KL expansion of a simple random process LetX be a WSS random pro-

cess with mean zero and autocorrelation function

RX(τ) = 100(cos(10πτ))2 = 50 + 50 cos(20πτ).

(a) Is X mean square differentiable? (Justify your answer.)

(b) Is X mean ergodic in the m.s. sense? (Justify your answer.)

(c) Describe a set of eigenfunctions and corresponding eigenvalues for the Karhunen-

Loève expansion of (Xt : 0 ≤ t ≤ 1).

7.25 KL expansion of a finite rank process Suppose Z = (Zt : 0 ≤ t ≤ T )

has the form Zt =
∑N
n=1Xnξn(t) such that the functions ξ1, . . . , ξN are orthonor-

mal over the interval [0, T ], and the vector X = (X1, ..., XN )T has a correlation

matrix K with det(K) 6= 0. The process Z is said to have rank N . Suppose K is

not diagonal. Describe the Karhunen-Loève expansion of Z. That is, describe an

orthornormal basis (ϕn : n ≥ 1), and eigenvalues for the K-L expansion of X, in

terms of the given functions (ξn) and correlation matrix K. Also, describe how

the coordinates 〈Z,ϕn〉 are related to X.

7.26 KL expansion for derivative process Suppose that X = (Xt : 0 ≤ t ≤ 1)

is a m.s. continuously differentiable random process on the interval [0, 1]. Differ-

entiating the KL expansion of X yields X ′(t) =
∑
n〈X,ϕn〉ϕ′n(t), which looks

similar to a KL expansion for X ′, but it may be that the functions ϕ′n are not

orthonormal. For some cases it is not difficult to identify the KL expansion for

X ′. To explore this, let (ϕn(t)), (〈X,ϕn〉), and (λn) denote the eigenfunctions,
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coordinate random variables, and eigenvalues, for the KL expansion of X over

the interval [0, 1]. Let (ψk(t)), (〈X ′, ψk〉), and (µk), denote the corresponding

quantities for X ′. For each of the following choices of (ϕn(t)), express the eigen-

functions, coordinate random variables, and eigenvalues, for X ′ in terms of those

for X :

(a) ϕn(t) = e2πjnt, n ∈ Z
(b) ϕ1(t) = 1, ϕ2k(t) =

√
2 cos(2πkt), and ϕ2k+1(t) =

√
2 sin(2πkt) for k ≥ 1.

(c) ϕn(t) =
√

2 sin( (2n+1)πt
2 ), n ≥ 0. (Hint: Sketch ϕn and ϕ′n for n = 1, 2, 3.)

(d) ϕ1(t) = c1(1+
√

3t) and ϕ2(t) = c2(1−
√

3t). (Suppose λn = 0 for n 6∈ {1, 2}.
The constants cn should be selected so that ||ϕn|| = 1 for n = 1, 2, but there is

no need to calculate the constants for this problem.)

7.27 An infinitely differentiable process Let X = (Xt : t ∈ R) be WSS with

autocorrelation function RX(τ) = e−τ
2/2. (a) Show that X is k-times differen-

tiable in the m.s. sense, for all k ≥ 1. (b) Let X(k) denote the kth derivative

process of X, for k ≥ 1. Is X(k) mean ergodic in the m.s. sense for each k?

Justify your answer.

7.28 KL expansion of a Brownian bridge Let B be a Gaussian random pro-

cess on the interval [0, 1] with RB(s, t) = (s∧ t)− st. Derive the eigen expansion

of RB guaranteed by Mercer’s theorem, and describe the KL expansion of B.

(Hint: Follow the method of Example 7.6.8.)

7.29 Periodicity of a random frequency sinusoidal process Suppose

Xt = A exp(2πjΦt), where A and Φ are independent real valued random vari-

ables such that E[A2] <∞.
(a) Under the additional assumption P{A > 0} = 1, under what conditions on

the distributions of A and Φ is X a WSS periodic random process? (Here and

in part (c), “periodic” means with a deterministic period.)

(b) Among the possibilities identified in part (a), under what additional condi-

tions is X mean ergodic in the m.s. sense?

(c) Under the additional assumption Var(A) > 0 (but dropping the assumption

P{A > 0} = 1), under what conditions on the distribution of A and Φ is X a

WSS periodic random process?

(d) Among the possibilities identified in part (c), under what additional condi-

tions is X mean ergodic in the m.s. sense?

7.30 Mean ergodicity of a periodic WSS random process Let X be a mean

zero periodic WSS random process with period T > 0. Recall that X has a power

spectral representation

Xt =
∑
n∈Z

X̂ne
2πjnt/T .

where the coefficients X̂n are orthogonal random variables. The power spectral

mass function of X is the discrete mass function pX supported on frequencies of

the form 2πn
T , such that E[|X̂n|2] = pX( 2πn

T ). Under what conditions on pX is

the process X mean ergodic in the m.s. sense? Justify your answer.
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7.31 Application of the KL expansion to estimation Let X = (Xt : 0 ≤ T )

be a random process given by Xt = AB sin(πtT ), where A and T are positive

constants and B is a N(0, 1) random variable. Think of X as an amplitude mod-

ulated random signal.

(a) What is the expected total energy of X?

(b) What are the mean and covariance functions of X?

(c) Describe the Karhunen-Loéve expansion of X. (Hint: Only one eigenvalue is

nonzero, call it λ1. What are λ1, the corresponding eigenfunction ϕ1, and the

first coordinate X1 = 〈X,ϕ1〉? You don’t need to explicitly identify the other

eigenfunctions ϕ2, ϕ3, . . .. They can simply be taken to fill out an orthonormal

basis.)

(d) Let N = (Xt : 0 ≤ T ) be a real-valued Gaussian white noise process in-

dependent of X with RN (τ) = σ2δ(τ), and let Y = X + N . Think of Y as a

noisy observation of X. The same basis functions used for X can be used for the

Karhunen-Loève expansions of N and Y . Let N1 = 〈N,ϕ1〉 and Y1 = 〈Y, ϕ1〉.
Note that Y1 = X1 + N1. Find E[B|Y1] and the resulting mean square error.

(Remark: The other coordinates Y2, Y3, . . . are independent of both X and Y1,

and are thus useless for the purpose of estimating B. Thus, E[B|Y1] is equal to

E[B|Y ], the MMSE estimate of B given the entire observation process Y .)

7.32* An autocorrelation function or not? Let RX(s, t) = cosh(a(|s − t| −
0.5)) for −0.5 ≤ s, t ≤ 0.5 where a is a positive constant. Is RX the auto-

correlation function of a random process of the form X = (Xt : −0.5 ≤ t ≤ 0.5)?

If not, explain why not. If so, give the Karhunen-Loève expansion for X.

7.33* On the conditions for m.s. differentiability

(a) Let f(t) =

{
t2 sin(1/t2) t 6= 0

0 t = 0
. Sketch f and show that f is differentiable

over all of R, and find the derivative function f ′. Note that f ′ is not continuous,

and
∫ 1

−1
f ′(t)dt is not well defined, whereas this integral would equal f(1)−f(−1)

if f ′ were continuous.

(b) Let Xt = Af(t), where A is a random variable with mean zero and variance

one. Show that X is m.s. differentiable.

(c) Find RX . Show that ∂1RX and ∂2∂1RX exist but are not continuous.



8 Random Processes in Linear
Systems and Spectral Analysis

Random processes can be passed through linear systems in much the same way

as deterministic signals can. A time-invariant linear system is described in the

time domain by an impulse response function, and in the frequency domain

by the Fourier transform of the impulse response function. In a sense we shall

see that Fourier transforms provide a diagonalization of WSS random processes,

just as the Karhunen-Loève expansion allows for the diagonalization of a random

process defined on a finite interval. While a m.s. continuous random process on

a finite interval has a finite average energy, a WSS random process has a finite

mean average energy per unit time, called the power.

Nearly all the definitions and results of this chapter can be carried through

in either discrete time or continuous time. The set of frequencies relevant for

continuous-time random processes is all of R, while the set of frequencies relevant

for discrete-time random processes is the interval [−π, π]. For ease of notation

we shall primarily concentrate on continuous-time processes and systems in the

first two sections, and give the corresponding definition for discrete time in the

third section.

Representations of baseband random processes and narrowband random pro-

cesses are discussed in Sections 8.4 and 8.5. Roughly speaking, baseband random

processes are those which have power only in low frequencies. A baseband ran-

dom process can be recovered from samples taken at a sampling frequency that is

at least twice as large as the largest frequency component of the process. Thus,

operations and statistical calculations for a continuous-time baseband process

can be reduced to considerations for the discrete time sampled process. Roughly

speaking, narrowband random processes are those processes which have power

only in a band (i.e. interval) of frequencies. A narrowband random process can

be represented as baseband random processes that is modulated by a determin-

istic sinusoid. Complex random processes naturally arise as baseband equivalent

processes for real-valued narrowband random processes. A related discussion of

complex random processes is given in the last section of the chapter.
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8.1 Basic definitions

The output (Yt : t ∈ R) of a linear system with impulse response function h(s, t)

and a random process input (Xt : t ∈ R) is defined by

Ys =

∫ ∞
−∞

h(s, t)Xtdt. (8.1)

See Figure 8.1. For example, the linear system could be a simple integrator from

h
X Y

Figure 8.1 A linear system with input X, impulse response function h, and output Y.

time zero, defined by

Ys =

{ ∫ s
0
Xtdt s ≥ 0

0 s < 0,

in which case the impulse response function is

h(s, t) =

{
1 s ≥ t ≥ 0

0 otherwise.

The integral (8.1) defining the output Y will be interpreted in the m.s. sense.

Thus, the integral defining Ys for s fixed exists if and only if the following Rie-

mann integral exists and is finite:∫ ∞
−∞

∫ ∞
−∞

h∗(s, τ)h(s, t)RX(t, τ)dtdτ. (8.2)

A sufficient condition for Ys to be well defined is that RX is a bounded continuous

function, and h(s, t) is continuous in t with
∫∞
−∞ |h(s, t)|dt < ∞. The mean

function of the output is given by

µY (s) = E

[∫ ∞
−∞

h(s, t)Xtdt

]
=

∫ ∞
−∞

h(s, t)µX(t)dt. (8.3)

As illustrated in Figure 8.2, the mean function of the output is the result of

passing the mean function of the input through the linear system. The cross

hXµ µY

Figure 8.2 A linear system with input µX and impulse response function h.
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correlation function between the output and input processes is given by

RY X(s, τ) = E

[∫ ∞
−∞

h(s, t)XtdtX
∗
τ

]
=

∫ ∞
−∞

h(s, t)RX(t, τ)dt (8.4)

and the correlation function of the output is given by

RY (s, u) = E

[
Ys

(∫ ∞
−∞

h(u, τ)Xτdτ

)∗]
=

∫ ∞
−∞

h∗(u, τ)RY X(s, τ)dτ (8.5)

=

∫ ∞
−∞

∫ ∞
−∞

h∗(u, τ)h(s, t)RX(t, τ)dtdτ. (8.6)

Recall that Ys is well defined as a m.s. integral if and only if the integral (8.2)

is well defined and finite. Comparing with (8.6), it means that Ys is well defined

if and only if the right side of (8.6) with u = s is well defined and gives a finite

value for E[|Ys|2].

The linear system is time invariant if h(s, t) depends on s, t only through s−t.
If the system is time invariant we write h(s− t) instead of h(s, t), and with this

substitution the defining relation (8.1) becomes a convolution: Y = h ∗X.

A linear system is called bounded input bounded output (bibo) stable if the

output is bounded whenever the input is bounded. In case the system is time

invariant, bibo stability is equivalent to the condition∫ ∞
−∞
|h(τ)|dτ <∞. (8.7)

In particular, if (8.7) holds and if an input signal x satisfies |xs| < L for all s,

then the output signal y = x ∗ h satisfies

|y(t)| ≤
∫ ∞
−∞
|h(t− s)|Lds = L

∫ ∞
−∞
|h(τ)|dτ

for all t. If X is a WSS random process then by the Schwarz inequality, RX is

bounded by RX(0). Thus, if X is WSS and m.s. continuous, and if the linear sys-

tem is time-invariant and bibo stable, the integral in (8.2) exists and is bounded

by

RX(0)

∫ ∞
−∞

∫ ∞
−∞
|h(s− τ)||h(s− t)|dtdτ = RX(0)

(∫ ∞
−∞
|h(τ)|dτ

)2

<∞.

Thus, the output of a linear, time-invariant bibo stable system is well defined in

the m.s. sense if the input is a stationary, m.s. continuous process.

A paragraph about convolutions is in order. It is useful to be able to recognize

convolution integrals in disguise. If f and g are functions on R, the convolution
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is the function f ∗ g defined by

f ∗ g(t) =

∫ ∞
−∞

f(s)g(t− s)ds

or equivalently

f ∗ g(t) =

∫ ∞
−∞

f(t− s)g(s)ds

or equivalently, for any real a and b

f ∗ g(a+ b) =

∫ ∞
−∞

f(a+ s)g(b− s)ds.

A simple change of variable shows that the above three expressions are equivalent.

However, in order to immediately recognize a convolution, the salient feature is

that the convolution is the integral of the product of f and g, with the arguments

of both f and g ranging over R in such a way that the sum of the two arguments

is held constant. The value of the constant is the value at which the convolution

is being evaluated. Convolution is commutative: f ∗ g = g ∗ f and associative:

(f ∗ g) ∗ k = f ∗ (g ∗ k) for three functions f, g, k. We simply write f ∗ g ∗ k for

(f ∗ g) ∗ k. The convolution f ∗ g ∗ k is equal to a double integral of the product

of f ,g, and k, with the arguments of the three functions ranging over all triples

in R3 with a constant sum. The value of the constant is the value at which the

convolution is being evaluated. For example,

f ∗ g ∗ k(a+ b+ c) =

∫ ∞
−∞

∫ ∞
−∞

f(a+ s+ t)g(b− s)k(c− t)dsdt.

Suppose that X is WSS and that the linear system is time invariant. Then

(8.3) becomes

µY (s) =

∫ ∞
−∞

h(s− t)µXdt = µX

∫ ∞
−∞

h(t)dt.

Observe that µY (s) does not depend on s. Equation (8.4) becomes

RY X(s, τ) =

∫ ∞
−∞

h(s− t)RX(t− τ)dt

= h ∗RX(s− τ), (8.8)

which in particular means that RY X(s, τ) is a function of s− τ alone. Equation

(8.5) becomes

RY (s, u) =

∫ ∞
−∞

h∗(u− τ)RY X(s− τ)dτ. (8.9)

The right side of (8.9) looks nearly like a convolution, but as τ varies the sum of

the two arguments is u− τ + s− τ , which is not constant as τ varies. To arrive

at a true convolution, define the new function h̃ by h̃(v) = h∗(−v). Using the
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definition of h̃ and (8.8) in (8.9) yields

RY (s, u) =

∫ ∞
−∞

h̃(τ − u)(h ∗RX)(s− τ)dτ

= h̃ ∗ (h ∗RX)(s− u) = h̃ ∗ h ∗RX(s− u)

which in particular means that RY (s, u) is a function of s− u alone.

To summarize, if X is WSS and if the linear system is time invariant, then X

and Y are jointly WSS with

µY = µX

∫ ∞
−∞

h(t)dt RY X = h ∗RX RY = h ∗ h̃ ∗RX . (8.10)

The convolution h̃ ∗ h, equal to h ∗ h̃, can also be written as

h ∗ h̃(t) =

∫ ∞
−∞

h(s)h̃(t− s)ds

=

∫ ∞
−∞

h(s)h∗(s− t)ds. (8.11)

The expression shows that h∗ h̃(t) is the correlation between h and h∗ translated

by t from the origin.

The equations derived in this section for the correlation functions RX , RY X
and RY also hold for the covariance functions CX , CY X , and CY . The derivations

are the same except that covariances rather than correlations are computed.

In particular, if X is WSS and the system is linear and time invariant, then

CY X = h ∗ CX and CY = h ∗ h̃ ∗ CX .

8.2 Fourier transforms, transfer functions and power spectral
densities

Fourier transforms convert convolutions into products, so this is a good point to

begin using Fourier transforms. The Fourier transform of a function g mapping

R to the complex numbers C is formally defined by

ĝ(ω) =

∫ ∞
−∞

e−jωtg(t)dt. (8.12)

Some important properties of Fourier transforms are stated next.

Linearity: ̂ag + bh = aĝ + bĥ

Inversion: g(t) =
∫∞
−∞ ejωtĝ(ω)dω2π

Convolution to multiplication: ĝ ∗ h = ĝĥ and ĝ ∗ ĥ = 2πĝh

Parseval’s identity:
∫∞
−∞ g(t)h∗(t)dt =

∫∞
−∞ ĝ(ω)ĥ∗(ω)dω2π

Transform of time reversal:
̂̃
h = ĥ∗, where h̃(t) = h∗(−t)

Differentiation to multiplication by jω: d̂g
dt (ω) = (jω)ĝ(ω)
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Pure sinusoid to delta function: For ωo fixed: êjωot(ω) = 2πδ(ω − ωo)

Delta function to pure sinusoid: For to fixed: ̂δ(t− to)(ω) = e−jωto

The inversion formula above shows that a function g can be represented as an

integral (basically a limiting form of linear combination) of sinusoidal functions

of time ejωt, and ĝ(ω) is the coefficient in the representation for each ω. Paresval’s

identity applied with g = h yields that the total energy of g (the square of the

L2 norm) can be computed in either the time or frequency domain: ||g||2 =∫∞
−∞ |g(t)|2dt =

∫∞
−∞ |ĝ(ω)|2 dω2π . The factor 2π in the formulas can be attributed

to the use of frequency ω in radians. If ω = 2πf , then f is the frequency in Hertz

(Hz) and dω
2π is simply df .

The Fourier transform can be defined for a very large class of functions, in-

cluding generalized functions such as delta functions. In these notes we won’t

attempt a systematic treatment, but will use Fourier transforms with impunity.

In applications, one is often forced to determine in what senses the transform

is well defined on a case-by-case basis. Two sufficient conditions for the Fourier

transform of g to be well defined are mentioned in the remainder of this para-

graph. The relation (8.12) defining a Fourier transform of g is well defined if, for

example, g is a continuous function which is integrable:
∫∞
−∞ |g(t)|dt < ∞, and

in this case the dominated convergence theorem implies that ĝ is a continuous

function. The Fourier transform can also be naturally defined whenever g has a

finite L2 norm, through the use of Parseval’s identity. The idea is that if g has

finite L2 norm, then it is the limit in the L2 norm of a sequence of functions

gn which are integrable. Owing to Parseval’s identity, the Fourier transforms ĝn
form a Cauchy sequence in the L2 norm, and hence have a limit, which is defined

to be ĝ.

Return now to consideration of a linear time-invariant system with an impulse

response function h = (h(τ) : τ ∈ R). The Fourier transform of h is used so often

that a special name and notation is used: it is called the transfer function and

is denoted by H(ω).

The output signal y = (yt : t ∈ R) for an input signal x = (xt : t ∈ R) is given

in the time domain by the convolution y = x ∗ h. In the frequency domain this

becomes ŷ(ω) = H(ω)x̂(ω). For example, given a < b let H[a,b](ω) be the ideal

bandpass transfer function for frequency band [a, b], defined by

H[a,b](ω) =

{
1 a ≤ ω ≤ b
0 otherwise

. (8.13)

If x is the input and y is the output of a linear system with transfer function

H[a,b], then the relation ŷ(ω) = H[a,b](ω)x̂(ω) shows that the frequency compo-

nents of x in the frequency band [a, b] pass through the filter unchanged, and

the frequency components of x outside of the band are completely nulled. The

total energy of the output function y can therefore be interpreted as the energy



268 Random Processes in Linear Systems and Spectral Analysis

of x in the frequency band [a, b]. Therefore,

Energy of x in frequency interval [a, b]

= ||y||2 =

∫ ∞
−∞
|H[a,b](ω)|2|x̂(ω)|2 dω

2π
=

∫ b

a

|x̂(ω)|2 dω
2π
.

Consequently, it is appropriate to call |x̂(ω)|2 the energy spectral density of the

deterministic signal x.

Given a WSS random process X = (Xt : t ∈ R), the Fourier transform of its

correlation function RX is denoted by SX . For reasons that we will soon see,

the function SX is called the power spectral density of X. Similarly, if Y and X

are jointly WSS, then the Fourier transform of RY X is denoted by SY X , called

the cross power spectral density function of Y and X. The Fourier transform

of the time reverse complex conjugate function h̃ is equal to H∗, so |H(ω)|2 is

the Fourier transform of h ∗ h̃. With the above notation, the second moment

relationships in (8.10) become:

SY X(ω) = H(ω)SX(ω) SY (ω) = |H(ω)|2SX(ω).

Let us examine some of the properties of the power spectral density, SX . If∫∞
−∞ |RX(t)|dt <∞ then SX is well defined and is a continuous function. Because

RY X = R̃XY , it follows that SY X = S∗XY . In particular, taking Y = X yields

RX = R̃X and SX = S∗X , meaning that SX is real-valued.

The Fourier inversion formula applied to SX yieldsRX(τ) =
∫∞
−∞ ejωτSX(ω)dω2π .

In particular,

E[|Xt|2] = RX(0) =

∫ ∞
−∞

SX(ω)
dω

2π
. (8.14)

The expectation E[|Xt|2] is called the power (or total power) of X, because if

Xt is a voltage or current across a resistor, |Xt|2 is the instantaneous rate of

dissipation of heat energy. Therefore, (8.14) means that the total power of X is

the integral of SX over R. This is the first hint that the name power spectral

density for SX is justified.

Let a < b and let Y denote the output when the WSS process X is passed

through the linear time-invariant system with transfer function H[a,b] defined by

(8.13). The process Y represents the part of X in the frequency band [a, b]. By

the relation SY = |H[a,b]|2SX and the power relationship (8.14) applied to Y , we

have

Power of X in frequency interval [a, b]

= E[|Yt|2] =

∫ ∞
−∞

SY (ω)
dω

2π
=

∫ b

a

SX(ω)
dω

2π
. (8.15)

Two observations can be made concerning (8.15). First, the integral of SX over

any interval [a, b] is nonnegative. If SX is continuous, this implies that SX is
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nonnegative. Even if SX is not continuous, we can conclude that SX is nonneg-

ative except possibly on a set of zero measure. The second observation is that

(8.15) fully justifies the name “power spectral density of X” given to SX .

Example 8.1 Suppose X is a WSS process and that Y is a moving average of

X with averaging window duration T for some T > 0:

Yt =
1

T

∫ t

t−T
Xsds.

Equivalently, Y is the output of the linear time-invariant system with input X

and impulse response function h given by

h(τ) =

{
1
T 0 ≤ τ ≤ T
0 else

.

The output correlation function is given by RY = h ∗ h̃ ∗ RX . Using (8.11) and

referring to Figure 8.3 we find that h ∗ h̃ is a triangular shaped waveform:

h ∗ h̃(τ) =
1

T

(
1− |τ |

T

)
+

.

Similarly, CY = h∗ h̃∗CX . Let’s find in particular an expression for the variance

T
s

h(s−t)h(s) h*h~1
T

0 t T−T

Figure 8.3 Convolution of two rectangle functions.

of Yt in terms of the function CX :

Var(Yt) = CY (0) =

∫ ∞
−∞

(h ∗ h̃)(0− τ)CX(τ)dτ

=
1

T

∫ T

−T

(
1− |τ |

T

)
CX(τ)dτ. (8.16)

The expression in (8.16) arose earlier in these notes, in the section on mean

ergodicity.

Let’s see the effect of the linear system on the power spectral density of the
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input. Observe that

H(ω) =

∫ ∞
−∞

e−jωth(t)dt =
1

T

[
e−jωT − 1

−jω

]
=

2e−jωT/2

Tω

[
ejωT/2 − e−jωT/2

2j

]
= e−jωT/2

[
sin(ωT2 )

ωT
2

]
.

Equivalently, using the substitution ω = 2πf ,

H(2πf) = e−jπfT sinc(fT )

where in these notes the sinc function is defined by

sinc(u) =

{
sin(πu)
πu u 6= 0

1 u = 0
. (8.17)

(Some authors use somewhat different definitions for the sinc function.) There-

fore |H(2πf)|2 = |sinc(fT )|2, so that the output power spectral density is given

by SY (2πf) = SX(2πf)|sinc(fT )|2. See Figure 8.4.

2

u
1
T

2
T

f
1 20 0

usinc(  ) sinc (fT)

Figure 8.4 The sinc function and |H(2πf)|2 = |sinc(fT )|2.

Example 8.2 Consider two linear time-invariant systems in parallel as shown

in Figure 8.5. The first has input X, impulse response function h, and output U .

h

Y

X U

Vk

Figure 8.5 Parallel linear systems.

The second has input Y , impulse response function k, and output V . Suppose

that X and Y are jointly WSS. We can find RUV as follows. The main trick is

notational: to use enough different variables of integration so that none are used
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twice.

RUV (t, τ) = E

[∫ ∞
−∞

h(t− s)Xsds

(∫ ∞
−∞

k(τ − v)Yvdv

)∗]
=

∫ ∞
−∞

∫ ∞
−∞

h(t− s)RXY (s− v)k∗(τ − v)dsdv

=

∫ ∞
−∞
{h ∗RXY (t− v)} k∗(τ − v)dv

= h ∗ k̃ ∗RXY (t− τ).

Note that RUV (t, τ) is a function of t − τ alone. Together with the fact that U

and V are individually WSS, this implies that U and V are jointly WSS, and

RUV = h ∗ k̃ ∗ RXY . The relationship is expressed in the frequency domain as

SUV = HK∗SXY , where K is the Fourier transform of k. Special cases of this

example include the case that X = Y or h = k.

Example 8.3 Consider the circuit with a resistor and a capacitor shown in

Figure 8.6. Take as the input signal the voltage difference on the left side, and as

R

C
q

x(t)
(t)

−

+
y(t)−

+

Figure 8.6 An RC circuit modeled as a linear system.

the output signal the voltage across the capacitor. Also, let qt denote the charge

on the upper side of the capacitor. Let us first identify the impulse response

function by assuming a deterministic input x and a corresponding output y. The

elementary equations for resistors and capacitors yield

dq

dt
=

1

R
(xt − yt) and yt =

qt
C
.

Therefore
dy

dt
=

1

RC
(xt − yt)

which in the frequency domain is

jωŷ(ω) =
1

RC
(x̂(ω)− ŷ(ω))

so that ŷ = Hx̂ for the system transfer function H given by

H(ω) =
1

1 +RCjω
.
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Suppose, for example, that the input X is a real-valued, stationary Gaussian

Markov process, so that its autocorrelation function has the form RX(τ) =

A2e−α|τ | for some constants A2 and α > 0. Then

SX(ω) =
2A2α

ω2 + α2

and

SY (ω) = SX(ω)|H(ω)|2 =
2A2α

(ω2 + α2)(1 + (RCω)2)
.

Example 8.4 A random signal, modeled by the input random process X, is

passed into a linear time-invariant system with feedback and with noise modeled

by the random process N , as shown in Figure 8.7. The output is denoted by Y .

+ H (  ) H (  )

H (  )

1 2

3

!

!

!
X

+

N

Yt

t

t

Figure 8.7 A feedback system.

Assume that X and N are jointly WSS and that the random variables comprising

X are orthogonal to the random variables comprising N : RXN = 0. Assume

also, for the sake of system stability, that the magnitude of the gain around

the loop satisfies |H3(ω)H1(ω)H2(ω)| < 1 for all ω such that SX(ω) > 0 or

SN (ω) > 0. We shall express the output power spectral density SY in terms the

power spectral densities of X and N , and the three transfer functions H1, H2,

and H3. An expression for the signal-to-noise power ratio at the output will also

be computed.

Under the assumed stability condition, the linear system can be written in the

equivalent form shown in Figure 8.8. The process X̃ is the output due to the

1

1!H (  )H (  )H (  )
H (  )

1!H (  )H (  )H (  )

H (  )H (  )

! !3 1 2

2

3 1 2

X

+

N

t

t

~Xt

tN~

~   ~   ~Y =X +Nt t t

! !

!

! !!

!
2

Figure 8.8 An equivalent representation.
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input signal X, and Ñ is the output due to the input noise N . The structure in

Figure 8.8 is the same as considered in Example 8.2. Since RXN = 0 it follows

that RX̃Ñ = 0, so that SY = SX̃ + SÑ . Consequently,

SY (ω) = SX̃(ω) + SÑ (ω) =
|H2(ω)2|

[
|H1(ω)2|SX(ω) + SN (ω)

]
|1−H3(ω)H1(ω)H2(ω)|2

.

The output signal-to-noise ratio is the ratio of the power of the signal at the

output to the power of the noise at the output. For this example it is given by

E[|X̃t|2]

E[|Ñt|2]
=

∫∞
−∞

|H2(ω)H1(ω)|2SX(ω)
|1−H3(ω)H1(ω)H2(ω)|2

dω
2π∫∞

−∞
|H2(ω)|2SN (ω)

|1−H3(ω)H1(ω)H2(ω)|2
dω
2π

.

Example 8.5 Consider the linear time-invariant system defined as follows. For

input signal x the output signal y is defined by y′′′ + y′ + y = x + x′. We seek

to find the power spectral density of the output process if the input is a white

noise process X with RX(τ) = σ2δ(τ) and SX(ω) = σ2 for all ω. To begin, we

identify the transfer function of the system. In the frequency domain, the system

is described by ((jω)3 + jω + 1)ŷ(ω) = (1 + jω)x̂(ω), so that

H(ω) =
1 + jω

1 + jω + (jω)3
=

1 + jω

1 + j(ω − ω3)
.

Hence,

SY (ω) = SX(ω)|H(ω)|2 =
σ2(1 + ω2)

1 + (ω − ω3)2
=

σ2(1 + ω2)

1 + ω2 − 2ω4 + ω6
.

Observe that

output power =

∫ ∞
−∞

SY (ω)
dω

2π
<∞.

8.3 Discrete-time processes in linear systems

The basic definitions and use of Fourier transforms described above carry over

naturally to discrete time. In particular, if the random process X = (Xk : k ∈ Z)

is the input of a linear, discrete-time system with impulse response function h,

then the output Y is the random process given by

Yk =

∞∑
n=−∞

h(k, n)Xn.

The equations in Section 8.1 can be modified to hold for discrete time simply by

replacing integration over R by summation over Z. In particular, if X is WSS
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and if the linear system is time-invariant then (8.10) becomes

µY = µX

∞∑
n=−∞

h(n) RY X = h ∗RX RY = h ∗ h̃ ∗RX , (8.18)

where the convolution in (8.18) is defined for functions g and h on Z by

g ∗ h(n) =

∞∑
k=−∞

g(n− k)h(k).

Again, Fourier transforms can be used to convert convolution to multiplication.

The Fourier transform of a function g = (g(n) : n ∈ Z) is the function ĝ on

[−π, π] defined by

ĝ(ω) =

∞∑
−∞

e−jωng(n).

Some of the most basic properties are:

Linearity: ̂ag + bh = aĝ + bĥ

Inversion: g(n) =
∫ π
−π e

jωnĝ(ω)dω2π

Convolution to multiplication: ĝ ∗ h = ĝĥ and ĝ ∗ ĥ = 1
2π ĝh

Parseval’s identity:
∑∞
n=−∞ g(n)h∗(n) =

∫ π
−π ĝ(ω)ĥ∗(ω)dω2π

Transform of time reversal:
̂̃
h = ĥ∗, where h̃(t) = h(−t)∗

Pure sinusoid to delta function: For ωo ∈ [−π, π] fixed: êjωon(ω) = 2πδ(ω−ωo)
Delta function to pure sinusoid: For no fixed: ̂I{n=no}(ω) = e−jωno

The inversion formula above shows that a function g on Z can be represented

as an integral (basically a limiting form of linear combination) of sinusoidal

functions of time ejωn, and ĝ(ω) is the coefficient in the representation for each

ω. Paresval’s identity applied with g = h yields that the total energy of g (the

square of the L2 norm) can be computed in either the time or frequency domain:

||g||2 =
∑∞
n=−∞ |g(n)|2 =

∫ π
−π |ĝ(ω)|2 dω2π .

The Fourier transform and its inversion formula for discrete-time functions are

equivalent to the Fourier series representation of functions in L2[−π, π] using the

complete orthogonal basis (ejωn : n ∈ Z) for L2[−π, π], as discussed in connection

with the Karhunen-Loève expansion. The functions in this basis all have norm

2π. Recall that when we considered the Karhunen-Loève expansion for a periodic

WSS random process of period T , functions on a time interval were important

and the power was distributed on the integers Z scaled by 1
T . In this section, Z is

considered to be the time domain and the power is distributed over an interval.

That is, the role of Z and a finite interval are interchanged. The transforms used

are essentially the same, but with j replaced by −j.
Given a linear time-invariant system in discrete time with an impulse response

function h = (h(τ) : τ ∈ Z), the Fourier transform of h is denoted by H(ω).
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The defining relation for the system in the time domain, y = h ∗ x, becomes

ŷ(ω) = H(ω)x̂(ω) in the frequency domain. For −π ≤ a < b ≤ π,

Energy of x in frequency interval [a, b] =

∫ b

a

|x̂(ω)|2 dω
2π
.

so it is appropriate to call |x̂(ω)|2 the energy spectral density of the deterministic,

discrete-time signal x.

Given a WSS random process X = (Xn : n ∈ Z), the Fourier transform of

its correlation function RX is denoted by SX , and is called the power spectral

density of X. Similarly, if Y and X are jointly WSS, then the Fourier transform

of RY X is denoted by SY X , called the cross power spectral density function of

Y and X. With the above notation, the second moment relationships in (8.18)

become:

SY X(ω) = H(ω)SX(ω) SY (ω) = |H(ω)|2SX(ω).

The Fourier inversion formula applied to SX yieldsRX(n) =
∫ π
−π e

jωnSX(ω)dω2π .

In particular,

E[|Xn|2] = RX(0) =

∫ π

−π
SX(ω)

dω

2π
.

The expectation E[|Xn|2] is called the power (or total power) of X, and for

−π < a < b ≤ π we have

Power of X in frequency interval [a, b] =

∫ b

a

SX(ω)
dω

2π
.

8.4 Baseband random processes

Deterministic baseband signals are considered first. Let x be a continuous-time

signal (i.e. a function on R) such that its energy,
∫∞
−∞ |x(t)|2dt, is finite. By

the Fourier inversion formula, the signal x is an integral, which is essentially a

sum, of sinusoidal functions of time, ejωt. The weights are given by the Fourier

transform x̂(w). Let fo > 0 and let ωo = 2πfo. The signal x is called a baseband

signal, with one-sided band limit fo Hz, or equivalently ωo radians/second, if

x̂(ω) = 0 for |ω| ≥ ωo. For such a signal, the Fourier inversion formula becomes

x(t) =

∫ ωo

−ωo
ejωtx̂(ω)

dω

2π
. (8.19)

Equation (8.19) displays the baseband signal x as a linear combination of the

functions ejωt indexed by ω ∈ [−ωo, ωo].
A celebrated theorem of Nyquist states that the baseband signal x is com-

pletely determined by its samples taken at sampling frequency 2fo. Specifically,
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define T by 1
T = 2fo. Then

x(t) =

∞∑
n=−∞

x(nT ) sinc

(
t− nT
T

)
. (8.20)

where the sinc function is defined by (8.17). Nyquist’s equation (8.20) is indeed

elegant. It obviously holds by inspection if t = mT for some integer m, because

for t = mT the only nonzero term in the sum is the one indexed by n = m.

The equation shows that the sinc function gives the correct interpolation of the

narrowband signal x for times in between the integer multiples of T . We shall

give a proof of (8.20) for deterministic signals, before considering its extension

to random processes.

A proof of (8.20) goes as follows. Henceforth we will use ωo more often than

fo, so it is worth remembering that ωoT = π. Taking t = nT in (8.19) yields

x(nT ) =

∫ ωo

−ωo
ejωnT x̂(ω)

dω

2π

=

∫ ωo

−ωo
x̂(ω)(e−jωnT )∗

dω

2π
. (8.21)

Equation (8.21) shows that x(nT ) is given by an inner product of x̂ and e−jωnT .

The functions e−jωnT , considered on the interval −ωo < ω < ωo and indexed by

n ∈ Z, form a complete orthogonal basis for L2[−ωo, ωo], and
∫ ωo
−ωo T |e

−jωnT |2 dω2π =

1. Therefore, x̂ over the interval [−ωo, ωo] has the following Fourier series repre-

sentation:

x̂(ω) = T

∞∑
n=−∞

e−jωnTx(nT ) ω ∈ [−ωo, ωo]. (8.22)

Plugging (8.22) into (8.19) yields

x(t) =

∞∑
n=−∞

x(nT )T

∫ ωo

−ωo
ejωte−jωnT

dω

2π
. (8.23)

The integral in (8.23) can be simplified using

T

∫ ωo

−ωo
ejωτ

dω

2π
= sinc

( τ
T

)
. (8.24)

with τ = t− nT to yield (8.20) as desired.

The sampling theorem extends naturally to WSS random processes. A WSS

random process X with spectral density SX is said to be a baseband random

process with one-sided band limit ωo if SX(ω) = 0 for | ω |≥ ωo.

proposition 8.1 Suppose X is a WSS baseband random process with one-

sided band limit ωo and let T = π/ωo. Then for each t ∈ R

Xt =

∞∑
n=−∞

XnT sinc

(
t− nT
T

)
m.s. (8.25)
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If B is the process of samples defined by Bn = XnT , then the power spectral

densities of B and X are related by

SB(ω) =
1

T
SX

(ω
T

)
for | ω |≤ π. (8.26)

Proof Fix t ∈ R. It must be shown that εN defined by the following expectation

converges to zero as N →∞:

εN = E

∣∣∣∣∣Xt −
N∑

n=−N
XnT sinc

(
t− nT
t

)∣∣∣∣∣
2
 .

When the square is expanded, terms of the form E[XaX
∗
b ] arise, where a and b

take on the values t or nT for some n. But

E[XaX
∗
b ] = RX(a− b) =

∫ ∞
−∞

ejωa(ejωb)∗SX(ω)
dω

2π
.

Therefore, εN can be expressed as an integration over ω rather than as an ex-

pectation:

εN =

∫ ∞
−∞

∣∣∣∣∣ejωt −
N∑

n=−N
ejωnT sinc

(
t− nT
T

)∣∣∣∣∣
2

SX(ω)
dω

2π
. (8.27)

For t fixed, the function (ejωt : −ωo < ω < ωo) has a Fourier series representation

(use (8.24))

ejωt = T

∞∑
−∞

ejωnT
∫ ωo

−ωo
ejωte−jωnT

dω

2π

=

∞∑
−∞

ejωnT sinc

(
t− nT
T

)
.

so that the quantity inside the absolute value signs in (8.27) is the approximation

error for the N th partial Fourier series sum for ejωt. Since ejωt is continuous in ω,

a basic result in the theory of Fourier series yields that the Fourier approximation

error is bounded by a single constant for all N and ω, and as N → ∞ the

Fourier approximation error converges to 0 uniformly on sets of the form | ω |≤
ωo − ε. Thus εN → 0 as N → ∞ by the dominated convergence theorem. The

representation (8.25) is proved.

Clearly B is a WSS discrete time random process with µB = µX and

RB(n) = RX(nT ) =

∫ ∞
−∞

ejnTωSX(ω)
dω

2π

=

∫ ωo

−ωo
ejnTωSX(ω)

dω

2π
,

so, using a change of variable ν = Tω and the fact T = π
ωo

yields

RB(n) =

∫ π

−π
ejnν

1

T
SX

( ν
T

) dν
2π
. (8.28)
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But SB(ω) is the unique function on [−π, π] such that

RB(n) =

∫ π

−π
ejnωSB(ω)

dω

2π

so (8.26) holds. The proof of Proposition 8.1 is complete.

As a check on (8.26), we note that B(0) = X(0), so the processes have the

same total power. Thus, it must be that∫ π

−π
SB(ω)

dω

2π
=

∫ ∞
−∞

SX(ω)
dω

2π
, (8.29)

which is indeed consistent with (8.26).

Example 8.6 If µX = 0 and the spectral density SX of X is constant over the

interval [−ωo, ωo], then µB = 0 and SB(ω) is constant over the interval [−π, π].

Therefore RB(n) = CB(n) = 0 for n 6= 0, and the samples (B(n)) are mean zero,

uncorrelated random variables.

Theoretical Exercise
What does (8.26) become if X is WSS and has a power spectral density, but X

is not a baseband signal?

8.5 Narrowband random processes

As noted in the previous section, a signal – modeled as either a deterministic fi-

nite energy signal or a WSS random process – can be reconstructed from samples

taken at a sampling rate twice the highest frequency of the signal. For exam-

ple, a typical voice signal may have highest frequency 5 KHz. If such a signal

is multiplied by a signal with frequency 109 Hz, the highest frequency of the

resulting product is about 200,000 times larger than that of the original signal.

Näıve application of the sampling theorem would mean that the sampling rate

would have to increase by the same factor. Fortunately, because the energy or

power of such a modulated signal is concentrated in a narrow band, the signal is

nearly as simple as the original baseband signal. The motivation of this section

is to see how signals and random processes with narrow spectral ranges can be

analyzed in terms of equivalent baseband signals. For example, the effects of fil-

tering can be analyzed using baseband equivalent filters. As an application, an

example at the end of the section is given which describes how a narrowband

random process (to be defined) can be simulated using a sampling rate equal to

twice the one-sided width of a frequency band of a signal, rather than twice the

highest frequency of the signal.

Deterministic narrowband signals are considered first, and the development
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for random processes follows a similar approach. Let ωc > ωo > 0. A narrowband

signal (relative to ωo and ωc) is a signal x such that x̂(ω) = 0 unless ω is in the

union of two intervals: the upper band, (ωc − ωo, ωc + ωo), and the lower band,

(−ωc − ωo,−ωc + ωo). More compactly, x̂(ω) = 0 if || ω | −ωc| ≥ ωo.
A narrowband signal arises when a sinusoidal signal is modulated by a nar-

rowband signal, as shown next. Let u and v be real-valued baseband signals,

each with one-sided bandwidth less than ωo, as defined at the beginning of the

previous section. Define a signal x by

x(t) = u(t) cos(ωct)− v(t) sin(ωct). (8.30)

Since cos(ωct) = ejωct+e−jωct

2 and − sin(ωct) = jejωct−je−jωct
2 , (8.30) becomes

x̂(ω) =
1

2
{û(ω − ωc) + û(ω + ωc) + jv̂(ω − ωc)− jv̂(ω + ωc)} . (8.31)

Graphically, x̂ is obtained by sliding 1
2 û to the right by ωc,

1
2 û to the left by ωc,

j
2 v̂ to the right by ωc, and −j2 v̂ to the left by ωc, and then adding. Of course x is

real-valued by its definition. The reader is encouraged to verify from (8.31) that

x̂(ω) = x̂∗(−ω). Equation (8.31) shows that indeed x is a narrowband signal.

A convenient alternative expression for x is obtained by defining a complex

valued baseband signal z by z(t) = u(t) + jv(t). Then x(t) = Re(z(t)ejωct). It

is a good idea to keep in mind the case that ωc is much larger than ωo (written

ωc � ωo). Then z varies slowly compared to the complex sinusoid ejωct. In a

small neighborhood of a fixed time t, x is approximately a sinusoid with frequency

ωc, peak amplitude |z(t)|, and phase given by the argument of z(t). The signal

z is called the complex envelope of x and |z(t)| is called the real envelope of x.

So far we have shown that a real-valued narrowband signal x results from mod-

ulating sinusoidal functions by a pair of real-valued baseband signals, or equiva-

lently, modulating a complex sinusoidal function by a complex-valued baseband

signal. Does every real-valued narrowband signal have such a representation?

The answer is yes, as we now show. Let x be a real-valued narrowband signal

with finite energy. One attempt to obtain a baseband signal from x is to consider

e−jωctx(t). This has Fourier transform x̂(ω+ωc), and the graph of this transform

is obtained by sliding the graph of x̂(ω) to the left by ωc. As desired, that shifts

the portion of x̂ in the upper band to the baseband interval (−ωo, ωo). However,

the portion of x̂ in the lower band gets shifted to an interval centered about

−2ωc, so that e−jωctx(t) is not a baseband signal.

An elegant solution to this problem is to use the Hilbert transform of x, de-

noted by x̌. By definition, x̌(ω) is the signal with Fourier transform−jsgn(ω)x̂(ω),

where

sgn(ω) =


1 ω > 0

0 ω = 0

−1 ω < 0

.

Therefore x̌ can be viewed as the result of passing x through a linear, time-

invariant system with transfer function −jsgn(ω) as pictured in Figure 8.9. Since
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this transfer function satisfies H∗(ω) = H(−ω), the output signal x̌ is again

real-valued. In addition, |H(ω)| = 1 for all ω, except ω = 0, so that the Fourier

−j sgn(  )ω
x x

Figure 8.9 The Hilbert transform as a linear, time-invariant system.

transforms of x and x̌ have the same magnitude for all nonzero ω. In particular,

x and x̌ have equal energies.

Consider the Fourier transform of x + jx̌. It is equal to 2x̂(ω) in the upper

band and it is zero elsewhere. Thus, z defined by z(t) = (x(t) + jx̌(t))e−jωct is a

baseband complex valued signal. Note that x(t) = Re(x(t)) = Re(x(t) + jx̌(t)),

or equivalently

x(t) = Re
(
z(t)ejωct

)
. (8.32)

If we let u(t) = Re(z(t)) and v(t) = Im(z(t)), then u and v are real-valued

baseband signals such that z(t) = u(t) + jv(t), and (8.32) becomes (8.30).

In summary, any finite energy real-valued narrowband signal x can be repre-

sented as (8.30) or (8.32), where z(t) = u(t) + jv(t). The Fourier transform ẑ

can be expressed in terms of x̂ by

ẑ(ω) =

{
2x̂(ω + ωc) |ω| ≤ ωo

0 else
, (8.33)

and û is the Hermetian symmetric part of ẑ and v̂ is −j times the Hermetian

antisymmetric part of ẑ:

û(ω) =
1

2
(ẑ(ω) + ẑ∗(−ω)) v̂(ω) =

−j
2

(ẑ(ω)− ẑ∗(−ω)) .

In the other direction, x̂ can be expressed in terms of û and v̂ by (8.31).

If x1 and x2 are each narrowband signals with corresponding complex envelope

processes z1 and z2, then the convolution x = x1∗x2 is again a narrowband signal,

and the corresponding complex envelope is 1
2z1 ∗ z2. To see this, note that the

Fourier transform, ẑ, of the complex envelope z for x is given by (8.33). Similar

equations hold for ẑi in terms of x̂i for i = 1, 2. Using these equations and the

fact x̂(ω) = x̂1(ω)x̂2(ω), it is readily seen that ẑ(ω) = 1
2 ẑ1(ω)ẑ2(ω) for all ω,

establishing the claim. Thus, the analysis of linear, time invariant filtering of

narrowband signals can be carried out in the baseband equivalent setting.

A similar development is considered next for WSS random processes. Let U

and V be jointly WSS real-valued baseband random processes, and let X be

defined by

Xt = Ut cos(ωct)− Vt sin(ωct) (8.34)
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or equivalently, defining Zt by Zt = Ut + jVt,

Xt = Re
(
Zte

jωct
)
. (8.35)

In some sort of generalized sense, we expect that X is a narrowband process.

However, such an X need not even be WSS. Let us find the conditions on U and

V that make X WSS. First, in order that µX(t) not depend on t, it must be that

µU = µV = 0.

Using the notation ct = cos(ωct), st = sin(ωct), and τ = a− b,

RX(a, b) = RU (τ)cacb −RUV (τ)casb −RV U (τ)sacb +RV (τ)sasb.

Using the trigonometric identities such as cacb = (ca−b + ca+b)/2, this can be

rewritten as

RX(a, b) =

(
RU (τ) +RV (τ)

2

)
ca−b +

(
RUV (τ)−RV U (τ)

2

)
sa−b

+

(
RU (τ)−RV (τ)

2

)
ca+b −

(
RUV (τ) +RV U (τ)

2

)
sa+b.

Therefore, in order that RX(a, b) is a function of a−b, it must be that RU = RV
and RUV = −RV U . Since in general RUV (τ) = RV U (−τ), the condition RUV =

−RV U means that RUV is an odd function: RUV (τ) = −RUV (−τ).

We summarize the results as a proposition.

proposition 8.2 Suppose X is given by (8.34) or (8.35), where U and V

are jointly WSS. Then X is WSS if and only if U and V are mean zero with

RU = RV and RUV = −RV U . Equivalently, X is WSS if and only if Z = U+jV

is mean zero and E[ZaZb] = 0 for all a, b. If X is WSS then

RX(τ) = RU (τ) cos(ωcτ) +RUV (τ) sin(ωcτ)

SX(ω) =
1

2
[SU (ω − ωc) + SU (ω + ωc)− jSUV (ω − ωc) + jSUV (ω + ωc)]

and, with RZ(τ) defined by RZ(a− b) = E[ZaZ
∗
b ],

RX(τ) =
1

2
Re(RZ(τ)ejωcτ ).

The functions SX , SU , and SV are nonnegative, even functions, and SUV is a

purely imaginary odd function (i.e. SUV (ω) = Im(SUV (ω)) = −SUV (−ω).)

Let X by any WSS real-valued random process with a spectral density SX ,

and continue to let ωc > ωo > 0. Then X is defined to be a narrowband random

process if SX(ω) = 0 whenever | |ω|−ωc |≥ ωo. Equivalently, X is a narrowband

random process if RX(t) is a narrowband function. We’ve seen how such a process

can be obtained by modulating a pair of jointly WSS baseband random processes

U and V . We show next that all narrowband random processes have such a

representation.

To proceed as in the case of deterministic signals, we first wish to define the
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Hilbert transform of X, denoted by X̌. A slight concern about defining X̌ is that

the function −jsgn(ω) does not have finite energy. However, we can replace this

function by the function given by

H(ω) = −jsgn(ω)I|ω|≤ωo+ωc ,

which has finite energy and it has a real-valued inverse transform h. Define

X̌ as the output when X is passed through the linear system with impulse

response h. Since X and h are real valued, the random process X̌ is also real

valued. As in the deterministic case, define random processes Z, U , and V by

Zt = (Xt + jX̌t)e
−jωct, Ut = Re(Zt), and Vt = Im(Zt).

proposition 8.3 Let X be a narrowband WSS random process, with spectral

density SX satisfying SX(ω) = 0 unless ωc−ωo ≤ |ω| ≤ ωc+ωo, where ωo < ωc.

Then µX = 0 and the following representations hold

Xt = Re(Zte
jωct) = Ut cos(ωct)− Vt sin(ωct)

where Zt = Ut+jVt, and U and V are jointly WSS real-valued random processes

with mean zero and

SU (ω) = SV (ω) = [SX(ω − ωc) + SX(ω + ωc)] I|ω|≤ωo (8.36)

and

SUV (ω) = j [SX(ω + ωc)− SX(ω − ωc)] I|ω|≤ωo . (8.37)

Equivalently,

RU (τ) = RV (τ) = RX(τ) cos(ωcτ) + ŘX(τ) sin(ωcτ) (8.38)

and

RUV (τ) = RX(τ) sin(ωcτ)− ŘX(τ) cos(ωcτ). (8.39)

.

Proof To show that µX = 0, consider passing X through a linear, time-invariant

system with transfer function K(ω) = 1 if ω is in either the upper band or lower

band, and K(ω) = 0 otherwise. Then µY = µX
∫∞
−∞ h(τ)dτ = µXK(0) = 0.

Since K(ω) = 1 for all ω such that SX(ω) > 0, it follows that RX = RY =

RXY = RY X . Therefore E[|Xt − Yt|2] = 0 so that Xt has the same mean as Yt,

namely zero, as claimed.

By the definitions of the processes Z, U , and V , using the notation ct =

cos(ωct) and st = sin(ωct), we have

Ut = Xtct + X̌tst Vt = −Xtst + X̌tct.

The remainder of the proof consists of computing RU , RV , and RUV as functions

of two variables, because it is not yet clear that U and V are jointly WSS.
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By the fact X is WSS and the definition of X̌, the processes X and X̌ are

jointly WSS, and the various spectral densities are given by

SX̌X = HSX SXX̌ = H∗SX = −HSX SX̌ = |H|2SX = SX .

Therefore,

RX̌X = ŘX RXX̌ = −ŘX RX̌ = RX .

Thus, for real numbers a and b,

RU (a, b) = E
[(
X(a)ca + X̌(a)sa

) (
X(b)cb + X̌(b)sb

)]
= RX(a− b)(cacb + sasb) + ŘX(a− b)(sacb − casb)
= RX(a− b)ca−b + ŘX(a− b)sa−b.

Thus, RU (a, b) is a function of a − b, and RU (τ) is given by the right side

of (8.38). The proof that RV also satisfies (8.38), and the proof of (8.39) are

similar. Finally, it is a simple matter to derive (8.36) and (8.37) from (8.38) and

(8.39), respectively.

Equations (8.36) and (8.37) have simple graphical interpretations, as illus-

trated in Figure 8.10. Equation (8.36) means that SU and SV are each equal to

SX

jj

j

S

S  =SU V

UV

+

+

=

=

Figure 8.10 A narrowband power spectral density and associated baseband spectral
densities.

the sum of the upper lobe of SX shifted to the left by ωc and the lower lobe of

SX shifted to the right by ωc. Similarly, equation (8.36) means that SUV is equal

to the sum of j times the upper lobe of SX shifted to the left by ωc and −j times

the lower lobe of SX shifted to the right by ωc. Equivalently, SU and SV are

each twice the symmetric part of the upper lobe of SX , and SUV is j times the

antisymmetric part of the upper lobe of SX . Since RUV is an odd function of τ , if

follows that RUV (0) = 0. Thus, for any fixed time t, Ut and Vt are uncorrelated.
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That does not imply that Us and Vt are uncorrelated for all s and t, for the cross

correlation function RXY is identically zero if and only if the upper lobe of SX
is symmetric about ωc.

Example 8.7 (Baseband equivalent filtering of a random process) As noted

above, filtering of narrowband deterministic signals can be described using equiv-

alent baseband signals, namely the complex envelopes. The same is true for filter-

ing of narrowband random processes. Suppose X is a narrowband WSS random

process, suppose g is a finite energy narrowband signal, and suppose Y is the

output process when X is filtered using impulse response function g. Then Y is

also a WSS narrowband random process. Let Z denote the complex envelope of

X, given in Proposition 8.3, and let zg denote the complex envelope signal of g,

meaning that zg is the complex baseband signal such that g(t) = Re(zg(t)e
jωct).

It can be shown that the complex envelope process of Y is 1
2zg ∗ Z.1 Thus, the

filtering of X by g is equivalent to the filtering of Z by 1
2zg.

Example 8.8 (Simulation of a narrowband random process) Let ωo and ωc be

positive numbers with 0 < ωo < ωc. Suppose SX is a nonnegative function which

is even (i.e. SX(ω) = SX(−ω) for all ω) with SX(ω) = 0 if ||ω| − ωc| ≥ ωo.

We discuss briefly the problem of writing a computer simulation to generate a

real-valued WSS random process X with power spectral density SX .

By Proposition 8.2, it suffices to simulate baseband random processes U and

V with the power spectral densities specified by (8.36) and cross power spectral

density specified by (8.37). For increased tractability, we impose an additional

assumption on SX , namely that the upper lobe of SX is symmetric about ωc.

This assumption is equivalent to the assumption that SUV vanishes, and therefore

that the processes U and V are uncorrelated with each other. Thus, the processes

U and V can be generated independently.

In turn, the processes U and V can be simulated by first generating sequences

of random variables UnT and VnT for sampling frequency 1
T = 2fo = ωo

π . A

discrete time random process with power spectral density SU can be gener-

ated by passing a discrete-time white noise sequence with unit variance through

a discrete-time linear time-invariant system with real-valued impulse response

function such that the transfer function H satisfies SU = |H|2. For example,

taking H(ω) =
√
SU (ω) works, though it might not be the most well behaved

linear system. (The problem of finding a transfer function H with additional

properties such that SU = |H|2 is called the problem of spectral factorization,

1 An elegant proof of this fact is based on spectral representation theory for WSS random
processes, covered for example in (Doob 1953). The basic idea is to define the Fourier

transform of a WSS random process, which, like white noise, is a generalized random
process. Then essentially the same method we described for filtering of deterministic
narrowband signals works.
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which we shall return to in the next chapter.) The samples VkT can be generated

similarly.

For a specific example, suppose that (using kHz for kilohertz, or thousands of

Hertz)

SX(2πf) =

{
1 9, 000 kHz < |f | < 9, 020 kHz

0 else
. (8.40)

Notice that the parameters ωo and ωc are not uniquely determined by SX . They

must simply be positive numbers with ωo < ωc such that

(9, 000 kHz, 9, 020 kHz) ⊂ (fc − fo, fc + fo).

However, only the choice fc = 9, 010 kHz makes the upper lobe of SX symmetric

around fc. Therefore we take fc = 9, 010 kHz. We take the minimum allowable

value for fo, namely fo = 10 kHz. For this choice, (8.36) yields

SU (2πf) = SV (2πf) =

{
2 |f | < 10 kHz

0 else
(8.41)

and (8.37) yields SUV (2πf) = 0 for all f . The processes U and V are continuous-

time baseband random processes with one-sided bandwidth limit 10 kHz. To sim-

ulate these processes it is therefore enough to generate samples of them with sam-

pling period T = 0.5× 10−4, and then use the Nyquist sampling representation

described in Section 8.4. The processes of samples will, according to (8.26), have

power spectral density equal to 4× 104 over the interval [−π, π]. Consequently,

the samples can be taken to be uncorrelated with E[|Ak|2] = E[|Bk|2] = 4×104.

For example, these variables can be taken to be independent real Gaussian ran-

dom variables. Putting the steps together, we find the following representation

for X:

Xt = cos(ωct)

( ∞∑
n=−∞

Ansinc

(
t− nT
T

))
−sin(ωct)

( ∞∑
n=−∞

Bnsinc

(
t− nT
T

))
.

8.6 Complexification, Part II

A complex random variable Z is said to be circularly symmetric if Z has the same

distribution as ejθZ for every real value of θ. If Z has a pdf fZ , circular symmetry

of Z means that fZ(z) is invariant under rotations about zero, or, equivalently,

fZ(z) depends on z only through |z|. A collection of random variables (Zi :

i ∈ I) is said to be jointly circularly symmetric if for every real value of θ,

the collection (Zi : i ∈ I) has the same finite dimensional distributions as the

collection (Zie
jθ : i ∈ I). Note that if (Zi : i ∈ I) is jointly circularly symmetric,

and if (Yj : j ∈ J) is another collection of random variables such that each Yj
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is a linear combination of Zi’s (with no constants added in) then the collection

(Yj : j ∈ J) is also jointly circularly symmetric.

Recall that a complex random vector Z, expressed in terms of real random

vectors U and V as Z = U + jV , has mean EZ = EU + jEV and covariance

matrix Cov(Z) = E[(Z −EZ)(Z −EZ)∗]. The pseudo-covariance matrix of Z is

defined by Covp(Z) = E[(Z−EZ)(Z−EZ)T ], and it differs from the covariance

of Z in that a transpose, rather than a Hermitian transpose, is involved. Note

that Cov(Z) and Covp(Z) are readily expressed in terms of Cov(U),Cov(V ), and

Cov(U, V ) as:

Cov(Z) = Cov(U) + Cov(V ) + j (Cov(V,U)− Cov(U, V ))

Covp(Z) = Cov(U)− Cov(V ) + j (Cov(V,U) + Cov(U, V ))

where Cov(V,U) = Cov(U, V )T . Conversely,

Cov(U) = Re (Cov(Z) + Covp(Z)) /2, Cov(V ) = Re (Cov(Z)− Covp(Z)) /2,

and

Cov(U, V ) = Im (−Cov(Z) + Covp(Z)) /2.

The vector Z is defined to be Gaussian if the random vectors U and V are jointly

Gaussian.

Suppose that Z is a complex Gaussian random vector. Then its distribution is

fully determined by its mean and the matrices Cov(U), Cov(V ), and Cov(U, V ),

or equivalently by its mean and the matrices Cov(Z) and Covp(Z). Therefore,

for a real value of θ, Z and ejθZ have the same distribution if and only if

they have the same mean, covariance matrix, and pseudo-covariance matrix.

Since E[ejθZ] = ejθEZ, Cov(ejθZ) = Cov(Z), and Covp(ejθZ) = ej2θCovp(Z),

Z and ejθZ have the same distribution if and only if (ejθ − 1)EZ = 0 and

(ej2θ − 1)Covp(Z) = 0. Hence, if θ is not a multiple of π, Z and ejθZ have

the same distribution if and only if EZ = 0 and Covp(Z) = 0. Consequently, a

Gaussian random vector Z is circularly symmetric if and only if its mean vector

and pseudo-covariance matrix are zero.

The joint density function of a circularly symmetric complex random vector

Z with n complex dimensions and covariance matrix K, with detK 6= 0, has the

particularly elegant form:

fZ(z) =
exp(−z∗K−1z)

πn det(K)
. (8.42)

Equation (8.42) can be derived in the same way the density for Gaussian vectors

with real components is derived. Namely, (8.42) is easy to verify if K is diagonal.

If K is not diagonal, the Hermetian symmetric positive definite matrix K can

be expressed as K = UΛU∗, where U is a unitary matrix and Λ is a diagonal

matrix with strictly positive diagonal entries. The random vector Y defined by

Y = U∗Z is Gaussian and circularly symmetric with covariance matrix Λ, and
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since det(Λ) = det(K), it has pdf fY (y) = exp(−y∗Λ−1y)
πn det(K) . Since |det(U)| = 1,

fZ(z) = fY (U∗x), which yields (8.42).

Let us switch now to random processes. Let Z be a complex-valued ran-

dom process and let U and V be the real-valued random processes such that

Zt = Ut + jVt. Recall that Z is Gaussian if U and V are jointly Gaussian, and

the covariance function of Z is defined by CZ(s, t) = Cov(Zs, Zt). The pseudo-

covariance function of Z is defined by CpZ(s, t) = Covp(Zs, Zt). As for covariance

matrices of vectors, both CZ and CpZ are needed to determine CU , CV , and CUV .

Following the vast majority of the literature, we define Z to be wide sense

stationary (WSS) if µZ(t) is constant and if CZ(s, t) (or RZ(s, t)) is a function

of s− t alone. Some authors use a stronger definition of WSS, by defining Z to

be WSS if either of the following two equivalent conditions is satisfied:

• µZ(t) is constant, and both CZ(s, t) and CpZ(s, t) are functions of s− t
• U and V are jointly WSS.

If Z is Gaussian then it is stationary if and only if it satisfies the stronger

definition of WSS.

A complex random process Z = (Zt : t ∈ T) is called circularly symmetric if

the random variables of the process, (Zt : t ∈ T), are jointly circularly symmetric.

If Z is a complex Gaussian random process, it is circularly symmetric if and only

if it has mean zero and CovpZ(s, t) = 0 for all s, t. Proposition 8.3 shows that

the baseband equivalent process Z for a Gaussian real-valued narrowband WSS

random process X is circularly symmetric. Nearly all complex valued random

processes in applications arise in this fashion. For circularly symmetric complex

random processes, the definition of WSS we adopted, and the stronger definition

mentioned in the previous paragraph, are equivalent. A circularly symmetric

complex Gaussian random process is stationary if and only if it is WSS.

The interested reader can find more related to the material in this section in

Neeser and Massey, “Proper Complex Random Processes with Applications to

Information Theory,” IEEE Transactions on Information Theory, vol. 39, no. 4,

July 1993.

Problems

8.1 Baseband limiting Let X be a Gaussian random process with mean zero

and autocorrelation function RX(τ) = e−|τ |. (a) Find the numerical value of fo
in hertz so that 99% of the power of X is in the frequency band [−fo, fo].
(b) Let Y be the output when X is passed through an ideal lowpass filter with

cutoff frequency fo (i.e. the transfer function is H(2πf) = I[−fo≤f≤fo]). Are the

random processes Y and X − Y independent? Justify your answer.

(c) Find P{|Xt − Yt| ≥ 0.1}.
8.2 A second order stochastic differential equation SupposeX is a WSS m.s.

continuous random process and Y is a WSS solution to the second order differ-

ential equation Y ′′ + Y ′ + Y = X.

(a) Express SY in terms of SX .
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(b) Suppose the power of X is one. What is the maximum possible power of Y,

and for what choice of X is the maximum achieved?

(c) How small can the power of Y be, and for what choice of X (with power one)

is the power of Y very small?

8.3 On filtering a WSS random process Suppose Y is the output of a linear

time-invariant system with WSS input X, impulse response function h, and

transfer function H. Indicate whether the following statements are true or false.

Justify your answers. (a) If |H(ω)| ≤ 1 for all ω then the power of Y is less than

or equal to the power of X. (b) If X is periodic (in addition to being WSS) then

Y is WSS and periodic. (c) If X has mean zero and strictly positive total power,

and if ||h||2 > 0, then the output power is strictly positive.

8.4 On the cross spectral density Suppose X and Y are jointly WSS such

that the power spectral densities SX , SY , and SXY are continuous. Show that

for each ω, |SXY (ω)|2 ≤ SX(ω)SY (ω). Hint: Fix ωo, let ε > 0, and let Jε denote

the interval of length ε centered at ωo. Consider passing both X and Y through

a linear time-invariant system with transfer function Hε(ω) = IJε(ω). Apply

the Schwarz inequality to the output processes sampled at a fixed time, and let

ε→ 0.

8.5 Modulating and filtering a stationary process Let X = (Xt : t ∈ Z) be a

discrete-time mean-zero stationary random process with power E[X2
0 ] = 1. Let Y

be the stationary discrete time random process obtained from X by modulation

as follows:

Yt = Xt cos(80πt+ Θ),

where Θ is independent of X and is uniformly distributed over [0, 2π]. Let Z

be the stationary discrete time random process obtained from Y by the linear

equations:

Zt+1 = (1− a)Zt + aYt+1

for all t, where a is a constant with 0 < a < 1. (a) Why is the random process Y

stationary? (b) Express the autocorrelation function of Y , RY (τ) = E[YτY0], in

terms of the autocorrelation function of X. Similarly, express the power spectral

density of Y , SY (ω), in terms of the power spectral density of X, SX(ω). (c)

Find and sketch the transfer function H(ω) for the linear system describing the

mapping from Y to Z. (d) Can the power of Z be arbitrarily large (depending

on a)? Explain your answer. (e) Describe an input X satisfying the assumptions

above so that the power of Z is at least 0.5, for any value of a with 0 < a < 1.

8.6 Filtering a Gauss Markov process Let X = (Xt : −∞ < t < +∞) be a

stationary Gauss Markov process with mean zero and autocorrelation function

RX(τ) = exp(−|τ |). Define a random process Y = (Yt : t ∈ R) by the differential

equation Ẏt = Xt − Yt.
(a) Find the cross correlation function RXY . Are X and Y jointly stationary?

(b) Find E[Y5|X5 = 3]. What is the approximate numerical value?
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(c) Is Y a Gaussian random process? Justify your answer.

(d) Is Y a Markov process? Justify your answer.

8.7 Slight smoothing Suppose Y is the output of the linear time-invariant sys-

tem with input X and impulse response function h, such that X is WSS with

RX(τ) = exp(−|τ |), and h(τ) = 1
aI{|τ |≤ a2 } for a > 0. If a is small, then h approx-

imates the delta function δ(τ), and consequently Yt ≈ Xt. This problem explores

the accuracy of the approximation.

(a) Find RY X(0) and show RY X(0) = 1 − a
4 + o(a) as a → 0. (Hint: Use the

power series expansion of eu.)

(b) Find RY (0) and show RY (0) = 1− a
3 + o(a) as a→ 0.

(c) Show E[|Xt − Yt|2] = a
6 + o(a) as a→ 0.

8.8 A stationary two-state Markov process Let X = (Xk : k ∈ Z) be a sta-

tionary Markov process with state space S = {1,−1} and one-step transition

probability matrix

P =

(
1− p p

p 1− p

)
,

where 0 < p < 1. Find the mean, correlation function and power spectral density

function of X. Hint: For nonnegative integers k:

P k =

(
1
2

1
2

1
2

1
2

)
+ (1− 2p)k

(
1
2 − 1

2

− 1
2

1
2

)
.

8.9 A stationary two-state Markov process in continuous time Let

X = (Xt : t ∈ R) be a stationary Markov process with state space S = {1,−1}
and Q matrix

Q =

(
−α α

α −α

)
,

where α > 0. Find the mean, correlation function and power spectral density

function of X. (Hint: Recall from the example in the chapter on Markov processes

that for s < t, the matrix of transition probabilities pij(s, t) is given by H(τ),

where τ = t− s and

H(τ) =

(
1+e−2ατ

2
1−e−2ατ

2
1−e−2ατ

2
1+e−2ατ

2

)
.

8.10 A linear estimation problem Suppose X and Y are possibly complex val-

ued jointly WSS processes with known autocorrelation functions, cross-correlation

function, and associated spectral densities. Suppose Y is passed through a linear

time-invariant system with impulse response function h and transfer function

H, and let Z be the output. The mean square error of estimating Xt by Zt is

E[|Xt − Zt|2].

(a) Express the mean square error in terms of RX , RY , RXY and h.

(b) Express the mean square error in terms of SX , SY , SXY and H.

(c) Using your answer to part (b), find the choice of H that minimizes the mean

square error. (Hint: Try working out the problem first assuming the processes
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are real valued. For the complex case, note that for σ2 > 0 and complex numbers

z and zo, σ
2|z|2 − 2Re(z∗zo) is equal to |σz − zo

σ |
2 − |zo|

2

σ2 , which is minimized

with respect to z by z = zo
σ2 .)

8.11 Linear time invariant, uncorrelated scattering channel A signal

transmitted through a scattering environment can propagate over many different

paths on its way to a receiver. The channel gains along distinct paths are often

modeled as uncorrelated. The paths may differ in length, causing a delay spread.

Let h = (hu : u ∈ Z) consist of uncorrelated, possibly complex valued random

variables with mean zero and E[|hu|2] = gu. Assume that G =
∑
u gu <∞. The

variable hu is the random complex gain for delay u, and g = (gu : u ∈ Z) is the

energy gain delay mass function with total gain G. Given a deterministic signal

x, the channel output is the random signal Y defined by Yi =
∑∞
u=−∞ huxi−u.

(a) Determine the mean and autocorrelation function for Y in terms of x and g.

(b) Express the average total energy of Y : E[
∑
i Y

2
i ], in terms of x and g.

(c) Suppose instead that the input is a WSS random process X with autocorre-

lation function RX . The input X is assumed to be independent of the channel

h. Express the mean and autocorrelation function of the output Y in terms of

RX and g. Is Y WSS?

(d) Since the impulse response function h is random, so is its Fourier transform,

H = (H(ω) : −π ≤ ω ≤ π). Express the autocorrelation function of the random

process H in terms of g.

8.12 The accuracy of approximate differentiation Let X be a WSS baseband

random process with power spectral density SX , and let ωo be the one-sided

band limit of X. The process X is m.s. differentiable and X ′ can be viewed as

the output of a time-invariant linear system with transfer function H(ω) = jω.

(a) What is the power spectral density of X ′?

(b) Let Yt = Xt+a−Xt−a
2a , for some a > 0. We can also view Y = (Yt : t ∈ R)

as the output of a time-invariant linear system, with input X. Find the impulse

response function k and transfer function K of the linear system. Show that

K(ω)→ jω as a→ 0.

(c) Let Dt = X ′t − Yt. Find the power spectral density of D.

(d) Find a value of a, depending only on ωo, so that E[|Dt|2] ≤ (0.01)E[|X ′t|]2.

In other words, for such a, the m.s. error of approximating X ′t by Yt is less than

one percent of E[|X ′t|2]. You can use the fact that 0 ≤ 1− sin(u)
u ≤ u2

6 for all real

u. (Hint: Find a so that SD(ω) ≤ (0.01)SX′(ω) for |ω| ≤ ωo.)
8.13 Some linear transformations of some random processes Let

U = (Un : n ∈ Z) be a random process such that the variables Un are indepen-

dent, identically distributed, with E[Un] = µ and Var(Un) = σ2, where µ 6= 0

and σ2 > 0. Please keep in mind that µ 6= 0. Let X = (Xn : n ∈ Z) be defined

by Xn =
∑∞
k=0 Un−ka

k, for a constant a with 0 < a < 1.

(a) Is X stationary? Find the mean function µX and autocovariance function

CX for X.

(b) Is X a Markov process ? (Hint: X is not necessarily Gaussian. Does X have
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a state representation driven by U?)

(c) Is X mean ergodic in the m.s. sense?

Let U be as before, and let Y = (Yn : n ∈ Z) be defined by Yn =
∑∞
k=0 Un−kA

k,

where A is a random variable distributed on the interval (0, 0.5) (the exact dis-

tribution is not specified), and A is independent of the random process U .

(d) Is Y stationary? Find the mean function µY and autocovariance function CY
for Y . (Your answer may include expectations involving A.)

(e) Is Y a Markov process? (Give a brief explanation.)

(f) Is Y mean ergodic in the m.s. sense?

8.14 Filtering Poisson white noise A Poisson process N = (Nt : t ≥ 0) has

independent increments. The derivative of N , written N ′, does not exist as

an ordinary random process, but it does exist as a generalized random pro-

cess. Graphically, picture N ′ as a superposition of delta functions, one at each

arrival time of the Poisson process. As a generalized random process, N ′ is

stationary with mean and autocovariance functions given by E[N ′t ] = λ, and

CN ′(s, t) = λδ(s − t), respectively, because, when integrated, these functions

give the correct values for the mean and covariance of N : E[Nt] =
∫ t

0
λds and

CN (s, t) =
∫ s

0

∫ t
0
λδ(u − v)dvdu. The random process N ′ can be extended to

be defined for negative times by augmenting the original random process N by

another rate λ Poisson process for negative times. Then N ′ can be viewed as a

stationary random process, and its integral over intervals gives rise to a process

N(a, b] as described in Problem 4.19. (The process N ′−λ is a white noise process,

in that it is a generalized random process which is stationary, mean zero, and

has autocorrelation function λδ(τ). Both N ′ and N ′ − λ are called Poisson shot

noise processes. One application for such processes is modeling noise in small

electronic devices, in which effects of single electrons can be registered. For the

remainder of this problem, N ′ is used instead of the mean zero version.) Let X

be the output when N ′ is passed through a linear time-invariant filter with an

impulse response function h, such that
∫∞
−∞ |h(t)|dt is finite. (Remark: In the

special case that h(t) = I{0≤t<1}, X is the M/D/∞ process of Problem 4.19.)

(a) Find the mean and covariance functions of X.

(b) Consider the special case h(t) = e−tI{t≥0}. Explain why X is a Markov pro-

cess in this case. (Hint: What is the behavior of X between the arrival times of

the Poisson process? What does X do at the arrival times?)

8.15 A linear system with a feedback loop The system with inputX and out-

put Y involves feedback with the loop transfer function shown.

Y

!

1+j"

X +

(a) Find the transfer function, K, of the system.

(b) Find the corresponding impulse response function.



292 Random Processes in Linear Systems and Spectral Analysis

(c) The power of Y divided by the power of X, depends on the power spectral

density, SX . Find the supremum of this ratio, over all choices of SX , and describe

what choice of SX achieves this supremum.

8.16 Linear and nonlinear reconstruction from samples Suppose

Xt =
∑∞
n=−∞ g(t− n− U)Bn, where the Bn’s are independent with mean zero

and variance σ2 > 0, g is a function with finite energy
∫
|g(t)|2dt and Fourier

transform G(ω), U is a random variable which is independent of B and uniformly

distributed on the interval [0, 1]. The process X is a typical model for a digital

baseband signal, where the Bn’s are random data symbols.

(a) Show that X is WSS, with mean zero and RX(t) = σ2g ∗ g̃(t).

(b) Under what conditions on G and T can the sampling theorem be used to

recover X from its samples of the form (X(nT ) : n ∈ Z)?

(c) Consider the particular case g(t) = (1−|t|)+ and T = 0.5. Although this falls

outside the conditions found in part (b), show that by using nonlinear operations,

the process X can be recovered from its samples of the form (X(nT ) : n ∈ Z).

(Hint: Consider a sample path of X)

8.17 Sampling a cubed Gaussian process Let X = (Xt : t ∈ R) be a base-

band mean zero stationary real Gaussian random process with one-sided band

limit fo Hz. Thus, Xt =
∑∞
n=−∞XnT sinc

(
t−nT
T

)
where 1

T = 2fo. Let Yt = X3
t

for each t.

(a) Is Y stationary? Express RY in terms of RX , and SY in terms of SX
and/or RX . (Hint: If A,B are jointly Gaussian and mean zero, Cov(A3, B3) =

6Cov(A,B)3 + 9E[A2]E[B2]Cov(A,B).)

(b) At what rate 1
T ′ should Y be sampled so Yt =

∑∞
n=−∞ YnT ′ sinc

(
t−nT ′
T ′

)
?

(c) Can Y be recovered with fewer samples than in part (b)? Explain.

8.18 An approximation of white noise White noise in continuous time can be

approximated by a piecewise constant process as follows. Let T be a small positive

constant, AT be a positive scaling constant depending on T , and (Bk : k ∈ Z) be

a discrete-time white noise process with RB(k) = σ2I{k=0}. Define (Nt : t ∈ R)

by Nt = ATBk for t ∈ [kT, (k + 1)T ).

(a) Sketch a typical sample path of N and express E[|
∫ 1

0
Nsds|2] in terms of AT ,

T and σ2. For simplicity assume T = 1
K for some large integer K.

(b) What choice of AT makes the expectation found in part (a) equal to σ2? This

choice makes N a good approximation to a continuous-time white noise process

with autocorrelation function σ2δ(τ).

(c) What happens to the expectation found in (a) as T → 0 if AT = 1 for all T?

8.19 Simulating a baseband random process Suppose a real-valued Gaussian

baseband process X = (Xt : t ∈ R) with mean zero and power spectral density

SX(2πf) =

{
1 if |f | ≤ 0.5

0 else

is to be simulated over the time interval [−500, 500] through use of the sampling

theorem with sampling time T = 1. (a) What is the joint distribution of the
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samples, Xn : n ∈ Z? (b) Of course a computer cannot generate infinitely many

random variables in a finite amount of time. Therefore, consider approximating

X by X(N) defined by

X
(N)
t =

N∑
n=−N

Xnsinc(t− n).

Find a condition on N to guarantee E[(Xt −X(N)
t )2] ≤ 0.01 for t ∈ [−500, 500].

(Hint: Use |sinc(τ)| ≤ 1
π|τ | and bound the series by an integral. Your choice of N

should not depend on t because the same N should work for all t in the interval

[−500, 500] ).

8.20 Synthesizing a random process with specified spectral density This

problem deals with Monte Carlo simulation of a Gaussian stationary random

process with a specified power spectral density. Give a representation of a random

process X with the power spectral density SX shown,

f

S(2   f)

ï20 ï10 0 10 20

1

2
/

using independent, N(0, 1) random variables, and linear operations such as lin-

ear filtering and addition, as in the Nyquist sampling theorem representation of

baseband processes. You don’t need to address the fact that in practice, a trun-

cation to a finite sum would be used to approximately simulate the process over

a finite time interval, but do try to minimize the number of N(0, 1) variables

you use per unit time of simulation. Identify explicitly any functions you use,

and also identify how many N(0, 1) random variables you use per unit of time

simulated.

8.21 Filtering to maximize signal to noise ratio Let X and N be continuous

time, mean zero WSS random processes. Suppose X has power spectral density

SX(ω) = |ω|I{|ω|≤ωo}, and N has power spectral density SN (ω) = σ2 for all

ω. Suppose also that X and N are uncorrelated with each other. Think of X

as a signal, and N as noise. Suppose X + N is passed through a linear time-

invariant filter with transfer function H, which you are to specify. Let X̃ denote

the output signal and Ñ denote the output noise. What choice of H, subject to

the constraints (i) |H(ω)| ≤ 1 for all ω, and (ii) (power of X̃) ≥ (power of X)/2,

minimizes the power of Ñ?

8.22 Finding the envelope of a deterministic signal (a) Find the complex en-

velope z(t) and real envelope |z(t)| of x(t) = cos(2π(1000)t) + cos(2π(1001)t),

using the carrier frequency fc = 1000.5Hz. Simplify your answer.
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(b) Repeat (a), using fc = 995Hz. (Hint: The real envelope should be the same

as found in (a).)

(c) Explain why, in general, the real envelope of a narrowband signal does not

depend on which frequency fc is used to represent the signal (as long as fc is cho-

sen so that the upper band of the signal is contained in an interval [fc−a, fc+a]

with a << fc.)

8.23 Sampling a signal or process that is not band limited (a) Fix T > 0 and

let ωo = π/T . Given a finite energy signal x, let xo be the band-limited signal with

Fourier transform x̂o(ω) = I{|ω|≤ωo}
∑∞
n=−∞ x̂(ω + 2nωo). Show that x(nT ) =

xo(nT ) for all integers n. (b) Explain why xo(t) =
∑∞
n=−∞ x(nT )sinc

(
t−nT
T

)
.

(c) Let X be a mean zero WSS random process, and RoX be the autocorrelation

function for SoX(ω) defined by SoX(ω) = I{|ω|≤ωo}
∑∞
n=−∞ SX(ω + 2nωo). Show

that RX(nT ) = RoX(nT ) for all integers n. (d) Explain why the random pro-

cess Y defined by Yt =
∑∞
n=−∞XnT sinc

(
t−nT
T

)
is WSS with autocorrelation

function RoX . (e) Find SoX in case SX(ω) = exp(−α|ω|) for ω ∈ R.

8.24 A narrowband Gaussian process Let X be a real-valued stationary Gaus-

sian process with mean zero and RX(τ) = cos(2π(30τ))(sinc(6τ))2. (a) Find and

carefully sketch the power spectral density of X. (b) Sketch a sample path of X.

(c) The process X can be represented by Xt = Re(Zte
2πj30t), where Zt = Ut+jVt

for jointly stationary narrowband real-valued random processes U and V . Find

the spectral densities SU , SV , and SUV .

(d) Find P{|Z33| > 5}. Note that |Zt| is the real envelope process of X.

8.25 Another narrowband Gaussian process Suppose a real-valued Gaussian

random process R = (Rt : t ∈ R) with mean 2 and power spectral density

SR(2πf) = e−|f |/104

is fed through a linear time-invariant system with transfer

function

H(2πf) =

{
0.1 5000 ≤ |f | ≤ 6000

0 else
.

(a) Find the mean and power spectral density of the output process (Xt : t ∈ R).

(b) Find P{X25 > 6}. (c) The random process X is a narrowband random

process. Find the power spectral densities SU , SV and the cross spectral density

SUV of jointly WSS baseband random processes U and V so that

Xt = Ut cos(2πfct)− Vt sin(2πfct),

using fc = 5500. (d) Repeat part (c) with fc = 5000.

8.26 Another narrowband Gaussian process (version 2) Suppose a real-valued

Gaussian white noise process N (we assume white noise has mean zero) with

power spectral density SN (2πf) ≡ No
2 for f ∈ R is fed through a linear time-

invariant system with transfer function H specified as follows, where f represents
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the frequency in gigahertz (GHz) and a gigahertz is 109 cycles per second.

H(2πf) =


1 19.10 ≤ |f | ≤ 19.11√

19.12−|f |
0.01 19.11 ≤ |f | ≤ 19.12

0 else

.

(a) Find the mean and power spectral density of the output process X = (Xt :

t ∈ R).

(b) Express P{X25 > 2} in terms of No and the standard normal complementary

CDF function Q.

(c) The random process X is a narrowband random process. Find and sketch

the power spectral densities SU , SV and the cross spectral density SUV of jointly

WSS baseband random processes U and V so that

Xt = Ut cos(2πfct)− Vt sin(2πfct),

using fc = 19.11 GHz.

(d) The complex envelope process is given by Z = U + jV and the real envelope

process is given by |Z|. Specify the distributions of Zt and |Zt| for t fixed.

8.27 Declaring the center frequency for a given random process Let a > 0

and let g be a nonnegative function on R which is zero outside of the interval

[a, 2a]. Suppose X is a narrowband WSS random process with power spectral

density function SX(ω) = g(|ω|), or equivalently, SX(ω) = g(ω) + g(−ω). The

process X can thus be viewed as a narrowband signal for carrier frequency ωc, for

any choice of ωc in the interval [a, 2a]. Let U and V be the baseband random pro-

cesses in the usual complex envelope representation: Xt = Re((Ut + jVt)e
jωct).

(a) Express SU and SUV in terms of g and ωc.

(b) Describe which choice of ωc minimizes
∫∞
−∞ |SUV (ω)|2 dωdπ . (Note: If g is sym-

metric around some frequency ν, then ωc = ν. But what is the answer otherwise?)

8.28* Cyclostationary random processes A random process X = (Xt : t ∈ R)

is said to be cyclostationary with period T , if whenever s is an integer multiple

of T , X has the same finite dimensional distributions as (Xt+s : t ∈ R). This

property is weaker than stationarity, because stationarity requires equality of

finite dimensional distributions for all real values of s.

(a) What properties of the mean function µX and autocorrelation function RX
does any second order cyclostationary process possess? A process with these

properties is called a wide sense cyclostationary process.

(b) Suppose X is cyclostationary and that U is a random variable independent

of X that is uniformly distributed on the interval [0, T ]. Let Y = (Yt : t ∈ R)

be the random process defined by Yt = Xt+U . Argue that Y is stationary, and

express the mean and autocorrelation function of Y in terms of the mean function

and autocorrelation function of X. Although X is not necessarily WSS, it is

reasonable to define the power spectral density of X to equal the power spectral

density of Y .

(c) Suppose B is a stationary discrete-time random process and that g is a
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deterministic function. Let X be defined by

Xt =

∞∑
n=−∞

g(t− nT )Bn.

Show that X is a cyclostationary random process. Find the mean function and

autocorrelation function of X in terms g, T , and the mean and autocorrelation

function of B. If your answer is complicated, identify special cases which make

the answer nice.

(d) Suppose Y is defined as in part (b) for the specific X defined in part (c).

Express the mean µY , autocorrelation function RY , and power spectral density

SY in terms of g, T , µB , and SB .

8.29* Zero crossing rate of a stationary Gaussian process Consider a zero-mean

stationary Gaussian process X with SX(2πf) = |f | − 50 for 50 ≤ |f | ≤ 60, and

SX(2πf) = 0 otherwise. Assume the process has continuous sample paths (it can

be shown that such a version exists.) A zero crossing from above is said to occur

at time t if X(t) = 0 and X(s) > 0 for all s in an interval of the form [t − ε, t)
for some ε > 0. Determine the mean rate of zero crossings from above for X. If

you can find an analytical solution, great. Alternatively, you can estimate the

rate (aim for three significant digits) by Monte Carlo simulation of the random

process.



9 Wiener filtering

Wiener filtering is a framework for minimum mean square error (MMSE) lin-

ear estimation in the context of wide sense stationary random processes. The

estimators are obtained by passing the observed processes through linear filters.

Equations that the optimal filters must satisfy follow readily from the orthogo-

nality principle. In the case of noncausal estimation, the equations are relatively

easy to solve in the frequency domain. For causal estimation, where the theory

of Wiener filtering overlaps Kalman filtering, the optimality equations are of

Wiener-Hopf type, and can be solved by the method of spectral factorization

of rational spectral densities, as shown in Section 9.4. Section 9.5 explains the

connection between the Wiener-Hopf equations in discrete time and the linear

innovations approach used for deriving the Kalman filtering equations. While the

WSS assumptions of Wiener filtering are restrictive and not needed for Kalman

filtering, if the processes involved are WSS, then Wiener filtering gives insight

about signals and noise that complements the Kalman filtering approach.

9.1 Return of the orthogonality principle

Consider the problem of estimating a random process X at some fixed time t

given observation of a random process Y over an interval [a, b]. Suppose both

X and Y are mean zero second order random processes and that the minimum

mean square error is to be minimized. Let X̂t denote the best linear estimator

of Xt based on the observations (Ys : a ≤ s ≤ b). In other words, define

Vo = {c1Ys1 + · · ·+ cnYsn : n ≥ 1, s1, . . . , sn ∈ [a, b], c1, . . . , cn ∈ R}.

and let V be the m.s. closure of V, which includes Vo and any random variable

that is the m.s. limit of a sequence of random variables in Vo. Then X̂t is the

random variable in V that minimizes the mean square error, E[|Xt − X̂t|2]. By

the orthogonality principle, the estimator X̂t exists and it is unique in the sense

that any two solutions to the estimation problem are equal with probability one.

Perhaps the most useful part of the orthogonality principle is that a random

variable W is equal to X̂t if and only if (i) W ∈ V and (ii) (Xt −W ) ⊥ Z for

all Z ∈ V. Equivalently, W is equal to X̂t if and only if (i) W ∈ V and (ii)
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(Xt −W ) ⊥ Yu for all u ∈ [a, b]. Furthermore, the minimum mean square error

(i.e. the error for the optimal estimator X̂t) is given by E[|Xt|2]− E[|X̂t|2].

Note that m.s. integrals of the form
∫ b
a
h(t, s)Ysds are in V, because m.s. inte-

grals are m.s. limits of finite linear combinations of the random variables of Y .

Typically the set V is larger than the set of all m.s. integrals of Y . For example,

if u is a fixed time in [a, b] then Yu ∈ V. In addition, if Y is m.s. differentiable,

then Y ′u is also in V. Typically neither Yu nor Y ′u can be expressed as a m.s. in-

tegral of (Ys : s ∈ R). However, Yu can be obtained as an integral of the process

Y multiplied by a delta function, though the integration has to be taken in a

generalized sense.

The integral
∫ b
a
h(t, s)Ysds is the linear MMSE estimator if and only if

Xt −
∫ b

a

h(t, s)Ysds ⊥ Yu for u ∈ [a, b]

or equivalently

E

[(
Xt −

∫ b

a

h(t, s)Ysds

)
Y ∗u

]
= 0 for u ∈ [a, b]

or equivalently

RXY (t, u) =

∫ b

a

h(t, s)RY (s, u)ds for u ∈ [a, b].

Suppose now that the observation interval is the whole real line R and suppose

that X and Y are jointly WSS. Then for t and v fixed, the problem of estimating

Xt from (Ys : s ∈ R) is the same as the problem of estimating Xt+v from

(Ys+v : s ∈ R). Therefore, if h(t, s) for t fixed is the optimal function to use

for estimating Xt from (Ys : s ∈ R), then it is also the optimal function to use

for estimating Xt+v from (Ys+v : s ∈ R). Therefore, h(t, s) = h(t + v, s + v),

so that h(t, s) is a function of t − s alone, meaning that the optimal impulse

response function h corresponds to a time-invariant system. Thus, we seek to

find an optimal estimator of the form X̂t =
∫∞
−∞ h(t − s)Ysds. The optimality

condition becomes

Xt −
∫ ∞
−∞

h(t− s)Ysds ⊥ Yu for u ∈ R

which is equivalent to the condition

RXY (t− u) =

∫ ∞
−∞

h(t− s)RY (s− u)ds for u ∈ R

or RXY = h ∗ RY . In the frequency domain the optimality condition becomes

SXY (ω) = H(ω)SY (ω) for all ω. Consequently, the optimal filter H is given by

H(ω) =
SXY (ω)

SY (ω)
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and the corresponding minimum mean square error is given by

E[|Xt − X̂t|2] = E[|Xt|2]− E[|X̂t|2] =

∫ ∞
−∞

(
SX(ω)− |SXY (ω)|2

SY (ω)

)
dω

2π
.

Example 9.1 Consider estimating a random process from observation of the

random process plus noise, as shown in Figure 9.1. Assume that X and N are

X

N

+ h XY

Figure 9.1 An estimator of a signal from signal plus noise, as the output of a linear
filter.

jointly WSS with mean zero. Suppose X and N have known autocorrelation

functions and suppose that RXN ≡ 0, so the variables of the process X are

uncorrelated with the variables of the process N . The observation process is

given by Y = X +N . Then SXY = SX and SY = SX +SN , so the optimal filter

is given by

H(ω) =
SXY (ω)

SY (ω)
=

SX(ω)

SX(ω) + SN (ω)
.

The associated minimum mean square error is given by

E[|Xt − X̂t|2] =

∫ ∞
−∞

(
SX(ω)− SX(ω)2

SX(ω) + SN (ω)

)
dω

2π

=

∫ ∞
−∞

SX(ω)SN (ω)

SX(ω) + SN (ω)

dω

2π
.

Example 9.2 This example is a continuation of the previous example, for a

particular choice of power spectral densities. Suppose that the signal process X

is WSS with mean zero and power spectral density SX(ω) = 1
1+ω2 , suppose the

noise process N is WSS with mean zero and power spectral density 4
4+ω2 , and

suppose SXN ≡ 0. Equivalently, RX(τ) = e−|τ|

2 , RN (τ) = e−2|τ | and RXN ≡ 0.

We seek the optimal linear estimator of Xt given (Ys : s ∈ R), where Y = X+N .

Seeking an estimator of the form

X̂t =

∫ ∞
−∞

h(t− s)Ysds

we find from the previous example that the transform H of h is given by

H(ω) =
SX(ω)

SX(ω) + SN (ω)
=

1
1+ω2

1
1+ω2 + 4

4+ω2

=
4 + ω2

8 + 5ω2
.
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We will find h by finding the inverse transform of H. First, note that

4 + ω2

8 + 5ω2
=

8
5 + ω2

8 + 5ω2
+

12
5

8 + 5ω2
=

1

5
+

12
5

8 + 5ω2
.

We know that 1
5δ(t)↔

1
5 . Also, for any α > 0,

e−α|t| ↔ 2α

ω2 + α2
, (9.1)

so

1

8 + 5ω2
=

1
5

8
5 + ω2

=

(
1

5 · 2

√
5

8

)
2
√

8
5

( 8
5 + ω2)

↔
(

1

4
√

10

)
e−
√

8
5 |t|.

Therefore the optimal filter is given in the time domain by

h(t) =
1

5
δ(t) +

(
3

5
√

10

)
e−
√

8
5 |t|.

The associated minimum mean square error is given by (one way to do the

integration is to use the fact that if k ↔ K then
∫∞
−∞K(ω)dω2π = k(0)):

E[|Xt − X̂t|2] =

∫ ∞
−∞

SX(ω)SN (ω)

SX(ω) + SN (ω)

dω

2π
=

∫ ∞
−∞

4

8 + 5ω2

dω

2π
=

1√
10
.

In an example later in this chapter we will return to the same random processes,

but seek the best linear estimator of Xt given (Ys : s ≤ t).

9.2 The causal Wiener filtering problem

A linear system is causal if the value of the output at any given time does not

depend on the future of the input. That is to say that the impulse response

function satisfies h(t, s) = 0 for s > t. In the case of a linear, time-invariant

system, causality means that the impulse response function satisfies h(τ) = 0

for τ < 0. Suppose X and Y are mean zero and jointly WSS. In this section we

will consider estimates of X given Y obtained by passing Y through a causal

linear time-invariant system. For convenience in applications, a fixed parameter

T is introduced. Let X̂t+T |t be the minimum mean square error linear estimate

of Xt+T given (Ys : s ≤ t). Note that if Y is the same process as X and T > 0,

then we are addressing the problem of predicting Xt+T from (Xs : s ≤ t).
An estimator of the form

∫∞
−∞ h(t− s)Ysds is sought such that h corresponds

to a causal system. Once again, the orthogonality principle implies that the

estimator is optimal if and only if it satisfies

Xt+T −
∫ ∞
−∞

h(t− s)Ysds ⊥ Yu for u ≤ t
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which is equivalent to the condition

RXY (t+ T − u) =

∫ ∞
−∞

h(t− s)RY (s− u)ds for u ≤ t

or RXY (t+T−u) = h∗RY (t−u). Setting τ = t−u and combining this optimality

condition with the constraint that h is a causal function, the problem is to find

an impulse response function h satisfying:

RXY (τ + T ) = h ∗RY (τ) for τ ≥ 0 (9.2)

h(v) = 0 for v < 0. (9.3)

Equations (9.2) and (9.3) are called the Wiener-Hopf equations. We shall show

how to solve them in the case the power spectral densities are rational functions

by using the method of spectral factorization. The next section describes some

of the tools needed for the solution.

9.3 Causal functions and spectral factorization

A function h on R is said to be causal if h(τ) = 0 for τ < 0, and it is said to

be anticausal if h(τ) = 0 for τ > 0. Any function h on R can be expressed as

the sum of a causal function and an anticausal function as follows. Simply let

u(t) = I{t≥0} and notice that h(t) is the sum of the causal function u(t)h(t) and

the anticausal function (1−u(t))h(t). More compactly, we have the representation

h = uh+ (1− u)h.

A transfer function H is said to be of positive type if the corresponding im-

pulse response function h is causal, and H is said to be of negative type if the

corresponding impulse response function is anticausal. Any transfer function can

be written as the sum of a positive type transfer function and a negative type

transfer function. Indeed, suppose H is the Fourier transform of an impulse re-

sponse function h. Define [H]+ to be the Fourier transform of uh and [H]− to

be the Fourier transform of (1− u)h. Then [H]+ is called the positive part of H

and [H]− is called the negative part of H. The following properties hold:

• H = [H]+ + [H]− (because h = uh+ (1− u)h)

• [H]+ = H if and only if H is positive type

• [H]− = 0 if and only if H is positive type

• [[H]+]− = 0 for any H

• [[H]+]+ = [H]+ and [[H]−]− = [H]−

• [H +G]+ = [H]+ + [G]+ and [H +G]− = [H]− + [G]−.

Note that uh is the casual function that is closest to h in the L2 norm. That

is, uh is the projection of h onto the space of causal functions. Indeed, if k is any
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causal function, then∫ ∞
−∞
|h(t)− k(t)|2dt =

∫ 0

−∞
|h(t)|2dt+

∫ ∞
0

|h(t)− k(t)|2dt

≥
∫ 0

−∞
|h(t)|2dt. (9.4)

and equality holds in (9.4) if and only if k = uh (except possibly on a set of

measure zero). By Parseval’s relation, it follows that [H]+ is the positive type

function that is closest to H in the L2 norm. Equivalently, [H]+ is the projection

of H onto the space of positive type functions. Similarly, [H]− is the projection

of H onto the space of negative type functions. Up to this point in this book,

Fourier transforms have been defined for real values of ω only. However, for

the purposes of factorization to be covered later, it is useful to consider the

analytic continuation of the Fourier transforms to larger sets in C. We use the

same notation H(ω) for the function H defined for real values of ω only, and its

continuation defined for complex ω. The following examples illustrate the use of

the projections [ ]+ and [ ]−, and consideration of transforms for complex ω.

Example 9.3 Let g(t) = e−α|t| for a constant α > 0. The functions g, ug and

g(t)

u(t)g(t)

(1−u(t))g(t)

t

t

t

Figure 9.2 Decomposition of a two-sided exponential function.

(1− u)g are pictured in Figure 9.2. The corresponding transforms are given by:

[G]+(ω) =

∫ ∞
0

e−αte−jωtdt =
1

jω + α

[G]−(ω) =

∫ 0

−∞
eαte−jωtdt =

1

−jω + α

G(ω) = [G]+(ω) + [G]−(ω) =
2α

ω2 + α2
.

Note that [G]+ has a pole at ω = jα, so that the imaginary part of the pole of

[G]+ is positive. Equivalently, the pole of [G]+ is in the upper half plane.
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More generally, suppose that G(ω) has the representation

G(ω) =

N1∑
n=1

γn
jω + αn

+

N∑
n=N1+1

γn
−jω + αn

where Re(αn) > 0 for all n. Then

[G]+(ω) =

N1∑
n=1

γn
jω + αn

[G]−(ω) =

N∑
n=N1+1

γn
−jω + αn

.

Example 9.4 Let G be given by

G(ω) =
1− ω2

(jω + 1)(jω + 3)(jω − 2)
.

Note that G has only three simple poles. The numerator of G has no factors in

common with the denominator, and the degree of the numerator is smaller than

the degree of the denominator. By the theory of partial fraction expansions in

complex analysis, it therefore follows that G can be written as

G(ω) =
γ1

jω + 1
+

γ2

jω + 3
+

γ3

jω − 2
.

In order to identify γ1, for example, multiply both expressions for G by (jω+ 1)

and then let jω = −1. The other constants are found similarly. Thus

γ1 =
1− ω2

(jω + 3)(jω − 2)

∣∣∣∣
jω=−1

=
1 + (−1)2

(−1 + 3)(−1− 2)
= −1

3

γ2 =
1− ω2

(jω + 1)(jω − 2)

∣∣∣∣
jω=−3

=
1 + 32

(−3 + 1)(−3− 2)
= 1

γ3 =
1− ω2

(jω + 1)(jω + 3)

∣∣∣∣
jω=2

=
1 + 22

(2 + 1)(2 + 3)
=

1

3
.

Consequently,

[G]+(ω) = − 1

3(jω + 1)
+

1

jω + 3
and [G]−(ω) =

1

3(jω − 2)
.

Example 9.5 Suppose that G(ω) = e−jωT

(jω+α) . Multiplication by e−jωT in the

frequency domain represents a shift by T in the time domain, so that

g(t) =

{
e−α(t−T ) t ≥ T

0 t < T
,

as pictured in Figure 9.3. Consider two cases. First, if T ≥ 0, then g is causal,

G is positive type, and therefore [G]+ = G and [G]− = 0. Second, if T ≤ 0 then

g(t)u(t) =

{
eαT e−αt t ≥ 0

0 t < 0

so that [G]+(ω) = eαT

jω+α and [G]−(ω) = G(ω) − [G]+(ω) = e−jωT−eαT
(jω+α) . We can
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g(t)

t

T>0:

T

T

g(t)

t

T<0:

Figure 9.3 Exponential function shifted by T.

also find [G]− by computing the transform of (1− u(t))g(t) (still assuming that

T ≤ 0):

[G]−(ω) =

∫ 0

T

eα(T−t)e−jωtdt =
eαT−(α+jω)t

−(α+ jω)

∣∣∣∣0
t=T

=
e−jωT − eαT

(jω + α)
.

Example 9.6 Suppose H is the transfer function for impulse response function

h. Let us unravel the notation and express∫ ∞
−∞

∣∣∣[ejωTH(ω)
]
+

∣∣∣2 dω
2π

in terms of h and T . (Note that the factor ejωT is used, rather than e−jωT

as in the previous example.) Multiplication by ejωT in the frequency domain

corresponds to shifting by −T in the time domain, so that

ejωTH(ω) ↔ h(t+ T )

and thus [
ejωTH(ω)

]
+
↔ u(t)h(t+ T ).

Applying Parseval’s identity, the definition of u, and a change of variables yields∫ ∞
−∞

∣∣∣[ejωTH(ω)
]
+

∣∣∣2 dω
2π

=

∫ ∞
−∞
|u(t)h(t+ T )|2dt

=

∫ ∞
0

|h(t+ T )|2dt

=

∫ ∞
T

|h(t)|2dt.

The integral decreases from the energy of h to zero as T ranges from −∞ to ∞.

Example 9.7 Suppose [H]− = [K]− = 0. Let us find [HK]−. As usual, let h
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denote the inverse transform of H, and k denote the inverse transform of K.

The supposition implies that h and k are both causal functions. Therefore the

convolution h ∗ k is also a causal function. Since HK is the transform of h ∗ k,

it follows that HK is a positive type function. Equivalently, [HK]− = 0.

The decomposition H = [H]+ + [H]− is an additive one. Next we turn to

multiplicative decomposition, concentrating on rational functions. A function H

is said to be rational if it can be written as the ratio of two polynomials. Since

polynomials can be factored over the complex numbers, a rational function H

can be expressed in the form

H(ω) = γ
(jω + β1)(jω + β2) · · · (jω + βK)

(jω + α1)(jω + α2) · · · (jω + αN )

for complex constants γ, α1, . . . , αN , β1, . . . , βK . Without loss of generality, we

assume that {αi}∩{βj} = ∅. We also assume that the real parts of the constants

α1, . . . , αN , β1, . . . , βK are nonzero. The function H is positive type if and only

if Re(αi) > 0 for all i, or equivalently, if and only if all the poles of H(ω) are in

the upper half plane Im(ω) > 0.

A positive type function H is said to have minimum phase if Re(βi) > 0 for

all i. Thus, a positive type function H is minimum phase if and only if 1/H is

also positive type.

Suppose that SY is the power spectral density of a WSS random process and

that SY is a rational function. The function SY , being nonnegative, is also real-

valued, so SY = S∗Y . Thus, if the denominator of SY has a factor of the form

jω + α then the denominator must also have a factor of the form −jω + α∗.

Similarly, if the numerator of SY has a factor of the form jω + β then the

numerator must also have a factor of the form −jω + β∗.

Example 9.8 The function SY given by

SY (ω) =
8 + 5ω2

(1 + ω2)(4 + ω2)

can be factored as

SY (ω) =
√

5
(jω +

√
8
5 )

(jω + 2)(jω + 1)︸ ︷︷ ︸
S+
Y (ω)

√
5

(−jω +
√

8
5 )

(−jω + 2)(−jω + 1)︸ ︷︷ ︸
S−Y (ω)

, (9.5)

where S+
Y is a positive type, minimum phase function and S−Y is a negative type

function with S−Y = (S+
Y )∗.

Note that the operators [ ]+ and [ ]− give us an additive decomposition of a

function H into the sum of a positive type and a negative type function, whereas

spectral factorization has to do with products. At least formally, the factorization
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can be accomplished by taking a logarithm, doing an additive decomposition, and

then exponentiating:

SX(ω) = exp([lnSX(ω)]+)︸ ︷︷ ︸
S+
X(ω)

exp([lnSX(ω)]−)︸ ︷︷ ︸
S−X(ω)

. (9.6)

Notice that if h↔ H then, formally,

1 + h+
h ∗ h

2!
+
h ∗ h ∗ h

3!
· · · ↔ exp(H) = 1 +H +

H2

2!
+
H2

3!
· · ·

so that if H is positive type, then exp(H) is also positive type. Thus, the factor

S+
X in (9.6) is indeed a positive type function, and the factor S−X is a negative

type function. Use of (9.6) is called the cepstrum method. Unfortunately, there

is a host of problems, both numerical and analytical, in using the method, so

that it will not be used further in this book.

9.4 Solution of the causal Wiener filtering problem for rational
power spectral densities

The Wiener-Hopf equations (9.2) and ( 9.3) can be formulated in the frequency

domain as follows: Find a positive type transfer function H such that[
ejωTSXY −HSY

]
+

= 0. (9.7)

Suppose SY is factored as SY = S+
Y S
−
Y such that S+

Y is a minimum phase,

positive type transfer function and S−Y = (S+
Y )∗. Then S−Y and 1

S−Y
are negative

type functions. Since the product of two negative type functions is again negative

type, (9.7) is equivalent to the equation obtained by multiplying the quantity

within square brackets in (9.7) by 1
S−Y

, yielding the equivalent problem: Find a

positive type transfer function H such that[
ejωTSXY

S−Y
−HS+

Y

]
+

= 0. (9.8)

The function HS+
Y , being the product of two positive type functions, is itself

positive type. Thus (9.8) becomes[
ejωTSXY

S−Y

]
+

−HS+
Y = 0.

Solving for H yields that the optimal transfer function is given by

H =
1

S+
Y

[
ejωTSXY

S−Y

]
+

. (9.9)
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The orthogonality principle yields that the mean square error satisfies

E[|Xt+T − X̂t+T |t|2] = E[|Xt+T |2]− E[|X̂t+T |t|2]

= RX(0)−
∫ ∞
−∞
|H(ω)|2SY (ω)

dω

2π

= RX(0)−
∫ ∞
−∞

∣∣∣∣∣
[
ejωTSXY

S−Y

]
+

∣∣∣∣∣
2
dω

2π
, (9.10)

where we used the fact that |S+
Y |2 = SY .

Another expression for the MMSE, which involves the optimal filter h, is the

following:

MMSE = E[(Xt+T − X̂t+T |t)(Xt+T − X̂t+T |t)
∗]

= E[(Xt+T − X̂t+T |t)X
∗
t+T ] = RX(0)−RX̂X(t, t+ T )

= RX(0)−
∫ ∞
−∞

h(s)R∗XY (s+ T )ds.

Exercise Evaluate the limit as T → −∞ and the limit as T →∞ in (9.10).

Example 9.9 This example involves the same model as in an example in Section

9.1, but here a causal estimator is sought. The observed random process is Y =

X + N , were X is WSS with mean zero and power spectral density SX(ω) =
1

1+ω2 , N is WSS with mean zero and power spectral density SN (ω) = 4
4+ω2 , and

SXN = 0. We seek the optimal casual linear estimator of Xt given (Ys : s ≤ t).

The power spectral density of Y is given by

SY (ω) = SX(ω) + SN (ω) =
8 + 5ω2

(1 + ω2)(4 + ω2)

and its spectral factorization is given by (9.5), yielding S+
Y and S−Y . Since RXN =

0 it follows that

SXY (ω) = SX(ω) =
1

(jω + 1)(−jω + 1)
.

Therefore

SXY (ω)

S−Y (ω)
=

(−jω + 2)
√

5(jω + 1)(−jω +
√

8
5 )

=
γ1

jω + 1
+

γ2

−jω +
√

8
5



308 Wiener filtering

where

γ1 =
−jω + 2

√
5(−jω +

√
8
5 )

∣∣∣∣∣∣
jω=−1

=
3√

5 +
√

8

γ2 =
−jω + 2√
5(jω + 1)

∣∣∣∣
jω=
√

8
5

=
−
√

8
5 + 2

√
5 +
√

8
.

Therefore [
SXY (ω)

S−Y (ω)

]
+

=
γ1

jω + 1
(9.11)

and thus

H(ω) =
γ1(jω + 2)
√

5(jω +
√

8
5 )

=
3

5 + 2
√

10

1 +
2−

√
8
5

jω +
√

8
5

 ,

so that the optimal causal filter is

h(t) =
3

5 + 2
√

10

(
δ(t) + (2−

√
8

5
)u(t)e−t

√
8
5

)
.

Finally, by (9.10) with T = 0, (9.11), and (9.1), the minimum mean square error

is given by

E[|Xt − X̂t|2] = RX(0)−
∫ ∞
−∞

γ2
1

1 + ω2

dω

2π
=

1

2
− γ2

1

2
≈ 0.3246

which is slightly larger than 1√
10
≈ 0.3162, the MMSE found for the best non-

causal estimator (see the example in Section 9.1), and slightly smaller than 1
3 ,

the MMSE for the best “instantaneous” estimator of Xt given Yt, which is Xt
3 .

Example 9.10 A special case of the causal filtering problem formulated above is

when the observed process Y is equal to X itself. This leads to the pure prediction

problem. Let X be a WSS mean zero random process and let T > 0. Then the

optimal linear predictor of Xt+T given (Xs : s ≤ t) corresponds to a linear

time-invariant system with transfer function H given by (because SXY = SX ,

SY = SX , S+
Y = S+

X , and S−Y = S−X):

H =
1

S+
X

[
S+
Xe

jωT
]
+
. (9.12)

To be more specific, suppose that SX(ω) = 1
ω4+4 . Observe that ω4 + 4 = (ω2 +

2j)(ω2 − 2j). Since 2j = (1 + j)2, we have (ω2 + 2j) = (ω + 1 + j)(ω − 1 − j).
Factoring the term (ω2 − 2j) in a similar way, and rearranging terms as needed,
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yields that the factorization of SX is given by

SX(ω) =
1

(jω + (1 + j))(jω + (1− j))︸ ︷︷ ︸
S+
X(ω)

1

(−jω + (1 + j))(−jω + (1− j))︸ ︷︷ ︸
S−X(ω)

so that

S+
X(ω) =

1

(jω + (1 + j))(jω + (1− j))

=
γ1

jω + (1 + j)
+

γ2

jω + (1− j)

where

γ1 =
1

jω + (1− j)

∣∣∣∣
jω=−(1+j)

=
j

2

γ2 =
1

jω + (1 + j)

∣∣∣∣
jω=−1+j

=
−j
2
,

yielding that the inverse Fourier transform of S+
X is given by

S+
X ↔

j

2
e−(1+j)tu(t)− j

2
e−(1−j)tu(t).

Hence

S+
X(ω)ejωT ↔

{ j
2e
−(1+j)(t+T ) − j

2e
−(1−j)(t+T ) t ≥ −T

0 else
.

so that [
S+
X(ω)ejωT

]
+

=
je−(1+j)T

2(jω + (1 + j))
− je−(1−j)T

2(jω + (1− j))
.

The formula (9.12) for the optimal transfer function yields

H(ω) =
je−(1+j)T (jω + (1− j))

2
− je−(1−j)T (jω + (1 + j))

2

= e−T
[
ejT (1 + j)− e−jT (1− j)

2j
+
jω(ejT − e−jT )

2j

]
= e−T [cos(T ) + sin(T ) + jω sin(T )]

so that the optimal predictor for this example is given by

X̂t+T |t = Xte
−T (cos(T ) + sin(T )) +X ′te

−T sin(T ).
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9.5 Discrete time Wiener filtering

Causal Wiener filtering for discrete-time random processes can be handled in

much the same way that it is handled for continuous time random processes.

An alternative approach can be based on the use of whitening filters and linear

innovations sequences. Both of these approaches will be discussed in this section,

but first the topic of spectral factorization for discrete-time processes is discussed.

Spectral factorization for discrete time processes naturally involves z-transforms.

The z transform of a function (hk : k ∈ Z) is given by

H(z) =

∞∑
k=−∞

h(k)z−k

for z ∈ C. Setting z = ejω yields the Fourier transform: H(ω) = H(ejω) for

0 ≤ ω ≤ 2π. Thus, the z-transform H restricted to the unit circle in C is

equivalent to the Fourier transform H on [0, 2π], and H(z) for other z ∈ C is an

analytic continuation of its values on the unit circle.

Let h̃(k) = h∗(−k) as before. Then the z-transform of h̃ is related to the

z-transform H of h as follows:

∞∑
k=−∞

h̃(k)z−k =

∞∑
k=−∞

h∗(−k)z−k =

∞∑
l=−∞

h∗(l)zl

=

( ∞∑
l=−∞

h(l)(1/z∗)−l

)∗
= H∗(1/z∗).

The impulse response function h is called causal if h(k) = 0 for k < 0. The

z-transform H is said to be positive type if h is causal. Note that if H is positive

type, then lim|z|→∞H(z) = h(0). The projection [H]+ is defined as it was for

Fourier transforms–it is the z transform of the function u(k)h(k), where u(k) =

I{k≥0}. (We will not need to define or use [ ]− for discrete time functions.)

If X is a discrete-time WSS random process with correlation function RX ,

the z-transform of RX is denoted by SX . Similarly, if X and Y are jointly WSS

then the z-transform of RXY is denoted by SXY . Recall that if Y is the output

random process when X is passed through a linear time-invariant system with

impulse response function h, then X and Y are jointly WSS and

RY X = h ∗RX RXY = h̃ ∗RX RY = h ∗ h̃ ∗RX

which in the z-transform domain becomes:

SY X(z) = H(z)SX(z) SXY (z) = H∗(1/z∗)SX(z) SY (z) = H(z)H∗(1/z∗)SX(z).

Example 9.11 Suppose Y is the output process when white noise W with

RW (k) = I{k=0} is passed through a linear time invariant system with impulse



9.5 Discrete time Wiener filtering 311

response function h(k) = ρkI{k≥0}, where ρ is a complex constant with |ρ| < 1.

Let us find H, SY , and RY . To begin,

H(z) =

∞∑
k=0

(ρ/z)k =
1

1− ρ/z

and the z-transform of h̃ is 1
1−ρ∗z . Note that the z-transform for h converges

absolutely for |z| > |ρ|, whereas the z-transform for h̃ converges absolutely for

|z| < 1/|ρ|. Then

SY (z) = H(z)H∗(1/z∗)SX(z) =
1

(1− ρ/z)(1− ρ∗z)
.

The autocorrelation function RY can be found either in the time domain using

RY = h ∗ h̃ ∗RW or by inverting the z-transform SY . Taking the later approach,

factor out z and use the method of partial fraction expansion to obtain

SY (z) =
z

(z − ρ)(1− ρ∗z)

= z

(
1

(1− |ρ|2)(z − ρ)
+

1

((1/ρ∗)− ρ)(1− ρ∗z)

)
=

1

(1− |ρ|2)

(
1

1− ρ/z
+

zρ∗

1− ρ∗z

)
,

which is the z-transform of

RY (k) =

{
ρk

1−|ρ|2 k ≥ 0
(ρ∗)−k

1−|ρ|2 k < 0
.

The z-transform SY of RY converges absolutely for |ρ| < z < 1/|ρ|.

Suppose that H(z) is a rational function of z, meaning that it is a ratio of two

polynomials of z with complex coefficients. We assume that the numerator and

denominator have no zeros in common, and that neither has a root on the unit

circle. The function H is positive type (the z-transform of a causal function) if its

poles (the zeros of its denominator polynomial) are inside the unit circle in the

complex plane. If H is positive type and if its zeros are also inside the unit circle,

then h and H are said to be minimum phase functions (in the time domain and

z-transform domain, respectively). A positive-type, minimum phase function H
has the property that both H and its inverse 1/H are causal functions. Two

linear time-invariant systems in series, one with transfer function H and one

with transfer function 1/H, passes all signals. Thus if H is positive type and

minimum phase, we say that H is causal and causally invertible.

Assume that SY corresponds to a WSS random process Y and that SY is a

rational function with no poles or zeros on the unit circle in the complex plane.

We shall investigate the symmetries of SY , with an eye towards its factorization.
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First,

RY = R̃Y so that SY (z) = S∗Y (1/z∗). (9.13)

Therefore, if z0 is a pole of SY with z0 6= 0, then 1/z∗0 is also a pole. Similarly, if

z0 is a zero of SY with z0 6= 0, then 1/z∗0 is also a zero of SY . These observations

imply that SY can be uniquely factored as

SY (z) = S+
Y (z)S−Y (z)

such that for some constant β > 0:

• S+
Y is a minimum phase, positive type z-transform

• S−Y (z) = (S+
Y (1/z∗))∗

• lim|z|→∞ S+
Y (z) = β.

There is an additional symmetry if RY is real-valued:

SY (z) =

∞∑
k=−∞

RY (k)z−k =

∞∑
k=−∞

(RY (k)(z∗)−k)∗ = S∗Y (z∗) (for real RY ).

(9.14)

Therefore, if RY is real and if z0 is a nonzero pole of SY , then z∗0 is also a pole.

Combining (9.13) and (9.14) yields that if RY is real then the real-valued nonzero

poles of SY come in pairs: z0 and 1/z0, and the other nonzero poles of SY come

in quadruples: z0, z∗0 , 1/z0, and 1/z∗0 . A similar statement concerning the zeros

of SY also holds true. Some example factorizations are as follows (where |ρ| < 1

and β > 0):

SY (z) =
β

1− ρ/z︸ ︷︷ ︸
S+
Y (z)

β

1− ρ∗z︸ ︷︷ ︸
S−Y (z)

SY (z) =
β(1− .8/z)

(1− .6/z)(1− .7/z)︸ ︷︷ ︸
S+
Y (z)

β(1− .8z)
(1− .6z)(1− .7z)︸ ︷︷ ︸

S−Y (z)

SY (z) =
β

(1− ρ/z)(1− ρ∗/z)︸ ︷︷ ︸
S+
Y (z)

β

(1− ρz)(1− ρ∗z)︸ ︷︷ ︸
S−Y (z)

.

An important application of spectral factorization is the generation of a discrete-

time WSS random process with a specified correlation function RY . The idea is

to start with a discrete-time white noise process W with RW (k) = I{k=0}, or

equivalently, with SW (z) ≡ 1, and then pass it through an appropriate linear,

time-invariant system. The appropriate filter is given by taking H(z) = S+
Y (z),

for then the spectral density of the output is indeed given by

H(z)H∗(1/z∗)SW (z) = S+
Y (z)S−Y (z) = SY (z).

The spectral factorization can be used to solve the causal filtering problem in
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discrete time. Arguing just as in the continuous time case, we find that if X and

Y are jointly WSS random processes, then the best estimator of Xn+T given

(Yk : k ≤ n) having the form

X̂n+T |n =

∞∑
k=−∞

Ykh(n− k)

for a causal function h is the function h satisfying the Wiener-Hopf equations

(9.2) and (9.3), and the z transform of the optimal h is given by

H =
1

S+
Y

[
zTSXY
S−Y

]
+

. (9.15)

Finally, an alternative derivation of (9.15) is given, based on the use of a

whitening filter. The idea is the same as the idea of linear innovations sequence

considered in Chapter 3. The first step is to notice that the causal estimation

problem is particularly simple if the observation process is white noise. Indeed,

if the observed process Y is white noise with RY (k) = I{k=0} then for each k ≥ 0

the choice of h(k) is simply made to minimize the mean square error when Xn+T

is estimated by the single term h(k)Yn−k. This gives h(k) = RXY (T + k)I{k≥0}.

Another way to get the same result is to solve the Wiener-Hopf equations (9.2)

and (9.3) in discrete time in case RY (k) = I{k=0}. In general, of course, the

observation process Y is not white, but the idea is to replace Y by an equivalent

observation process Z that is white.

Let Z be the result of passing Y through a filter with transfer function G(z) =

1/S+(z). Since S+(z) is a minimum phase function, G is a positive type function

and the system is causal. Thus, any random variable in the m.s. closure of the

linear span of (Zk : k ≤ n) is also in the m.s. closure of the linear span of

(Yk : k ≤ n). Conversely, since Y can be recovered from Z by passing Z through

the causal linear time-invariant system with transfer function S+(z), any random

variable in the m.s. closure of the linear span of (Yk : k ≤ n) is also in the m.s.

closure of the linear span of (Zk : k ≤ n). Hence, the optimal causal linear

estimator of Xn+T based on (Yk : k ≤ n) is equal to the optimal causal linear

estimator of Xn+T based on (Zk : k ≤ n). By the previous paragraph, such

estimator is obtained by passing Z through the linear time-invariant system with

impulse response function RXZ(T + k)I{k≥0}, which has z transform [zTSXZ ]+.

See Figure 9.4.

XZ
1

S  (z)Y

ZY
++

Xt+T|t
^

[z  S    (z)]T

Figure 9.4 Optimal filtering based on whitening first.

The transfer function for two linear, time-invariant systems in series is the
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product of their z-transforms. In addition,

SXZ(z) = G∗(1/z∗)SXY (z) =
SXY (z)

S−Y (z)
.

Hence, the series system shown in Figure 9.4 is indeed equivalent to passing Y

through the linear time invariant system with H(z) given by (9.15).

Example 9.12 Suppose that X and N are discrete-time mean zero WSS ran-

dom processes such that RXN = 0. Suppose SX(z) = 1
(1−ρ/z)(1−ρz) where

0 < ρ < 1, and suppose that N is a discrete-time white noise with SN (z) ≡ σ2

and RN (k) = σ2I{k=0}. Let the observed process Y be given by Y = X + N .

Let us find the minimum mean square error linear estimator of Xn based on

(Yk : k ≤ n). We begin by factoring SY .

SY (z) = SX(z) + SN (z) =
z

(z − ρ)(1− ρz)
+ σ2

=
−σ2ρ

{
z2 − ( 1+ρ2

ρ + 1
σ2ρ )z + 1

}
(z − ρ)(1− ρz)

.

The quadratic expression in braces can be expressed as (z− z0)(z−1/z0), where

z0 is the smaller root of the expression in braces, yielding the factorization

SY (z) =
β(1− z0/z)

(1− ρ/z)︸ ︷︷ ︸
S+
Y (z)

β(1− z0z)

(1− ρz)︸ ︷︷ ︸
S−Y (z)

where β2 =
σ2ρ

z0
.

Using the fact SXY = SX , and appealing to a partial fraction expansion yields

SXY (z)

S−Y (z)
=

1

β(1− ρ/z)(1− z0z)

=
1

β(1− ρ/z)(1− z0ρ)
+

z

β((1/z0)− ρ)(1− z0z)
. (9.16)

The first term in (9.16) is positive type, and the second term in (9.16) is the z

transform of a function that is supported on the negative integers. Thus, the first

term is equal to
[
SXY
S−Y

]
+

. Finally, dividing by S+
Y yields that the z-transform of

the optimal filter is given by

H(z) =
1

β2(1− z0ρ)(1− z0/z)

or in the time domain

h(n) =
zn0 I{n≥0}

β2(1− z0ρ)
.
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Problems

9.1 A quadratic predictor Suppose X is a mean zero, stationary discrete-time

random process and that n is an integer with n ≥ 1. Consider estimating Xn+1

by a nonlinear one-step predictor of the form

X̂n+1 = h0 +

n∑
k=1

h1(k)Xk +

n∑
j=1

j∑
k=1

h2(j, k)XjXk.

(a) Find equations in term of the moments (second and higher, if needed) of X

for the triple (h0, h1, h2) to minimize the one step prediction error: E[(Xn+1 −
X̂n+1)2].

(b) Explain how your answer to part (a) simplifies if X is a Gaussian random

process.

9.2 A smoothing problem Suppose X and Y are mean zero, second order ran-

dom processes in continuous time. Suppose the MMSE estimator of X5 is to

be found based on observation of (Yu : u ∈ [0, 3] ∪ [7, 10]). Assuming the esti-

mator takes the form of an integral, derive the optimality conditions that must

be satisfied by the kernel function (the function that Y is multiplied by before

integrating). Use the orthogonality principle.

9.3 A simple prediction problem Let X be a Gaussian stationary process with

RX(τ) = e−|τ | and mean zero. Suppose XT is to be estimated given (Xt :

t ≤ 0) where T is a fixed positive constant, and the mean square error is to

be minimized. Without loss of generality, suppose the estimator has the form

X̂T =
∫ T

0
g(t)Xtdt for some (possibly generalized) function g.

(a) Using the orthogonality principle, find equations that characterize g.

(b) Identify the solution g. (Hint: Does X have any special properties?)

9.4 A standard noncausal estimation problem (a) Derive the Fourier trans-

form of the function g(t) = exp(−α|t|).
(b) Find

∫∞
−∞

1
a+bω2

dω
2π for a, b > 0. (Hint: Use the result of part (a) and the fact,

which follows from the inverse Fourier transform, that
∫∞
−∞ ĝ(ω)dω2π = g(0) = 1.)

(c) Suppose Y = X +N , where X and N are each WSS random processes with

mean zero, and X and N are uncorrelated with each other. The observation

process is Y = X +N. Suppose RX(τ) = exp(−α|τ |) and RN = σ2δ(τ), so that

N is a white noise process with two-sided power spectral density σ2. Identify the

transfer function H and impulse response function h of the filter for producing

X̂t = Ê[Xt|Y ], the MMSE estimator of Xt given Y = (Ys : s ∈ R).

(d) Find the resulting MMSE for the estimator you found in part (c). Check that

the limits of your answer as σ → 0 or σ →∞ make sense.

(e) Let Dt = Xt − X̂t. Find the cross covariance function CD,Y .

9.5 A simple, noncausal estimation problem Let X = (Xt : t ∈ R) be a real

valued, stationary Gaussian process with mean zero and autocorrelation function

RX(t) = A2sinc(fot), where A and fo are positive constants. Let N = (Nt : t ∈
R) be a real valued Gaussian white noise process with RN (τ) = σ2δ(τ), which is

independent of X. Define the random process Y = (Yt : t ∈ R) by Yt = Xt +Nt.
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Let X̂t =
∫∞
−∞ h(t − s)Ysds, where the impulse response function h, which can

be noncausal, is chosen to minimize E[D2
t ] for each t, where Dt = Xt − X̂t. (a)

Find h. (b) Identify the probability distribution of Dt, for t fixed. (c) Identify the

conditional distribution ofDt given Yt, for t fixed. (d) Identify the autocorrelation

function, RD, of the error process D, and the cross correlation function, RDY .

9.6 Interpolating a Gauss Markov process Let X be a real-valued, mean zero

stationary Gaussian process with RX(τ) = e−|τ |. Let a > 0. Suppose X0 is

estimated by X̂0 = c1X−a + c2Xa where the constants c1 and c2 are chosen to

minimize the mean square error (MSE).

(a) Use the orthogonality principle to find c1, c2, and the resulting minimum

MSE, E[(X0 − X̂0)2]. (Your answers should depend only on a.)

(b) Use the orthogonality principle again to show that X̂0 as defined above is

the minimum MSE estimator of X0 given (Xs : |s| ≥ a). (This implies that X

has a two-sided Markov property.)

9.7 Estimation of a filtered narrowband random process in noise SupposeX

is a mean zero real-valued stationary Gaussian random process with the spectral

density shown.

1

f

  8 Hz

S   (2   f)π
X

8 Hz

10    Hz4 10    Hz4

(a) Explain how X can be simulated on a computer using a pseudo-random

number generator that generates standard normal random variables. Try to use

the minimum number per unit time. How many normal random variables does

your construction require per simulated unit time?

(b) SupposeX is passed through a linear time-invariant system with approximate

transfer function H(2πf) = 107/(107+f2). Find an approximate numerical value

for the power of the output.

(c) Let Zt = Xt + Wt where W is a Gaussian white noise random process,

independent of X, with RW (τ) = δ(τ). Find h to minimize the mean square

error E[(Xt − X̂t)
2], where X̂ = h ∗ Z.

(d) Find the mean square error for the estimator of part (c).

9.8 Proportional noise Suppose X and N are second order, mean zero random

processes such that RXN ≡ 0, and let Y = X + N . Suppose the correlation

functions RX and RN are known, and that RN = γ2RX for some nonnegative

constant γ2. Consider the problem of estimating Xt using a linear estimator

based on (Yu : a ≤ u ≤ b), where a, b, and t are given times with a < b.

(a) Use the orthogonality principle to show that if t ∈ [a, b], then the optimal

estimator is given by X̂t = κYt for some constant κ, and identify the constant κ

and the corresponding MSE.

(b) Suppose in addition that X and N are WSS and that Xt+T is to be estimated

from (Ys : s ≤ t). Show how the equation for the optimal causal filter reduces to
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your answer to part (a) in case T ≤ 0.

(c) Continue under the assumptions of part (b), except consider T > 0. How is

the optimal filter for estimating Xt+T from (Ys : s ≤ t) related to the problem

of predicting Xt+T from (Xs : s ≤ t)?
9.9 Predicting the future of a simple WSS process Let X be a mean zero,

WSS random process with power spectral density SX(ω) = 1
ω4+13ω2+36 .

(a) Find the positive type, minimum phase rational function S+
X such that

SX(ω) = |S+
X(ω)|2.

(b) Let T be a fixed known constant with T ≥ 0. Find X̂t+T |t, the MMSE linear

estimator of Xt+T given (Xs : s ≤ t). Be as explicit as possible. (Hint: Check

that your answer is correct in case T = 0 and in case T →∞).

(c) Find the MSE for the optimal estimator of part (b).

9.10 Short answer filtering questions (a) Prove or disprove: If H is a posi-

tive type function then so is H2. (b) Prove or disprove: Suppose X and Y are

jointly WSS, mean zero random processes with continuous spectral densities

such that SX(2πf) = 0 unless |f | ∈[9012 MHz, 9015 MHz] and SY (2πf) = 0

unless |f | ∈[9022 MHz, 9025 MHz]. Then the best linear estimate of X0 given

(Yt : t ∈ R) is 0. (c) Let H(2πf) = sinc(f). Find [H]+ .

9.11 On the MSE for causal estimation Recall that if X and Y are jointly

WSS and have power spectral densities, and if SY is rational with a spectral

factorization, then the mean square error for linear estimation of Xt+T using

(Ys : s ≤ t) is given by

(MSE) = RX(0)−
∫ ∞
−∞

∣∣∣∣∣
[
ejωTSXY

S−Y

]
+

∣∣∣∣∣
2
dω

2π
.

Evaluate and interpret the limits of this expression as T → −∞ and as T →∞.

9.12 A singular estimation problem Let Xt = Aej2πfot, where fo > 0 and A is

a mean zero complex valued random variable with E[A2] = 0 and E[|A|2] = σ2
A.

Let N be a white noise process with RN (τ) = σ2
Nδ(τ). Let Yt = Xt +Nt. Let X̂

denote the output process when Y is filtered using the impulse response function

h(τ) = αe−(α−j2πfo)tI{t≥0}.

(a) Verify that X is a WSS periodic process, and find its power spectral density

(the power spectral density only exists as a generalized function–i.e. there is a

delta function in it).

(b) Give a simple expression for the output of the linear system when the input

is X.

(c) Find the mean square error, E[|Xt − X̂t|2]. How should the parameter α be

chosen to approximately minimize the MSE?

9.13 Filtering a WSS signal plus noise Suppose X and N are jointly WSS,

mean zero, continuous time random processes with RXN ≡ 0. The processes are

the inputs to a system with the block diagram shown, for some transfer functions

K1(ω) and K2(ω):
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N

K2+1K
Y=X    +N   outoutX

Suppose that for every value of ω, Ki(ω) 6= 0 for i = 1 and i = 2. Because the

two subsystems are linear, we can view the output process Y as the sum of two

processes, Xout, due to the input X, plus Nout, due to the input N . Your answers

to the first four parts should be expressed in terms of K1, K2, and the power

spectral densities SX and SN .

(a) What is the power spectral density SY ?

(b) Find the signal-to-noise ratio at the output (the power of Xout divided by

the power of Nout).

(c) Suppose Y is passed into a linear system with transfer function H, designed so

that the output at time t is X̂t, the best linear estimator of Xt given (Ys : s ∈ R).

Find H.

(d) Find the resulting minimum mean square error.

(e) The correct answer to part (d) (the minimum MSE) does not depend on the

filter K2. Why?

9.14 A prediction problem Let X be a mean zero WSS random process with

correlation function RX(τ) = e−|τ |. Using the Wiener filtering equations, find the

optimal linear MMSE estimator (i.e. predictor) of Xt+T based on (Xs : s ≤ t),

for a constant T > 0. Explain why your answer takes such a simple form.

9.15 Properties of a particular Gaussian process Let X be a stationary Gaus-

sian continuous-time process with µX = 0, RX(τ) = (1 + |τ |)e−|τ |, and SX(ω) =

(2/(1+ω2))2. Answer the following questions, being sure to provide justification.

(a) Is X mean ergodic in the m.s. sense?

(b) Is X a Markov process?

(c) Is X differentiable in the m.s. sense?

(d) Find the causal, minimum phase filter h (or its transform H) such that if

white noise with autocorrelation function δ(τ) is filtered using h then the output

autocorrelation function is RX .

(e) Express X as the solution of a stochastic differential equation driven by white

noise.

9.16 Spectral decomposition and factorization (a) Let x be the signal with

Fourier transform given by x̂(2πf) =
[
sinc(100f)ej2πfT

]
+

. Find the energy of x

for all real values of the constant T .

(b) Find the spectral factorization of S(ω) = 1
ω4+16ω2+100 . (Hint: 1+3j is a pole

of S.)

9.17 A continuous-time Wiener filtering problem Suppose (Xt) and (Nt) are

uncorrelated, mean zero processes with RX(t) = exp(−2|t|) and SN (ω) ≡ No/2

for a positive constant No. Suppose that Yt = Xt +Nt.

(a) Find the optimal (noncausal) filter for estimating Xt from the observations

(Ys : −∞ < s < +∞) and find the resulting mean square error. Comment on

how the MMSE depends on No.
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(b) Find the optimal causal filter with lead time T , that is, the Wiener filter for

estimating Xt+T given (Ys : −∞ < s ≤ t), and find the corresponding MMSE.

For simplicity assume T ≥ 0. Comment on the limiting value of the MMSE as

T →∞, as No →∞, or as No → 0.

9.18 Estimation of a random signal, using the KL expansion Suppose that

X is a m.s. continuous, mean zero process over an interval [a, b], and suppose

N is a white noise process, with RXN ≡ 0 and RN (s, t) = σ2δ(s− t). Let (ϕk :

k ≥ 1) be a complete orthonormal basis for L2[a, b] consisting of eigenfunctions

of RX , and let (λk : k ≥ 1) denote the corresponding eigenvalues. Suppose that

Y = (Yt : a ≤ t ≤ b) is observed.

(a) Fix an index i. Express the MMSE estimator of (X,ϕi) given Y in terms

of the coordinates, (Y, ϕ1), (Y, ϕ2), . . . of Y , and find the corresponding mean

square error.

(b) Now suppose f is a function in L2[a, b]. Express the MMSE estimator of

(X, f) given Y in terms of the coordinates ((f, ϕj) : j ≥ 1) of f , the coordinates

of Y , the λ’s, and σ. Also, find the mean square error.

9.19 Noiseless prediction of a baseband random process Fix positive

constants T and ωo, suppose X = (Xt : t ∈ R) is a baseband random process

with one-sided frequency limit ωo, and let H(n)(ω) =
∑n
k=0

(jωT )k

k! , which is a

partial sum of the power series of ejωT . Let X̂
(n)
t+T |t denote the output at time t

when X is passed through the linear time invariant system with transfer function

H(n). As the notation suggests, X̂
(n)
t+T |t is an estimator (not necessarily optimal)

of Xt+T given (Xs : s ≤ t).
(a) Describe X̂

(n)
t+T |t in terms of X in the time domain. Verify that the linear

system is causal.

(b) Show that limn→∞ an = 0, where an = max|ω|≤ωo |ejωT − H(n)(ω)|. (This

means that the power series converges uniformly for ω ∈ [−ωo, ωo].)
(c) Show that the mean square error can be made arbitrarily small by taking n

sufficiently large. In other words, show that limn→∞E[|Xt+T − X̂(n)
t+T |t|

2] = 0.

(d) Thus, the future of a narrowband random process X can be predicted per-

fectly from its past. What is wrong with the following argument for general WSS

processes? If X is an arbitrary WSS random process, we could first use a bank

of (infinitely many) narrowband filters to split X into an equivalent set of nar-

rowband random processes (call them “subprocesses”) which sum to X. By the

above, we can perfectly predict the future of each of the subprocesses from its

past. So adding together the predictions, would yield a perfect prediction of X

from its past.

9.20 Linear innovations and spectral factorization Suppose X is a discrete

time WSS random process with mean zero. Suppose that the z-transform version

of its power spectral density has the factorization: SX(z) = S+
X(z)S−X(z) such

that S+
X(z) is a minimum phase, positive type function, S−X(z) = (S+

X(1/z∗))∗,

and lim|z|→∞ S+
X(z) = β for some β > 0. The linear innovations sequence of X

is the sequence X̃ such that X̃k = Xk − X̂k|k−1, where X̂k|k−1 is the MMSE
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predictor of Xk given (Xl : l ≤ k−1). Note that there is no constant multiplying

Xk in the definition of X̃k. You should use S+
X(z), S−X(z), and/or β in giving

your answers.

(a) Show that X̃ can be obtained by passing X through a linear time-invariant

filter, and identify the corresponding value of H.

(b) Identify the mean square prediction error, E[|Xk − X̂k|k−1|2].

9.21 A singular nonlinear estimation problem SupposeX is a standard Brow-

nian motion with parameter σ2 = 1 and suppose N is a Poisson random process

with rate λ = 10, which is independent of X. Let Y = (Yt : t ≥ 0) be defined by

Yt = Xt +Nt.

(a) Find the optimal estimator of X1 among the estimators that are linear func-

tions of (Yt : 0 ≤ t ≤ 1) and the constants, and find the corresponding mean

square error. Your estimator can include a constant plus a linear combination, or

limits of linear combinations, of Yt : 0 ≤ t ≤ 1. (Hint: There is a closely related

problem elsewhere in this problem set.)

(b) Find the optimal possibly nonlinear estimator of X1 given (Yt : 0 ≤ t ≤ 1),

and find the corresponding mean square error. (Hint: No computation is needed.

Draw sample paths of the processes.)

9.22 A discrete-time Wiener filtering problem Extend the discrete-time

Wiener filtering problem considered in Section 9.5 to incorporate a lead time T .

Assume T to be integer valued. Identify the optimal filter in both the z-transform

domain and in the time domain. (Hint: Treat the case T ≤ 0 separately. You

need not identify the covariance of error.)

9.23 Causal estimation of a channel input process Let X = (Xt : t ∈ R) and

N = (Nt : t ∈ R) denote WSS random processes with RX(τ) = 3
2e
−|τ | and

RN (τ) = δ(τ). Think of X as an input signal and N as noise, and suppose X

and N are orthogonal to each other. Let k denote the impulse response function

given by k(τ) = 2e−3τI{τ≥0}, and suppose an output process Y is generated

according to the block diagram shown:

k +
X

N

Y

That is, Y = X ∗ k + N . Suppose Xt is to be estimated by passing Y through

a causal filter with impulse response function h, and transfer function H. Find

the choice of H and h in order to minimize the mean square error.

9.24 Estimation given a strongly correlated process Suppose g and k are min-

imum phase causal functions in discrete-time, with g(0) = k(0) = 1, and z-

transforms G and K. Let W = (Wk : k ∈ Z) be a mean zero WSS process with

SW (ω) ≡ 1, let Xn =
∑∞
i=−∞ g(n− i)Wi and Yn =

∑∞
i=−∞ k(n− i)Wi.

(a) Express RX , RY , RXY , SX , SY , and SXY in terms of g, k, G, K.

(b) Find h so that X̂n|n =
∑∞
i=−∞ Yih(n − i) is the MMSE linear estimator of

Xn given (Yi : i ≤ n).
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(c) Find the resulting mean square error. Give an intuitive reason for your an-

swer.

9.25 Estimation of a process with raised cosine spectrum Let Y = X + N,

where X and N are independent, mean zero, WSS random processes with

SX(ω) =
(1 + cos(πωωo ))

2
I{|ω|≤ωo} and SN (ω) =

No
2

where No > 0 and ωo > 0. (a) Find the transfer function H for the filter such

that if the input process is Y , the output process at time t, X̂t, is the optimal

linear estimator of Xt based on (Ys : s ∈ R).

(b) Express the mean square error, σ2
e = E[(X̂t − Xt)

2], as an integral in the

frequency domain. (You needn’t carry out the integration.)

(c) Describe the limits of your answers to (a) and (b) as No → 0.

(c) Describe the limits of your answers to (a) and (b) as No →∞.
9.26 Linear and nonlinear filtering Let Z = (Zt : t ∈ R) be a stationary

Markov process with state space S = {3, 1,−1,−3} and generator matrix Q =

(qi,j) with qi,j = λ if i 6= j and qi,i = −3λ, for i, j ∈ S. Let Y = (Yt : t ∈ R) be

a random process defined by Yt = Zt + Nt, where N is a white Gaussian noise

process with RN (τ) = σ2δ(τ), for some σ2 > 0.

(a) Find the stationary distribution π, the transition probabilities pi,j(τ), the

mean µZ , and autocorrelation function RZ for Z.

(b) Find the transfer function H, so that if Ẑ is the output of the linear system

with transfer function H, then Ẑt = Ê[Zt|Y ]. Express the mean square error,

E[(Zt − Ẑt)2] in terms of λ and σ2.

(c) For t fixed, find a nonlinear function Ẑ
(NL)
t of Y such that E[(Zt − Ẑ(NL)

t )2]

is strictly smaller than the MSE found in part (b). (You don’t need to compute

the MSE of your estimator.)

(d) Derive an estimation procedure using the fact that (Z, Y ) is a continuous-

time version of the hidden Markov model. Specifically, let 4 > 0 be small and

let t0 = K4 for some large integer K. Let Ỹk =
∫ k4

(k−1)4 Ytdt and Z̃k = Zk4.

Then (Z̃k, Ỹk : 1 ≤ k ≤ K) is approximately a hidden Markov model with obser-

vation space R instead of a finite observation space. Identify the (approximate)

parameter (π,A,B) of this Markov model (note that bi,y for i fixed should be

a pdf as a function of y.) (Using this model, the forward backward algorithm

could be used to approximately compute the conditional pmf of X at a fixed

time given Y , which becomes asymptotically exact as 4→ 0. An alternative to

this approach is to simply start with a discrete-time model. Another alternative

is to derive a continuous-time version of the forward backward algorithm.)

9.27* Resolution of Wiener and Kalman filtering Consider the state and ob-

servation models:

Xn = FXn−1 +Wn

Yn = HTXn + Vn

where (Wn : −∞ < n < +∞) and (Vn : −∞ < n < +∞) are independent
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vector-valued random sequences of independent, identically distributed mean

zero random variables. Let ΣW and ΣV denote the respective covariance matri-

ces of Wn and Vn. (F , H and the covariance matrices must satisfy a stability

condition. Can you find it? ) (a) What are the autocorrelation function RX and

crosscorrelation function RXY ?

(b) Use the orthogonality principle to derive conditions for the causal filter h

that minimizes E[‖ Xn+1 −
∑∞
j=0 h(j)Yn−j ‖2]. (i.e. derive the basic equations

for the Wiener-Hopf method.)

(c) Write down and solve the equations for the Kalman predictor in steady state

to derive an expression for h, and verify that it satisfies the orthogonality con-

ditions.



10 Martingales

This chapter builds on the brief introduction to martingales given in Chapter 4,

to give a glimpse at how martingales can be used to obtain bounds and prove

convergence in many contexts, such as for estimation and control algorithms in

a random environment. On one hand, the notion of a martingale is weak enough

to include processes arising in applications involving estimation and control, and

on the other hand, the notion is strong enough that important tools for handling

sums of independent random variables, such as the law of large numbers, the

central limit theorem, and large deviation estimates, extend to martingales.

Two other topics in this book are closely related to martingales. The first is the

use of linear innovations sequences discussed in Chapter 3. As explained in Ex-

ample 10.7 below, martingale difference sequences arise as innovations sequences

when the linearity constraint on predictors, imposed for linear innovations se-

quences, is dropped. The other topic in this book closely related to martingales

is the Foster-Lyapunov theory for Markov processes, discussed in Chapter 6. A

central role in the Foster-Lyapunov theory is the drift of a function of a Markov

process: E[V (Xt+1) − V (Xt)|Xt = x]. If this drift were zero then V (Xt) would

be a martingale. The assumptions used in the Foster-Lyapunov theory allow

for a controlled difference from the martingale assumption. In a sense. martin-

gale theory is what is left when the linearity and Markov assumptions are both

dropped.

The chapter is organized as follows. The definition of a martingale involves

conditional expectations, so to give the general definition of a martingale we

first revisit the definition of conditional expectation in Section 10.1. The standard

definition of martingales, in which σ-algebras are used to represent information,

is given in Section 10.2. Section 10.3 explains how the Chernoff bound, central to

large deviations theory, readily extends to sequences that are not independent.

Section 10.4 discusses the use of stopping times together with martingales, for

proving bounds for dynamical systems.

10.1 Conditional expectation revisited

The general definition of a martingale requires the general definition of condi-

tional expectation. We begin by reviewing the definitions we have given so far.
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In Chapter 1 we reviewed the following elementary definition of E[X|Y ]. If X

and Y are both discrete random variables, and {u1, u2, . . .} denotes the set of

possible values of X, then

E[X|Y = i] =
∑
j

ujP (X = uj |Y = i),

which is well defined if P{Y = i} > 0 and either the sum restricted to j : uj > 0

or to j : uj < 0 is convergent. That is, E[X|Y = i] is the mean of the conditional

pmf of X given Y = i. Note that g(i) = E[X|Y = i] is a function of i, and we let

E[X|Y ] be the random variable defined by E[X|Y ] = g(Y ). Similarly, if X and

Y have a joint pdf, E[X|Y = y] =
∫
xfX|Y (x|y)dx = g(y) and E[X|Y ] = g(Y ).

Chapter 3 shows E[X|Y ] can be defined whenever E[X2] <∞, even if X and

Y are neither discrete random variables nor have a joint pdf. The definition is

based on a projection, characterized by the orthogonality principle. Specifically,

if E[X2] <∞, then E[X|Y | is the unique random variable such that:

• it has the form g(Y ) for some (Borel measurable) g such that E[(g(Y )2] <∞,

and

• E[(X − E[X|Y ])f(Y )] = 0 for all (Borel measurable) functions f such that

E[(f(Y ))2] <∞.

That is, E[X|Y ] is an unconstrained estimator based on Y, such that the error

X −E[X|Y ] is orthogonal to all functions of Y with finite second moments. By

the orthogonality principle, E[X|Y ] exists and is unique, if differences on a set

of probability zero are ignored. This second definition of E[X|Y ] is more general

than the elementary definition, because it doesn’t require X and Y to be discrete

or to have a joint pdf, but it is less general because it requires E[X2] <∞.

The definition of E[X|Y ] given next generalizes the previously given definition

in two ways. First, the definition applies as long as E[|X|] < ∞, which is a

weaker requirement than E[X2] <∞. Second, the definition is based on having

information represented by a σ-algebra, rather than by a random variable. Recall

that, by definition, a σ-algebra D for a set Ω is a set of subsets of Ω such that:

(a) Ω ∈ D,

(b) if A ∈ D then Ac ∈ D,

(c) if A,B ∈ D then A ∪ B ∈ D, and more generally, if A1, A2, ... is such that

Ai ∈ D for i ≥ 1, then ∪∞i=1Ai ∈ D.

In particular, the set of events, F , in a probability space (Ω,F , P ), is required

to be a σ-algebra. The original motivation for introducing F in this context was

a technical one, related to the impossibility of extending P to be defined on all

subsets of Ω, for important examples such as Ω = [0, 1] and P ((a, b)) = b−a for all

intervals (a, b). However, σ-algebras are also useful for modeling the information

available to an observer. We call D a sub-σ-algebra of F if D is a σ-algebra such

that D ⊂ F . In applications, to say that the information available to an observer

is modeled by a sub-σ-algebra D, means that for any event A ∈ D, the observer
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will learn whether A occurs, i.e. whether the selected value of ω is in A. A random

variable Z is said to be D-measurable if {Z ≤ c} ⊂ D for all c. By definition,

random variables are functions on Ω that are F-measurable. The smaller the

σ-algebra D is, the fewer the set of D measurable random variables. In practice,

sub-σ-algebras are usually generated by collections of random variables:

definition 10.1 The σ-algebra generated by a collection of random variables

(Yi : i ∈ I), denoted by σ(Yi : i ∈ I), is the smallest σ-algebra containing all sets

of the form {Yi ≤ c}.1 The σ-algebra generated by a single random variable Y

is denoted by σ(Y ), and sometimes as FY .

An equivalent definition would be that σ(Yi : i ∈ I) is the smallest σ-algebra

such that each Yi is measurable with respect to it.

As explained above, a sub-σ-algebra of F characterizes the knowledge an ob-

server will gain when the probability experiment modeled by the probability

space (Ω,F , P ) is conducted. In Chapter 3, using all estimators of the form g(Y )

corresponds to modeling an observer that learns the value of Y. It means that

even before the experiment is conducted, we know the observer will learn the

value of Y (ω) once ω is selected. An equivalent condition would be to allow any

estimator that is a σ(Y )-measurable random variable. That is, as shown in Prob-

lem 9.8, if Y and Z are random variables on the same probability space, then

Z = g(Y ) for some Borel measurable function g if and only if Z is σ(Y ) measur-

able. Using sub-σ-algebras is closer to the heart of modeling what an observer

will learn about the outcome than using random variables for the modeling. For

example, two different random variables, such as Y and Y 3, can generate the

same sub-σ-algebra.

Example 10.1 (The trivial σ-algebra) Let (Ω,F , P ) be a probability space.

Suppose X is a random variable such that, for some constant co, X(ω) = co for

all ω ∈ Ω. Then X is measurable with respect to the trivial σ-algebra D defined

by D = {∅,Ω}. That is, constant random variables are {∅,Ω}-measurable.

Conversely, suppose Y is a {∅,Ω}-measurable random variable. Select an ar-

bitrary ωo ∈ Ω and let co = Y (ωo). On one hand, {ω : Y (ω) ≤ co} can’t be

empty because it contains ωo, so {ω : Y (ω) ≤ co} = Ω. On the other hand,

{ω : Y (ω) ≤ c} doesn’t contain ωo for c < co, so {ω : Y (ω) ≤ c} = ∅ for c < co.

Therefore, Y (ω) = co for all ω. That is, {∅,Ω}-measurable random variables are

constant.

definition 10.2 If X is a random variable on (Ω,F , P ) with finite mean and

D is a sub-σ-algebra of F , the conditional expectation of X given D, E[X|D],

1 The smallest one exists–it is equal to the intersection of all σ-algebras which contain all
sets of the form {Yi ≤ c}.
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is the unique (two versions equal with probability one are considered to be the

same) random variable on (Ω,F , P ) such that

(i) E[X|D] is D-measurable

(ii) E[(X −E[X|D])IA] = 0 for all A ∈ D. (Here IA is the indicator function of

A).

We remark that a possible choice of A in property (ii) of the definition is

A = Ω, so E[X|D] should satisfy E[X − E[X|D]] = 0, or equivalently, since

E[X] is assumed to be finite, E[X] = E[E[X|D]]. In particular, an implication

of the definition is that E[X|D] also has a finite mean.

proposition 10.3 Definition 10.2 is well posed. Specifically, there exits a

random variable satisfying conditions (i) and (ii), and it is unique.

Proof (Uniqueness) Suppose U and V are each D-measurable random variables

such that E[(X − U)IA] = 0 and E[(X − V )IA] = 0 for all A ∈ D. It follows

that E[(U − V )IA] = E[(X − V )IA] − E[(X − U)IA] = 0 for any A ∈ D. A

possible choice of A is {U > V }, so E[(U−V )I{U>V }] = 0. Since (U−V )I{U>V }
is nonnegative and is strictly positive on the event {U > V }, it must be that

P{U > V } = 0. Similarly, P{U < V } = 0. So P{U = V } = 1.

(Existence) Existence is first proved assuming P{X ≥ 0} = 1. Let L2(D) be

the space of D-measurable random variables with finite second moments. Then

L2(D) is a closed, linear subspace of L2(Ω,F , P ), so the orthogonality principle

can be applied. For any n ≥ 0, the random variable X ∧ n is bounded and thus

has a finite second moment. Let X̂n be the projection of X∧n onto L2(D). Then

by the orthogonality principle, X ∧n− X̂n is orthogonal to any random variable

in L2(D). In particular, X∧n−X̂n is orthogonal to IA for any A ∈ D. Therefore,

E[(X ∧ n− X̂n)IA] = 0 for all A ∈ D. Equivalently,

E[(X ∧ n)IA] = E[X̂nIA]. (10.1)

The next step is to take a limit as n→∞. Since E[(X∧n)IA] is nondecreasing in

n for A ∈ D, the same is true of E[X̂nIA]. Thus, for n ≥ 0, E[(X̂n+1−X̂n)IA] ≥ 0

for any A ∈ D. Taking A = {X̂n+1 − X̂n < 0} implies that P{X̂n+1 ≥ X̂n} = 1.

Therefore, the sequence (X̂n) converges a.s., and we denote the limit by X̂∞.

We show that X̂∞ satisfies the two properties, (i) and (ii), required of E[X|D].

First, X̂∞ is D-measurable because it is the limit of a sequence of D-measurable

random variables. Secondly, for any A ∈ D, the sequences of random variables

(X∧n)IA and X̂nIA are a.s. nondecreasing and nonnegative, so by the monotone

convergence theorem (Theorem 11.14) and (10.1):

E[XIA] = lim
n→∞

E[(X ∧ n)IA] = lim
n→∞

E[X̂nIA] = E[X̂∞IA].

So property (ii), E[(X − X̂∞)IA] = 0, is also satisfied. Existence is proved in

case P{X ≥ 0} = 1.

For the general case, X can be represented as X = X+ −X−, where X+ and
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X− are nonnegative with finite means. By the case already proved, E[X+|D] and

E[X−|D] exist, and, of course, they satisfy conditions (i) and (ii) in Definition

10.2. Therefore, with E[X|D] = E[X+|D] − E[X−|D], it is a simple matter to

check that E]X|D] also satisfies conditions (i) and (ii), as required.

proposition 10.4 Let X and Y be random variables on (Ω,F , P ) and let A
and D be sub-σ-algebras of F .

1. (Consistency with definition based on projection) If E[X2] <∞ and

V = {g(Y ) : g is Borel measurable such that E[g(Y )2] < ∞}, then E[X|Y ],

defined as the MMSE projection of X onto V (also written as ΠV(X)) is equal

to E[X|σ(Y )].

2. (Linearity) If E[X] and E[Y ] are finite, aE[X|D]+bE[Y |D] = E[aX+bY |D].

3. (Tower property) If E[X] is finite and A ⊂ D ⊂ F , E[E[X|D]|A] = E[X|A].

(In particular, E[E[X|D]] = E[X].)

4. (Positivity preserving) If E[X] is finite and X ≥ 0 a.s. then E[X|D] ≥ 0 a.s.

5. (L1 contraction property) E[|E|X|D]|] ≤ E[|X|].
6. (L1 continuity) If E[Xn] is finite for all n and E[|Xn −X∞|]→ 0, then

E[|E[Xn|D]− E[X∞|D]|]→ 0.

7. (Pull out property) If X is D-measurable and E[XY ] and E[Y ] are finite,

then E[XY |D] = XE[Y |D].

Proof (Consistency with definition based on projection) Suppose X and V are

as in part 1. Then, by definition, E[X|Y ] ∈ V and E[(X−E[X|Y ])Z] = 0 for any

Z ∈ V. As mentioned above, a random variable has the form g(Y ) if and only

if it is σ(Y )-measurable. In particular, V is simply the set of σ(Y )-measurable

random variables Z such that E[Z2] < ∞. Thus, E[X|Y ] is σ(Y ) measurable,

and E[(X − E[X|Y ])Z] = 0 for any σ(Y )-measurable random variable Z such

that E[Z2] < ∞. As a special case, E[(X − E[X|Y ])IA] = 0 for any A ∈ σ(Y ).

Thus, E[X|Y ] satisfies conditions (i) and (ii) in Definition 10.2 of E[X|σ(Y )].

So E[X|Y ] = E[X|σ(Y )].

(Linearity Property) (This is similar to the proof of linearity for projections,

Proposition 3.3.) It suffices to check that the linear combination aE[X|D] +

bE[Y |D] satisfies the two conditions that define E[aX+bY |D]. First, E[X|D] and

E[Y |D] are both D measurable, so their linear combination is also D-measurable.

Secondly, if D ∈ D, then E[(X − E[X|D])IA] = E[(Y − E[Y |D])IA] = 0, from

which it follows that

E[(aX + bY − E[aX + bY |D]) IA]

= aE[(X − E[X|D])IA] + bE[(Y − E[Y |D])IA] = 0.

Therefore, aE[X|D] + bE[Y |D] = E[aX + bY |D].

(Tower Property) (This is similar to the proof of Proposition 3.4, about pro-

jections onto nested subspaces.) It suffices to check that E[E[X|D]|A] satisfies

the two conditions that define E[X|A]. First, E[E[X|D]|A] itself is a condi-

tional expectation given A, so it is A measurable. Second, let A ∈ A. Now
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X − E[E[X|D]|A] = (X − E[X|D]) + (E[X|D] − E[E[X|D]|A]), and (use the

fact A ∈ D) E[(X − E[X|D])IA] and E[(E[X|D] − E[E[X|D]|A])IA] = 0.

Adding these last two equations yields E[(X − E[E[X|D]|A])IA] = 0. There-

fore, E[E[X|D]|A] = E[X|A].

(Positivity preserving) Suppose E[X] is finite and X ≥ 0 a.s. Let A be the

event given by A = {E[X|D] < 0}. Observe that A ∈ D because E[X|D] is

D-measurable. So E[E[X|D]IA] = E[XIA] ≥ 0, while P{E[X|D]IA ≤ 0} = 1.

Hence, P{E[X|D]IA = 0} = 1, which is to say that E[X|D] ≥ 0 a.s.

(L1 contraction property) (This property is a special case of the conditional

version of Jensen’s inequality, established in Problem 10.9. Here a different proof

is given.) X = X+ − X−, where X+ is the positive part of X and X− is the

negative part of X, given by X+ = X ∨ 0 and X− = (−X) ∨ 0. Since X is

assumed to have a finite mean, the same is true of X±. Moreover, E[E[X±|D]] =

E[X±], and by the linearity property, E[X|D] = E[X+|D] − E[X−|D]. By the

positivity preserving property, E[X+|D] and E[X−|D] are both nonnegative a.s.,

so E[X+|D] +E[X−|D] ≥ |E[X+|D]−E[X−|D]| a.s. (The inequality is strict for

ω such that both E[X+|D] and E[X−|D] are strictly positive.) Therefore,

E[|X|] = E[X+] + E[X−]

= E[E[X+|D] + E[X−|D]]

≥ E[|E[X+|D]− E[X−|D]|]
= E[|E[X|D]|],

and the L1 contraction property is proved.

(L1 continuity) Since for any n, |X∞| ≤ |Xn| + |Xn −X∞|, the hypotheses

imply that X∞ has a finite mean. By linearity and the L1 contraction property,

E[|E[Xn|D] − E[X∞|D]|] = E[|E[Xn − X∞|D]|] ≤ E[|E[Xn − X∞|]|], which

implies the L1 continuity property.

(Pull out property) The pull out property will be proved first under the added

assumption that X and Y are nonnegative random variables. Clearly XE[Y |D]

is D measurable. Let A ∈ D. It remains to show that

E[XY IA] = E[XE[Y |D]IA]. (10.2)

IfX has the form ID forD ∈ D then (10.2) becomes E[Y IA∩D] = E[E[Y |D]IA∩D],

which holds by the definition of E[Y |D] and the fact A∩D ∈ D. Equation (10.2)

is thus also true if X is a finite linear combination of random variables of the

form ID, that is, if X is a simple D-measurable random variable. We now bring

in the fact X is the a.s. limit of a nondecreasing sequence of nonnegative simple

random variables Xn. Then (10.2) holds for X replaced by Xn:

E[XnY IA] = E[XnE[Y |D]IA]. (10.3)

Also, XnY IA is a nondecreasing sequence converging to XY IA a.s., and

XnE[Y |D]IA is a nondecreasing sequence converging to XE[Y |D]IA a.s. By the

monotone convergence theorem, taking n → ∞ on both sides of (10.3), yields
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(10.2). This proves the pull out property under the added assumption that X

and Y are nonnegative.

In the general case, X = X+ −X−, where X+ = X ∨ 0 and X− = (−X) ∨ 0,

and similarly Y = Y+−Y−. The hypotheses imply E[X±Y±] and E[Y±] are finite

so that E[X±Y±|D] = X±E[Y±|D], and therefore

E[X±Y±IA] = E[X±E[Y±|D]IA], (10.4)

where in these equations, the sign on both appearances of X should be the same,

and the sign on both appearances of Y should be the same. The left side of (10.2)

can be expressed as a linear combination of terms of the form E[X±Y±IA]:

E[XY IA] = E[X+Y+IA]− E[X+Y−IA]− E[X−Y+IA] + E[X−Y−IA].

Similarly, the right side of (10.2) can be expressed as a linear combination of

terms of the form E[X±E[Y±|D]IA]. Therefore, (10.2) follows from (10.4).

10.2 Martingales with respect to filtrations

A filtration of a σ-algebra F is a sequence of sub-σ-algebras FFF = (Fn : n ≥ 0) of

F , such that Fn ⊂ Fn+1 for n ≥ 0. If Y = (Yn : n ≥ 0) or Y = (Yn : n ≥ 1) is a

sequence of random variables on (Ω,F , P ), the filtration generated by Y , often

written asFFFY = (FYn : n ≥ 0), is defined by letting FYn = σ(Yk : k ≤ n). (If there

is no variable Y0 defined, we take FY0 to be the trivial σ-algebra, FY0 = {∅,Ω},
representing no observations.)

In practice, a filtration represents a sequence of observations or measurements.

If the filtration is generated by a random process, then the information available

at time n represents observation of the random process up to time n.

A random process (Xn : n ≥ 0) is adapted to a filtration FFF if Xn is Fn
measurable for each n ≥ 0.

definition 10.5 Let Y = (Yn : n ≥ 0) be a random process on some proba-

bility space with a filtration FFF . Then Y is a martingale with respect to FFF if for

all n ≥ 0:

(i) Yn is Fn measurable (i.e. the process Y is adapted to FFF )

(ii) E[|Yn|] <∞,

(iii) E[Yn+1|Fn] = Yn a.s.

Y is a submartingale relative to FFF if (i) and (ii) hold and E[Yn+1|Fn] ≥ Yn a.s.
Y is a supermartingale relative to FFF if (i) and (ii) hold and E[Yn+1|Fn] ≤ Yn a.s.

Some comments are in order. Note that if Y = (Yn : n ≥ 0) is a martingale with

respect to a filtration FFF = (Fn : n ≥ 0), then Y is also a martingale with respect

to the filtration generated by Y itself. Indeed, for each n, Yn is Fn measurable,

whereas FYn is the smallest σ-algebra with respect to which Yn is measurable, so
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FYn ⊂ Fn. Therefore, the tower property of conditional expectation, the fact Y

is a martingale with respect to FFF , and the fact Yn is FYn measurable, imply

E[Yn+1|FYn ] = E[E[Yn+1|Fn]|FYn ] = E[Yn|FYn ] = Yn.

Thus, in practice, if Y is said to be a martingale and no filtration F is specified,

at least Y is a martingale with respect to the filtration it generates.

Note that if Y is a martingale with respect to a filtration FFF , then for any

n, k ≥ 0,

E[Yn+k+1|Fn] = E[E[Yn+k+1|Fn+k]|Fn] = E[Yn+k|Fn].

Therefore, by induction on k for n fixed:

E[Yn+k|Fn] = Yn, (10.5)

for n, k ≥ 0.

Example 10.2 Suppose (Ui : i ≥ 1) is a collection of independent random

variables, each with mean zero. Let S0 = 0 and for n ≥ 1, Sn =
∑n
i=1 Ui. Let

FFF = (Fn : n ≥ 0) denote the filtration generated by S: Fn = σ(S0, . . . , Sn).

Equivalently, F0 = {∅,Ω} and Fn = σ(U1, . . . , Un) for n ≥ 1. Then S = (Sn :

n ≥ 0) is a martingale with respect to FFF :

E[Sn+1|Fn] = E[Un+1|Fn] + E[Sn|Fn] = 0 + Sn = Sn.

Example 10.3 Suppose S and FFF are defined as in Example 10.2 in terms of a

sequence of independent random variables U . Suppose in addition Var(Ui) = σ2

for some finite σ2. Let Mn = S2
n − nσ2 for n ≥ 0. Then M = (Mn : n ≥ 0) is a

martingale relative to FFF . Indeed, M is adapted to FFF . Since Sn+1 = Sn + Un+1,

Mn+1 = Mn + 2SnUn+1 + U2
n+1 − σ2, so

E[Mn+1|Fn] = E[Mn|Fn] + 2SnE[Un+1|Fn] + E[U2
n+1 − σ2|Fn]

= Mn + 2SnE[Un+1] + E[U2
n+1 − σ2]

= Mn.

Example 10.4 Suppose X1, X2, . . . is a sequence of independent, identically

distributed random variables and θ is a number such that E[eθX1 ] < ∞. Let

S0 = 0 and Sn = X1 + · · · + Xn for n ≥ 1. Then (Mn) defined by Mn =

eθSn/E[eθX1 ]n for n ≥ 0 is a martingale.

Example 10.5 (Galton-Watson branching process) A Galton-Watson branch-

ing process starts with an initial set of individuals, called the zeroth generation.

For example, there may be just one individual in the zeroth generation. The

(n+1)st generation is the set of all offspring of individuals in the nth generation.

The number of offspring of each individual has the same distribution as a given
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discrete random variable X, with the numbers of offspring of different individu-

als being mutually independent. Let Gn denote the number of individuals in the

nth generation of a branching process. Suppose a > 0 satisfies E[aX ] = 1 and

E[aG0 ] <∞. Then, aGn is a martingale.

Example 10.6 (Doob martingale) Let Mn = E[Φ|Fn] for n ≥ 0, where Φ is a

random variable with finite mean, and FFF = (Fn : n ≥ 0) is a filtration. By the

tower property of conditional expectation, M = (Mn : n ≥ 0) is a martingale

with respect to FFF .

definition 10.6 A martingale difference sequence (Dn : n ≥ 1) relative to a

filtration FFF = (Fn : n ≥ 0) is a sequence of random variables (Dn : n ≥ 1) such

that

(i) (Dn : n ≥ 1) is adapted to FFF (i.e. Dn is Fn-measurable for each n ≥ 1)

(ii) E[|Dn|] <∞ for n ≥ 1

(iii) E[Dn+1|Fn] = 0 a.s. for all n ≥ 0.

Equivalently, (Dn : n ≥ 1) has the form Dn = Mn −Mn−1 for n ≥ 1, for some

(Mn : n ≥ 0) which is a martingale with respect to FFF .

definition 10.7 A random process (Hn : n ≥ 1) is said to be predictable

with respect to a filtration FFF = (Fn : n ≥ 0) if Hn is Fn−1 measurable for all

n ≥ 1. (Sometimes this is called one-step predictable, because Fn determines H

one step ahead.)

Example 10.7 (Nonlinear innovations process, a.k.a. Doob decomposition) Sup-

pose Y = (Yn : n ≥ 1) is a sequence of random variables with finite means

that is adapted to a filtration FFF . Let Hn = E[Yn|Fn−1] for n ≥ 0. Then

H = (Hn : n ≥ 1) is a predictable process and D = (Dn : n ≥ 1), defined

by Dn = Yn − Hn, is a martingale difference sequence with respect to FFF . The

sequence (Dn) is the nonlinear innovations sequence for Y, and Yn = Hn + Dn

for all n ≥ 1. In summary, any such process Y is the sum of a predicable pro-

cess H and a martingale difference sequence D. Moreover, for given Y and FFF ,
this decomposition is unique up to events of measure zero, because a predictable

martingale difference sequence is almost surely identically zero.

As described in Chapter 3 in connection with Kalman filtering, if Y is a sec-

ond order random process, the linear innovations sequence associated with Y is

the sequence (Ỹn) of orthogonal random variables defined using linear MMSE

estimators, rather than conditional expectations: Ỹn = Yn− Ê[Yn|Y1, · · · , Yn−1].

For Gaussian random processes and Fn = σ(Y1, . . . , Yn), the nonlinear and linear

innovations sequences, (Dn) and (Ỹn), coincide.
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Example 10.8 Suppose (Dn : n ≥ 1) is a martingale difference sequence and

(Hk : k ≥ 1) is a bounded predictable process, both relative to a filtration

FFF = (Fn : n ≥ 0). We claim that the new process D̃ = (D̃n : n ≥ 1) defined by

D̃n = HnDn is also a martingale difference sequence with respect to FFF . Indeed,

it is adapted, has finite means, and

E[Hn+1Dn+1|Fn] = Hn+1E[Dn+1|Fn] = 0,

where we pulled out the Fn measurable random variable Hn+1 from the condi-

tional expectation given Fn. An interpretation is that Dn is the net gain to a

gambler if one dollar is bet on the outcome of a fair game in round n, and so

HnDn is the net gain if Hn dollars are bet in round n. The requirement that

(Hk : k ≥ 1) be predictable means that the gambler must decide how much to

bet in round n based only on information available at the end of round n − 1.

It would be an unfair advantage if the gambler already knew Dn when deciding

how much money to bet in round n.

If the initial reserves of the gambler were some constant M0, then the reserves

of the gambler after n rounds would be given by:

Mn = M0 +

n∑
k=1

HkDk.

Then (Mn : n ≥ 0) is a martingale with respect to FFF . The random variables

HkDk, 1 ≤ k ≤ n are orthogonal. Also, E[(HkDk)2] = E[E[(HkDk)2|Fk−1]] =

E[H2
kE[D2

k|Fk−1]]. Therefore,

E[(Mn −M0)2] =

n∑
k=1

E[H2
kE[D2

k|Fk−1]].

10.3 Azuma-Hoeffding inequality

One of the simplest inequalities for martingales is the Azuma-Hoeffding inequal-

ity. It is proven in this section, and applications to prove concentration inequal-

ities for some combinatorial problems are given.2

lemma 10.8 Suppose D is a mean zero random variable with P{|D−b| ≤ d} =

1 for some constant b. Then for any α ∈ R, E[eαD] ≤ e(αd)2/2.

Proof Since D has mean zero and lies in the interval [b−d, b+d] with probability

one, the interval must contain zero, so |b| ≤ d. To avoid trivial cases we assume

|b| < d. Since eαx is convex in x, the value of eαx for x ∈ [b−d, b+d] is bounded

2 See McDiarmid survey paper (McDiarmid 1989).
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above by the linear function that is equal to eαx at the endpoints, x = b± d, of

the interval:

eαx ≤ x− b+ d

2d
eα(b+d) +

b+ d− x
2d

eα(b−d). (10.6)

Since D lies in that interval with probability one, (10.6) remains true if x is

replaced by the random variable D. Taking expectations on both sides and using

E[D] = 0 yields

E[eαD] ≤ d− b
2d

eα(b+d) +
b+ d

2d
eα(b−d). (10.7)

The proof is completed by showing that the right side of (10.7) is less than or

equal to e(αd)2/2 for any |b| < d. Letting u = αd and θ = b/d, the inequality to

be proved becomes f(u) ≤ eu2/2, for u ∈ R and |θ| < 1, where

f(u) = ln

(
(1− θ)eu(1+θ) + (1 + θ)eu(−1+θ)

2

)
.

Taylor’s formula implies that f(u) = f(0) + f ′(0)u + f ′′(v)u2

2 for some v in the

interval with endpoints 0 and u. Elementary, but somewhat tedious, calculations

show that

f ′(u) =
(1− θ2)(eu − e−u)

(1− θ)eu + (1 + θ)e−u

and

f ′′(u) =
4(1− θ2)

[(1− θ)eu + (1 + θ)e−u]
2

=
1

cosh2(u+ β)
,

where β = 1
2 ln( 1−θ

1+θ ). Note that f(0) = f ′(0) = 0, and f ′′(u) ≤ 1 for all u ∈ R.

Therefore, f(u) ≤ u2/2 for all u ∈ R, as was to be shown.

proposition 10.9 (Azuma-Hoeffding inequality with centering) Suppose

(Yn : n ≥ 0) is a martingale and (Bn : n ≥ 1) is a predictable process, both with

respect to a filtration FFF = (Fn : n ≥ 0), such that P{|Yn+1 − Bn+1| ≤ dn} = 1

for all n ≥ 0. Then

P{|Yn − Y0| ≥ λ} ≤ 2 exp

(
− λ2

2
∑n
i=1 d

2
i

)
.

Proof Let n ≥ 0. The idea is to write Yn = Yn − Yn−1 + Yn−1, to use the tower

property of conditional expectation, and to apply Lemma 10.8 to the random



334 Martingales

variable Yn − Yn−1 for d = dn. This yields:

E
[
eα(Yn−Y0)

]
= E

[
E

[
eα(Yn−Yn−1+Yn−1−Y0)

∣∣∣∣Fn−1

]]
= E

[
eα(Yn−1−Y0)E

[
eα(Yn−Yn−1

∣∣∣∣Fn−1

]]
≤ E

[
eα(Yn−1−Y0)

]
e(αdn)2/2.

Thus, by induction on n,

E
[
eα(Yn−Y0)

]
≤ e(α2/2)

∑n
i=1 d

2
i .

The remainder of the proof is essentially the Chernoff inequality:

P{Yn − Y0 ≥ λ} ≤ E
[
eα(Yn−Y0−λ)

]
≤ e(α2/2)

∑n
i=1 d

2
i−αλ.

Finally, taking α to make this bound as tight as possible, i.e. α = λ∑n
i=1 d

2
i
, yields

P{Yn − Y0 ≥ λ} ≤ exp

(
− λ2

2
∑n
i=1 d

2
i

)
.

Similarly, P{Yn−Y0 ≤ −λ} satisfies the same bound because the previous bound

applies for (Yn) replaced by (−Yn), yielding the proposition.

definition 10.10 A function f of n variables is said to satisfy the Lipschitz

condition with constant c if |f(x1, . . . , xn)−f(x1, . . . , xi−1, yi, xi+1, . . . , xn)| ≤ c
for any x1, . . . , xn, i, and yi.

3

proposition 10.11 (McDiarmid’s inequality) Suppose F = f(X1, . . . , Xn),

where f satisfies the Lipschitz condition with constant c, and X1, . . . , Xn are

independent random variables. Then P{|F − E[F ]| ≥ λ} ≤ 2 exp(− 2λ2

nc2 ).

Proof Let (Zk : 0 ≤ k ≤ n) denote the Doob martingale defined by Zk =

E[F |FXk ], where, as usual, FXk = σ(Xk : 1 ≤ k ≤ n) is the filtration generated

by (Xk). Note that FX0 is the trivial σ-algebra {∅,Ω}, corresponding to no obser-

vations, so Z0 = E[F ]. Also, Zn = F . In words, Zk is the conditional expectation

of F , given the first k X’s are revealed.

For 0 ≤ k ≤ n− 1, let

gk(x1, . . . , xk, xk+1) = E[f(x1, . . . , xk+1, Xk+2, . . . , Xn)].

Note that Zk+1 = gk(X1, . . . , Xk+1). Since f satisfies the Lipschitz condition

with constant c, the same is true of gk. In particular, for x1, . . . , xk fixed, the set

of possible values (i.e. range) of gk(x1, . . . , xk+1) as xk+1 varies, lies within some

3 Equivalently, f(x)− f(y) ≤ cdH(x, y), where dH(x, y) denotes the Hamming distance,

which is the number of coordinates in which x and y differ. In other contexts, the Lipschitz
condition is with respect to a different distance metric, such as Euclidean distance.
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interval (depending on x1, . . . , xk) with length at most c. Define mk(x1, · · · , xk)

to be the midpoint of the smallest such interval:

mk(x1, . . . , xk) =
supxk+1

gk(x1, . . . , xk+1) + infxk+1
gk(x1, . . . , xk+1)

2

and let Bk+1 = mk(X1, . . . , Xk). Then B is a predictable process and

|Zk+1 −Bk+1| ≤ c
2 with probability one. Thus, the Azuma-Hoeffding inequality

with centering can be applied with di = c
2 for all i, giving the desired result.

Example 10.9 (Independent sets in an Erdős-Rényi graph) Let V = {v1, . . . , vn}
be a finite set of cardinality n ≥ 1. For each i, j with 1 ≤ i < j ≤ n, suppose

Zi,j is a Bernoulli random variable with parameter p, where 0 ≤ p ≤ 1, such

that the Z’s are mutually independent. Let G = (V,E) be a random graph,

such that for i < j, there is an undirected edge between vertices vi and vj (i.e.

vi and vj are neighbors) if and only if Zi,j = 1. Equivalently, the set of edges

is E = {{i, j} : i < j and Zi,j = 1}. (The graph G is called an Erdős-Rényi

random graph with parameters n and p.) An independent set 4 in the graph is

a set of vertices such that no two of the vertices in the set are neighbors. Let

I = I(G) denote the maximum of the cardinalities of all independent sets for

G. Note that I is a random variable, because the graph is random. We shall

apply McDiarmid’s inequality to find a concentration bound for I(G). Note that

I(G) = f((Zi,j : 1 ≤ i < j ≤ n)), for an appropriate function f. We could

write a computer program for computing f, for example by cycling through all

subsets of V , seeing which ones are independent sets, and reporting the largest

cardinality of the independent sets. The running time for this algorithm is expo-

nential in n. However, there is no need to be so explicit about how to compute

f. Observe next that changing any one of the Z’s would change I(G) by at most

one. In particular, if there is an independent set in a graph, and if one edge is

added to the graph, then at most one vertex would have to be removed from the

independent set for the original graph to obtain an independent set for the new

graph. Thus, f satisfies the Lipschitz condition with constant c = 1. Thus, by

McDiarmid’s inequality with c = 1 and m variables, where m = n(n− 1)/2,

P{|I − E[I]| ≥ λ} ≤ 2 exp

(
− 4λ2

n(n− 1)

)
.

We next derive a tighter bound. For 1 ≤ i ≤ n, let Xi = (Z1,i, Z2,i, . . . , Zi−1,i).

In words, for each i, Xi determines which vertices with index less than i are

neighbors of vertex vi. Of course I is also determined by X1, . . . , Xn. Moreover,

if any one of the X’s changes, I changes by at most one. That is, I can be

expressed as a function of the n variables X1, . . . , Xn, such that the function

satisfies the Lipschitz condition with constant c = 1. Therefore, by McDiarmid’s

4 The terminology “independent” here is not associated with statistical independence.
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inequality with c = 1 and n variables,5

P{|I − E[I]| ≥ λ} ≤ 2 exp

(
−2λ2

n

)
.

For example, if λ = a
√
n, we have

P{|I − E[I]| ≥ a
√
n} ≤ 2 exp(−2a2)

whenever n ≥ 1, 0 ≤ p ≤ 1, and a > 0.

Note that McDiarmid’s inequality, as illustrated in the above example, gives an

upper bound on how spread out the distribution of a random variable is, without

requiring specific knowledge about the mean of the random variable. Inequalities

of this form are known as concentration inequalities. McDiarmid’s inequality can

similarly be applied to obtain concentration inequalities for many other numbers

associated with random graphs, such as the size of a maximum matching (a

matching is a set of edges, no two of which have a node in common), chromatic

index (number of colors needed to color all edges so that all edges containing a

single vertex are different colors), chromatic number (number of colors needed

to color all vertices so that neighbors are different colors), minimum number of

edges that need to be cut to break graph into two equal size components, and

so on.

10.4 Stopping times and the optional sampling theorem

Let X = (Xk : k ≥ 0) be a martingale with respect to FFF = (Fk : k ≥ 0). Note

that E[Xk+1] = E[E[Xk+1|Fk]] = E[Xk]. So, by induction on n, E[Xn] = E[X0]

for all n ≥ 0.

A useful interpretation of a martingale X = (Xk : k ≥ 0) is that Xk is

the reserve (amount of money on hand) that a gambler playing a fair game

at each time step, has after k time steps, if X0 is the initial reserve. (If the

gambler is allowed to go into debt, the reserve can be negative.) The condition

E[Xk+1|Fk] = Xk means that, given the knowledge that is observable up to time

k, the expected reserve after the next game is equal to the reserve at time k. The

equality E[Xn] = E[X0] has the natural interpretation that the expected reserve

of the gambler after n games have been played, is equal to the initial reserve X0.

This section focuses on the following question. What happens if the gambler

stops after a random number, T , of games? Is it true that E[XT ] = E[X0]?

Example 10.10 Suppose Xn = W1 + · · ·+Wn, such that the W ’s are mutually

independent and P{Wk = 1} = P{Wk = −1} = 0.5 for all k. Let T be the

5 Since Xn is degenerate, we could use n− 1 instead of n, but it makes little difference.
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random time:

T =

{
3 if W1 +W2 +W3 = 1

0 else
.

Then XT = 3 with probability 3/8, and XT = 0 otherwise. Hence, E[XT ] = 3/8.

Does example 10.10 give a realistic strategy for a gambler to obtain a strictly

positive expected payoff from a fair game? To implement the strategy, the gam-

bler should stop gambling after T games. However, the event {T = 0} depends

on the outcomes W1,W2, and W3. Thus, at time zero, the gambler is required to

make a decision about whether to stop before any games are played based on the

outcomes of the first thee games. Unless the gambler can somehow predict the

future, the gambler will be unable to implement the strategy of stopping play

after T games.

Intuitively, a random time corresponds to an implementable stopping strategy

if the gambler has enough information after n games to tell whether to play future

games. That type of condition is captured by the notion of optional stopping

time, defined as follows.

definition 10.12 An optional stopping time T relative to FFF = (Fk : k ≥ 0)

is a random variable with values in Z+ such that for any n ≥ 0, {T ≤ n} ∈ Fn.

The intuitive interpretation of the condition {T ≤ n} ∈ Fn is that, the gambler

should have enough information by time n to know whether to stop by time n.

Since σ-algebras are closed under set complements, the condition in the definition

of an optional stopping time is equivalent to requiring that, for any n ≥ 0,

{T > n} ∈ Fn. This means that the gambler should have enough information by

time n to know whether to continue gambling strictly beyond time n.

Example 10.11 Let (Xn : n ≥ 0) be a random process adapted to a filtration

FFF = (Fn : n ≥ 0). Let A be some fixed (Borel measurable) subset of R,, and

let T = min{n ≥ 0 : Xn ∈ A}. Then T is a stopping time relative to FFF because

{T ≤ n} = ∪nk=0{Xk ∈ A} ∈ Fn.

Example 10.12 This example gives a highly risky strategy for a gambler betting

variable amounts of money in a game of fair coin flips. The coin flips are modeled

as independent Bernoulli random variables W1,W2, . . . with parameter p = 0.5.

For each n ≥ 1 the gambler bets some money at the beginning of the nth round,

and if Wn = 1, the gambler wins back double the amount bet in that round,

and if Wn = 0 the gambler loses the money bet in that round. Let Xn denote

the reserve of the gambler after n rounds. For simplicity, we assume that the

gambler can borrow money as needed, and that the initial reserve of the gambler

is zero. So X0 = 0.
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Suppose the gambler adopts the following strategy. She bets 2n−1 units of

money in the nth round and stops playing as soon as she wins one round. Let T

be the number of rounds the gambler plays. If she wins in the first round, i.e. if

T = 1, then she would have had to borrow one unit of money in order to play

the first round, and she has a net gain of one unit of money after playing. For

T ≥ 2, she loses 1 + 2 + · · ·+ 2T−2 = 2T−1 − 1 units of money in the first T − 1

rounds, and she wins 2T−1 units of money in the T th round, so again she has a

net gain of one unit of money. For this strategy, the number of rounds, T , that

the gambler plays has the geometric distribution with parameter p = 0.5. Thus,

E[T ] = 2. In particular, T is finite with probability one, and so P{XT = 1} = 1

while X0 = 0. The gambler always has a positive net gain on one unit of money,

and she does not need to know the outcomes of the coin flips before they happen!

But don’t run out and start playing this strategy, expecting to make money

for sure. There is a catch–the amount borrowed can be very large. Indeed, let us

compute the expectation of B, the total amount borrowed before the final win.

If T = 1 then B = 1 (only the one unit borrowed in the first round is counted).

If T = 2 then B = 3 (the unit lost in the first round, and two more borrowed in

order to play the second round). In general, B = 2T − 1. Thus,

E[B] = E[2T−1] =

∞∑
n=1

(2n−1)P{T = n} =

∞∑
n=1

(2n−1)2−n =

∞∑
n=1

(1−2−n) = +∞.

That is, the expected amount of money the gambler needs to borrow is infinite.

The following lemma shows that the positive expected gain resulting in Ex-

ample 10.12 cannot happen at a fixed finite number of plays.

lemma 10.13 If X is a martingale and T is an optional stopping time, relative

to (Ω,FFF , P ), then E[XT∧n] = E[X0] for any n.

Proof Note that

XT∧(n+1) −XT∧n =

{
0 if T ≤ n

Xn+1 −Xn if T > n

= (Xn+1 −Xn)I{T>n}.

Using this and the tower property of conditional expectation yields

E[XT∧(n+1) −XT∧n] = E[E[(Xn+1 −Xn)I{T>n}|Fn]]

= E[E[Xn+1 −Xn|Fn]I{T>n}] = 0

because E[Xn+1−Xn|Fn] = 0. Therefore, E[XT∧(n+1)] = E[XT∧n] for all n ≥ 0.

So by induction on n, E[XT∧n] = E[X0] for all n ≥ 0.

The following proposition follows immediately from Lemma 10.13. This propo-

sition and the corollaries following it represent a version of the optional sampling

theorem.
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proposition 10.14 If X is a martingale and T is an optional stopping time,

relative to (Ω,FFF , P ), then E[X0] = limn→∞E[XT∧n]. In particular, if

lim
n→∞

E[XT∧n] = E[XT ] (10.8)

then E[XT ] = E[X0].

By Proposition 10.14, E[XT ] = E[X0] holds true under any additional as-

sumptions strong enough to imply (10.8). Note that XT∧n
a.s.→ XT as n→∞, so

(10.8) is simply requiring the convergence of the means to the mean of the limit,

for an a.s. convergent sequence of random variables. There are several different

sufficient conditions for this to happen, involving conditions on the martingale

X, the stopping time T , or both. For example:

corollary 10.15 If X is a (discrete-time) martingale and T is an optional

stopping time, relative to (Ω,FFF , P ), and if T is bounded (so P{T ≤ no} = 1 for

some no) then E[XT ] = E[X0].

Proof If P{T ≤ no} = 1 then, for all n ≥ no, T ∧n = T a.s, and so E[XT∧n] =

E[XT ]. Therefore, the corollary follows from Proposition 10.14.

corollary 10.16 If X is a martingale and T is an optional stopping time,

relative to (Ω,FFF , P ), and if there is a random variable Y such that |Xn| ≤ Y a.s.

for all n, and E[Y ] <∞, then E[XT ] = E[X0].

Proof The assumptions imply |XT∧n| ≤ Y a.s. for all n, so the dominated

convergence theorem (Theorem 11.12 in the appendix) implies (10.8). Thus the

result follows from Proposition 10.14.

corollary 10.17 Suppose (Xn : n ≥ 0) is a martingale relative to (Ω,FFF , P )

such that: (i) there is a constant c such that E[ |Xn+1−Xn| |Fn] ≤ c for n ≥ 0,

and (ii) T is stopping time such that E[T ] <∞. Then E[XT ] = E[X0].

If, instead, (Xn : n ≥ 0) is a submartingale relative to (Ω,FFF , P ), satisfying (i)

and (ii), then E[XT ] ≥ E[X0].

Proof Suppose (Xn : n ≥ 0) is a martingale relative to (Ω,FFF , P ), satisfying (i)

and (ii). We shall apply the dominated convergence theorem as in the proof of

Corollary 10.16. Let Y be defined by

Y = |X0|+ |X1 −X0|+ · · ·+ |XT −XT−1|.

Clearly |XT∧n| ≤ Y for all n ≥ 0, so to apply the dominated convergence theorem
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it remains to show that E[Y ] <∞. But

E[Y ] = E[|X0|] + E

[ ∞∑
i=1

|Xi −Xi−1|I{i≤T}

]

= E[|X0|] + E

[ ∞∑
i=1

E
[
|Xi −Xi−1|I{i≤T} | Fi−1

]]

= E[|X0|] + E

[ ∞∑
i=1

I{i≤T}E [|Xi −Xi−1| | Fi−1]

]
= E[|X0|] + cE[T ] <∞.

The first statement of the Corollary is proved. If instead X is a submartingale,

then a minor variation of Lemma 10.13 yields that E[XT∧n] ≥ E[X0]. The proof

for the first part of the corollary, already given, shows that conditions (i) and

(ii) imply that E[XT∧n]→ E[XT ] as n→∞. Therefore, E[XT ] ≥ E[X0].

Martingale inequalities offer a way to provide upper and lower bounds on the

completion times of algorithms. As an illustration, the following example shows

how a lower bound can be found for a particular game.

Example 10.13 Consider the following game. There is an urn, initially with r

red marbles and b blue marbles. A player takes turns until the urn is empty, and

the goal of the player is to minimize the expected number of turns required. At

the beginning of each turn, the player can remove a set of marbles, and the set

must be one of four types: one red, one blue, one red and one blue, or two red

and two blue. After removing the set of marbles, a fair coin is flipped. If tails

appears, the turn is over. If heads appears, then some marbles are added back to

the bag, according to Table 10.1. Our goal will be to find a lower bound on E[T ],

Table 10.1 Rules of the marble game

Set removed Set returned to bag on “heads”

one red one red and one blue
one blue one red and one blue
two reds three blues
two blues three reds

where T is the number of turns needed by the player until the urn is empty. The

bound should hold for any strategy the player adopts. Let Xn denote the total

number of marbles in the urn after n turns. If the player elects to remove only

one marble during a turn (either red or blue) then with probability one half,

two marbles are put back. Hence, for either set with one marble, the expected

change in the total number of marbles in the urn is zero. If the player elects to

remove two reds or two blues, then with probability one half, three marbles are

put back into the urn. For these turns, the expected change in the number of
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marbles in the urn is -0.5. Hence, for any choice of un (representing the decision

of the player for the n+ 1th turn),

E[Xn+1|Xn, un] ≥ Xn − 0.5 on {T > n}.

That is, the drift of Xn towards zero is at most 0.5 in magnitude, so we suspect

that no strategy can empty the urn in average time less than (r + b)/0.5. In

fact, this result is true, and it is now proved. Let Mn = Xn∧T + n∧T
2 . By the

observations above, M is a submartingale. Furthermore, |Mn+1 − Mn| ≤ 2.

Either E[T ] = +∞ or E[T ] <∞. If E[T ] = +∞ then the inequality to be proved,

E[T ] ≥ 2(r+b), is trivially true, so suppose E[T ] <∞. Then by Corollary 10.17,

E[MT ] ≥ E[M0] = r+b. Also, MT = T
2 with probability one, so E[T ] ≥ 2(r+b),

as claimed.

10.5 Notes

Material on Azuma-Hoeffding inequality and McDiarmid’s method can be found

in McDiarmid’s tutorial article (McDiarmid 1989).

Problems

10.1 Two martingales associated with a simple branching process Let

G = (Gn : n ≥ 0) denote the Galton-Watson branching process with random

variableX denoting the number of offspring of a typical individual, as in Example

10.5. (a) Identify the constant θ so that Gn
θn is a martingale.

(b) Let E denote the event of eventual extinction, and let α = P{E}. Show that

P (E|G0, . . . , Gn) = αGn . Thus, Mn = αGn is a Doob martingale based on the

random variable Φ = IE .

(c) Using the fact E[M1] = E[M0], find an equation for α. (It can be shown

that α is the smallest positive solution to the equation, and α < 1 if and only if

E[X] > 1.)

10.2 A covering problem Consider a linear array of n cells. Suppose that m

base stations are randomly placed among the cells, such that the locations of

the base stations are independent, and uniformly distributed among the n cell

locations. Let r be a positive integer. Call a cell i covered if there is at least one

base station at some cell j with |i− j| ≤ r − 1. Thus, each base station (except

those near the edge of the array) covers 2r−1 cells. Note that there can be more

than one base station at a given cell, and interference between base stations is

ignored.

(a) Let F denote the number of cells covered. Apply the method of bounded

differences based on the Azuma-Hoeffding inequality to find an upper bound on

P{|F − E[F ]| ≥ γ}.
(b) (This part is related to the coupon collector problem, Problem 4.39, and may

not have anything to do with martingales.) Rather than fixing the number of
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base stations, m, let X denote the number of base stations needed until all cells

are covered. In case r = 1 we have seen that P{X ≥ n lnn + cn} → exp(−e−c)
(the coupon collectors problem). For general r ≥ 1, find g1(r) and g2(r) so that

for any ε > 0, P{X ≥ (g2(r) + ε)n lnn} → 0 and P{X ≤ (g1(r)− ε)n lnn} → 0.

(Ideally you can find a solution with g1 = g2, but if not, it’d be nice if they are

close.)

10.3 Doob decomposition (a) Show that a predictable martingale difference

sequence is identically zero with probability one. (b) Using your answer to part

(a), show that the Doob decomposition described in Example 10.7 is unique up

to events of probability zero.

10.4 Stopping time properties (a) Show that if S and T are stopping times

for some filtration FFF , then S ∧ T , S ∨ T , and S + T , are also stopping times.

(b) Show that if FFF is a filtration and X = (Xk : k ≥ 0) is the random sequence

defined by Xk = I{T≤k} for some random time T with values in Z+, then T is a

stopping time if and only if X is FFF-adapted.

(c) If T is a stopping time for a filtration FFF , then FT is defined to be the set

of events A such that A ∩ {T ≤ n} ∈ Fn for all n. (Or, for discrete time, the

set of events A such that A ∩ {T = n} ∈ Fn for all n.) Show that (i) FT is a

σ-algebra, (ii) T is FT measurable, and (iii) if X is an adapted process then XT

is FT measurable.

10.5 A stopped random walk Let W1,W2, . . . be a sequence of independent,

identically distributed mean zero random variables. To avoid triviality, assume

P{W1 = 0} 6= 1. Let S0 = 0 and Sn = W1 + . . .+Wn for n ≥ 1. Fix a constant

c > 0 and let T = min{n ≥ 0 : |Sn| ≥ c}. The goal of this problem is to show

that E[ST ] = 0.

(a) Show that E[ST ] = 0 if there is a constant D so that P{|Wi| > D} = 0.

(Hint: Invoke a version of the optional stopping theorem).

(b) In view of part (a), we need to address the case that the W ’s are not bounded.

Let W̃n =


Wn if |Wn| ≤ 2c

a if Wn > 2c

−b if Wn < −2c

where the constants a and b are selected so

that a ≥ 2c, b ≥ 2c, and E[W̃n] = 0. Let S̃n = W̃1 + . . .+W̃n for n ≥ 0. Note that

if T < n and if W̃n 6= Wn, then T = n. Therefore, T = min{n ≥ 0 : |S̃n| ≥ c}.
Let σ̃2 = Var(W̃n). and let Mn = S̃2

n−nσ̃2. Show that M is a martingale. Hence,

E[MT∧n] = 0 for all n. Conclude that E[T ] <∞.
(c) Show that E[ST ] = 0. (Hint: Use part (b) and invoke a version of the optional

stopping theorem.)

10.6 Bounding the value of a game Example 10.13 considers a game with mar-

bles and shows that the mean completion time T satisfies E[T ] ≥ 2(r + b) no

matter what strategy is used. Suggest a strategy that approximately minimizes

E[T ], and for that strategy, find an upper bound on E[T ].

10.7 On the size of a maximum matching in a random bipartite graph

Given 1 ≤ d < n, let U = {u1, . . . , un} and V = {v1, . . . , vn} be disjoint sets of



10.5 Notes 343

cardinality n, and let G be a bipartite random graph with vertex set U ∪V , such

that if Vi denotes the set of neighbors of ui, then V1, . . . , Vn are independent, and

each is uniformly distributed over the set of all
(
n
d

)
subsets of V of cardinality

d. A matching for G is a subset of edges M such that no two edges in M have a

common vertex. Let Z denote the maximum of the cardinalities of the matchings

for G.

(a) Find bounds a and b, with 0 < a ≤ b < n, so that a ≤ E[Z] ≤ b.
(b) Give an upper bound on P{|Z −E[Z]| ≥ γ

√
n}, for γ > 0, showing that for

fixed d, the distribution of Z is concentrated about its mean as n→∞.

(c) Suggest a greedy algorithm for finding a large cardinality matching.

10.8* On random variables of the form g(Y) Let Y and Z be random vari-

ables on the same probability space. The purpose of this problem is to establish

Z = g(Y ) for some Borel measurable function g if and only if Z is σ(Y ) measur-

able.

(“only if” part) Suppose Z = g(Y ) for a Borel measurable function g, and let

c ∈ R. It must be shown that {Z ≤ c} ∈ σ(Y ). Since g is a Borel measurable

function, by definition, A = {y : g(y) ≤ c} is a Borel subset of R. (a) Show

{Z ≤ c} = {Y ∈ A}. (b) Using the definition of Borel sets, show {Y ∈ A} ∈ σ(Y )

for any Borel set A. The “only if” part follows.

(“if” part) Suppose Z is σ(Y ) measurable. It must be shown Z has the form

g(Y ) for some Borel measurable function g. (c) Prove this first in the special

case Z has the form of an indicator function: Z = IB , for some event B, which

satisfies B ∈ σ(Y ). (Hint: Appeal to the definition of σ(Y ).) (d) Prove the “if”

part in general. (Hint: Z can be written as the supremum of a countable set

of random variables, with each being a constant times an indicator function:

Z = supn qnI{Z≤qn}, where q1, q2, . . . is an enumeration of the set of rational

numbers.)

10.9* Regular conditional distributions Let X be a random variable on

(Ω,F , P ) and let D be a sub-σ-algebra of F . Conditional probabilities such

as P (X ≤ c|D) for a fixed constant c are defined by applying Definition 10.2

of conditional expectation to the indicator random variable, I{X≤c}. This can

sometimes have different versions, but any two such versions are equal with

probability one. The idea of regular conditional distributions is to select a version

of P (X ≤ c|D) for every real number c so that, as a function of c for ω fixed,

the result is a valid CDF (i.e. nondecreasing, right-continuous, with limit zero

at −∞ and limit one at +∞.) The difficulty is that there are uncountably many

choices of c. Here is the definition. A regular conditional CDF of X given D,

denoted by FX|D(c|ω), is a function of (c, ω) ∈ R× Ω such that:

(1) for each ω fixed, as a function of c, FX|D(c|ω) is a valid CDF,

(2) for any c ∈ R, as a function of ω, FX|D(c|ω) is a version of P (X ≤ c|D).

The purpose of this problem is to prove the existence of a regular conditional

CDF. For each rational number q, let Φ(q) = P (X ≤ q|D). That is, for each

rational number q, pick Φ(q) to be one particular version of P (X ≤ q|D). We
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sometimes write Φ(q, ω) for the random variable Φ(q) to make explicit the depen-

dence on ω. By the positivity preserving property of conditional expectations,

P{0 ≤ Φ(q) < Φ(q′) ≤ 1} = 1 if q < q′. Let {q1, q2, . . .} denote the set of rational

numbers, listed in some order, and define the event G1 by

G1 = ∩n,m:qn<qm{0 ≤ Φ(qn) ≤ Φ(qm) ≤ 1}.

Then P (G1) = 1 because G1 is the intersection of countably many events of

probability one. The limits Φ(−∞)
4
= limn→−∞Φ(n) and Φ(∞)

4
= limn→∞ Φ(n)

both exist and take values in [0, 1] for all ω ∈ G1 because bounded monotone

sequences in the closed, bounded interval [0, 1] have limits in the interval. Let

Φ(−∞) = 0 and Φ(∞) = 1 for ω ∈ Gc1. Since E[|Φ(n)− 0|] = E[Φ(n)] = P{X ≤
n} → 0 as n → −∞, it follows that Φ(n)

p.→ 0 as n → −∞. Since the limit

random variables for convergence in the p. and a.s. senses must be equal with

probability one, Φ(−∞) = 0 with probability one. Likewise, Φ(∞) = 1 with

probability one. Let G2 = G1 ∩ {Φ(−∞) = 0} ∩ {Φ(∞) = 1}. Then P (G2) = 1.

Modify Φ(q, ω) for ω ∈ Gc2 by letting Φ(q, ω) = Fo(q) for ω ∈ Gc2 and all

rational q, where Fo is an arbitrary, fixed CDF. Then for any c ∈ R and ω ∈ Ω,

let

Ψ(c, ω) = inf
q>c

Φ(q, ω).

Show that Ψ is a regular conditional CDF of X given D. (Hint: To prove that

Ψ(c, ·) is a version of P (X ≤ c|D) for any fixed c ∈ R, use the definitions of

P (X ≤ c|D).

10.10* An even more general definition of conditional expectation LetX be

a random variable on (Ω,F , P ) and let D be a sub-σ-algebra of F . Let FX|D(c|ω)

be a regular conditional CDF of X given D. Then for each ω, we can define

E[X|D] at ω to equal the mean for the CDF FX|D(·|ω), which is contained in the

extended real line R ∪ {−∞,+∞}. Symbolically: E[X|D](ω) =
∫
R cFX|D(dc|ω).

Show, in the special case E[|X|] < ∞, this definition is consistent with the one

given previously. As an application, the following conditional version of Jensen’s

inequality holds: If ϕ is a convex function on R, then E[ϕ(X)|D] ≥ ϕ(E[X|D])

a.s. The proof is given by applying the ordinary Jensen’s inequality for each ω

fixed, for the regular conditional CDF of X given D evaluated at ω.
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11.1 Some notation

The following notational conventions are used in this book.

Ac = complement of A

AB = A ∩B
A ⊂ B ↔ any element of A is also an element of B

A−B = ABc

∞⋃
i=1

Ai = {a : a ∈ Ai for some i}

∞⋂
i=1

Ai = {a : a ∈ Ai for all i}

a ∨ b = max{a, b} =

{
a if a ≥ b
b if a < b

a ∧ b = min{a, b}
a+ = a ∨ 0 = max{a, 0}

IA(x) =

{
1 if x ∈ A
0 else

(a, b) = {x : a < x < b} (a, b] = {x : a < x ≤ b}
[a, b) = {x : a ≤ x < b} [a, b] = {x : a ≤ x ≤ b}

Z − set of integers

Z+ − set of nonnegative integers

R − set of real numbers

R+ − set of nonnegative real numbers

C = set of complex numbers
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A1 × · · · ×An = {(a1, . . . , an)T : ai ∈ Ai for 1 ≤ i ≤ n}
An = A× · · · ×A︸ ︷︷ ︸

n times

btc = greatest integer n such that n ≤ t
dte = least integer n such that n ≥ t

A
4
= expression − denotes that A is defined by the expression

All the trigonometric identities required in these notes can be easily derived

from the two identities:

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b)

and the facts cos(−a) = cos(a) and sin(−b) = − sin(b).

A set of numbers is countably infinite if the numbers in the set can be listed in

a sequence xi : i = 1, 2, . . .. For example, the set of rational numbers is countably

infinite, but the set of all real numbers in any interval of positive length is not

countably infinite.

11.2 Convergence of sequences of numbers

We begin with some basic definitions. Let (xn) = (x1, x2, . . .) and (yn) =

(y1, y2, . . .) be sequences of numbers and let x be a number. By definition, xn con-

verges to x as n→∞ if for each ε > 0 there is an integer nε so that | xn−x |< ε

for every n ≥ nε. We write limn→∞ xn = x to denote that xn converges to x.

Example 11.1 Let xn = 2n+4
n2+1 . Let us verify that limn→∞ xn = 0. The inequal-

ity | xn |< ε holds if 2n + 4 ≤ ε(n2 + 1). Therefore it holds if 2n + 4 ≤ εn2.

Therefore it holds if both 2n ≤ ε
2n

2 and 4 ≤ ε
2n

2. So if nε =
⌈
max

{
4
ε ,
√

8
ε

}⌉
then n ≥ nε implies that | xn |< ε. So limn→∞ xn = 0.

By definition, (xn) converges to +∞ as n→∞ if for every K > 0 there is an

integer nK so that xn ≥ K for every n ≥ nK . Convergence to −∞ is defined in a

similar way.1 For example, n3 →∞ as n→∞ and n3 − 2n4 → −∞ as n→∞.
Occasionally a two-dimensional array of numbers (am,n : m ≥ 1, n ≥ 1) is

considered. By definition, am,n converges to a number a∗ as m and n jointly go

to infinity if for each ε > 0 there is nε > 0 so that | am,n − a∗ |< ε for every

m,n ≥ nε. We write limm,n→∞ am,n = a to denote that am,n converges to a as

m and n jointly go to infinity.

1 Some authors reserve the word “convergence” for convergence to a finite limit. When we
say a sequence converges to +∞ some would say the sequence diverges to +∞.
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Theoretical Exercises
1. Let am,n = 1 ifm = n and am,n = 0 ifm 6= n. Show that limn→∞(limm→∞ am,n) =

limm→∞(limn→∞ amn) = 0 but that limm,n→∞ am,n does not exist.

2. Let am,n = (−1)m+n

min(m,n) . Show that limm→∞ am,n does not exist for any n and

limn→∞ am,n does not exist for any m, but limm,n→∞ am,n = 0.

3. If limm,n→∞ amn = a∗ and limm→∞ amn = bn for each n, limn→∞ bn = a∗.

The condition limm,n→∞ am,n = a∗ can be expressed in terms of convergence

of sequences depending on only one index (as can all the other limits discussed

in these notes) as follows. Namely, limm,n→∞ am,n = a∗ is equivalent to the

following: limk→∞ amk,nk = a∗ whenever ((mk, nk) : k ≥ 1) is a sequence of

pairs of positive integers such that mk → ∞ and nk → ∞ as k → ∞. The

condition that the limit limm,n→∞ am,n exists, is equivalent to the condition

that the limit limk→∞ amk,nk exists whenever ((mk, nk) : k ≥ 1) is a sequence of

pairs of positive integers such that mk →∞ and nk →∞ as k →∞.2
A sequence a1, a2, . . . is said to be nondecreasing if ai ≤ aj for i < j. Similarly

a function f on the real line is nondecreasing if f(x) ≤ f(y) whenever x < y.

The sequence is called strictly increasing if ai < aj for i < j and the function is

called strictly increasing if f(x) < f(y) whenever x < y.3 A strictly increasing or

strictly decreasing sequence is said to be strictly monotone, and a nondecreasing

or nonincreasing sequence is said to be monotone.

The sum of an infinite sequence is defined to be the limit of the partial sums.

That is, by definition,

∞∑
k=1

yk = x means that lim
n→∞

n∑
k=1

yk = x.

Often we want to show that a sequence converges even if we don’t explicitly know

the value of the limit. A sequence (xn) is bounded if there is a number L so that

| xn |≤ L for all n. Any sequence that is bounded and monotone converges to a

finite number.

Example 11.2 Consider the sum
∑∞
k=1 k

−α for a constant α > 1. For each n

the nth partial sum can be bounded by comparison to an integral, based on the

fact that for k ≥ 2, the kth term of the sum is less than the integral of x−α over

the interval [k − 1, k]:

n∑
k=1

k−α ≤ 1 +

∫ n

1

x−αdx = 1 +
1− n1−α

(α− 1)
≤ 1 +

1

α− 1
=

α

α− 1
.

2 We could add here the condition that the limit should be the same for all choices of

sequences, but it is automatically true. If if two sequences were to yield different limits of
amk,nk , a third sequence could be constructed by interleaving the first two, and amk,nk
wouldn’t be convergent for that sequence.

3 We avoid simply saying “increasing,” because for some authors it means strictly increasing
and for other authors it means nondecreasing. While inelegant, our approach is safer.
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The partial sums are also monotone nondecreasing (in fact, strictly increasing).

Therefore the sum
∑∞
k=1 k

−α exists and is finite.

A sequence (xn) is a Cauchy sequence if limm,n→∞ | xm − xn |= 0. It is

not hard to show that if xn converges to a finite limit x then (xn) is a Cauchy

sequence. More useful is the converse statement, called the Cauchy criteria for

convergence, or the completeness property of R: If (xn) is a Cauchy sequence

then xn converges to a finite limit as n→∞.

Example 11.3 Suppose (xn : n ≥ 1) is a sequence such that
∑∞
i=1 |xi+1−xi| <

∞. The Cauchy criteria can be used to show that the sequence (xn : n ≥ 1) is

convergent. Suppose 1 ≤ m < n. Then by the triangle inequality for absolute

values:

|xn − xm| ≤
n−1∑
i=m

|xi+1 − xi|

or, equivalently,

|xn − xm| ≤

∣∣∣∣∣
n−1∑
i=1

|xi+1 − xi| −
m−1∑
i=1

|xi+1 − xi|

∣∣∣∣∣ . (11.1)

Inequality (11.1) also holds if 1 ≤ n ≤ m. By the definition of the sum,
∑∞
i=1 |xi+1−

xi|, both sums on the right side of (11.1) converge to
∑∞
i=1 |xi+1 − xi| as

m,n → ∞, so the right side of (11.1) converges to zero as m,n → ∞. Thus,

(xn) is a Cauchy sequence, and it is hence convergent.

Theoretical Exercises

1. Show that if limn→∞ xn = x and limn→∞ yn = y then limn→∞ xnyn = xy.

2. Find the limits and prove convergence as n→∞ for the following sequences:

(a) xn = cos(n2)
n2+1 , (b) yn = n2

logn (c) zn =
∑n
k=2

1
k log k .

The minimum of a set of numbers, A, written minA, is the smallest number

in the set, if there is one. For example, min{3, 5, 19,−2} = −2. Of course, minA

is well defined if A is finite (i.e. has finite cardinality). Some sets fail to have a

minimum, for example neither {1, 1/2, 1/3, 1/4, . . .} nor {0,−1,−2, . . .} have a

smallest number. The infimum of a set of numbers A, written inf A, is the greatest

lower bound for A. If A is bounded below, then inf A = max{c : c ≤ a for all a ∈
A}. For example, inf{1, 1/2, 1/3, 1/4, . . .} = 0. If there is no finite lower bound,

the infimum is −∞. For example, inf{0,−1,−2, . . .} = −∞. By convention,

the infimum of the empty set is +∞. With these conventions, if A ⊂ B then

inf A ≥ inf B. The infimum of any subset of R exists, and if minA exists, then
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minA = inf A, so the notion of infimum extends the notion of minimum to all

subsets of R.

Similarly, the maximum of a set of numbers A, written maxA, is the largest

number in the set, if there is one. The supremum of a set of numbers A, written

supA, is the least upper bound for A. We have supA = − inf{−a : a ∈ A}.
In particular, supA = +∞ if A is not bounded above, and sup ∅ = −∞. The

supremum of any subset of R exists, and if maxA exists, then maxA = supA,

so the notion of supremum extends the notion of maximum to all subsets of R.

The notions of infimum and supremum of a set of numbers are useful because

they exist for any set of numbers. There is a pair of related notions that gen-

eralizes the notion of limit. Not every sequence has a limit, but the following

terminology is useful for describing the limiting behavior of a sequence, whether

or not the sequence has a limit.

definition 11.1 The liminf (also called limit inferior) of a sequence (xn :

n ≥ 1), is defined by

lim inf
n→∞

xn = lim
n→∞

[inf{xk : k ≥ n}] , (11.2)

and the limsup (also called limit superior) is defined by

lim sup
n→∞

xn = lim
n→∞

[sup{xk : k ≥ n}] , (11.3)

The possible values of the liminf and limsup of a sequence are R ∪ {−∞,+∞}.

The limit on the right side of (11.2) exists because the infimum inside the

square brackets is monotone nondecreasing in n. Similarly, the limit on the right

side of (11.3) exists. So every sequence of numbers has a liminf and limsup.

definition 11.2 A subsequence of a sequence (xn : n ≥ 1) is a sequence

of the form (xki : i ≥ 1), where k1, k2, . . . is a strictly increasing sequence of

integers. The set of limit points of a sequence is the set of all limits of convergent

subsequences. The values −∞ and +∞ are possible limit points.

Example 11.4 Suppose yn = 121−25n2 for n ≤ 100 and yn = 1/n for n ≥ 101.

The liminf and limsup of a sequence do not depend on any finite number of terms

of the sequence, so the values of yn for n ≤ 100 are irrelevant. For all n ≥ 101,

inf{xk : k ≥ n} = inf{1/n, 1/(n + 1), . . .} = 0, which trivially converges to 0

as n → ∞. So the liminf of (yn) is zero. For all n ≥ 101, sup{xk : k ≥ n} =

sup{1/n, 1/(n+ 1), . . .} = 1
n , which converges also to 0 at n→∞. So the limsup

of (yn) is also zero. Zero is also the only limit point of (yn).

Example 11.5 Consider the sequence of numbers (2,−3/2, 4/3,−5/4, 6/5, . . .),

which we also write as (xn : n ≥ 1) such that xn = (n+1)(−1)n+1

n . The maximum

(and supremum) of the sequence is 2, and the minimum (and infimum) of the
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sequence is −3/2. But for large n, the sequence alternates between numbers

near one and numbers near minus one. More precisely, the subsequence of odd

numbered terms, (x2i−1 : i ≥ 1), converges to 1, and the subsequence of even

numbered terms, (x2i : i ≥ 1), has limit +1. Thus, both 1 and -1 are limit points

of the sequence, and there aren’t any other limit points. The overall sequence

itself does not converge (i.e. does not have a limit) but lim infn→∞ xn = −1 and

lim supn→∞ xn = +1.

Some simple facts about the limit, liminf, limsup, and limit points of a sequence

are collected in the following proposition. The proof is left to the reader.

proposition 11.3 Let (xn : n ≥ 1) denote a sequence of numbers.

1. The condition lim infn→∞ xn = x∞ is equivalent to the following:

for any γ < x∞, xn ≥ γ for all sufficiently large n.

2. The condition lim supn→∞ xn = x∞ is equivalent to the following:

for any γ > x∞, xn ≤ γ for all sufficiently large n.

3. lim infn→∞ xn ≤ lim supn→∞ xn.

4. limn→∞ xn exists if and only if the liminf equals the limsup, and if the limit

exists, then the limit, liminf, and limsup are equal.

5. limn→∞ xn exists if and only if the sequence has exactly one limit point, x∗,

and if the limit exists, it is equal to that one limit point.

6. Both the liminf and limsup of the sequence are limit points. The liminf is the

smallest limit point and the limsup is the largest limit point (keep in mind

that −∞ and +∞ are possible values of the liminf, limsup, or a limit point).

Theoretical Exercises
1. Prove Proposition 11.3

2. Here’s a more challenging one. Let r be an irrational constant, and let xn =

nr−bnrc for n ≥ 1. Show that every point in the interval [0, 1] is a limit point

of (xn : n ≥ 1). (P. Bohl, W. Sierpinski, and H. Weyl independently proved a

stronger result in 1909-1910: namely, the fraction of the first n values falling

into a subinterval converges to the length of the subinterval.)

11.3 Continuity of functions

Let f be a function on Rn for some n, and let xo ∈ Rn. The function has a limit y

at xo, and such situation is denoted by limx→xo f(x) = y, if the following is true.

Given ε > 0, there exists δ > 0 so that | f(x)− y |≤ ε whenever 0 < ‖x− xo‖ <
δ. This convergence condition can also be expressed in terms of convergence

of sequences, as follows. The condition limx→xo f(x) = y is equivalent to the

condition f(xn)→ y for any sequence x1, x2, . . . from Rn−xo such that xn → xo.

The function f is said to be continuous at xo, or equivalently, xo is said to
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be a continuity point of f , if limx→xo f(x) = f(xo). In terms of sequences, f is

continuous at xo if f(xn)→ f(xo) whenever x1, x2, . . . is a sequence converging

to xo. The function f is simply said to be continuous if it is continuous at every

point in Rn.

Let n = 1, so consider a function f on R, and let xo ∈ R. The function has

a right-hand limit y at xo, and such situation is denoted by f(xo+) = y or

limx↘xo f(x) = y, if the following is true. Given ε > 0, there exists δ > 0 so that

| f(x)− y |≤ ε whenever 0 < x− xo < δ. Equivalently, f(xo+) = y if f(xn)→ y

for any sequence x1, x2, . . . from (xo,+∞) such that xn → xo. The left-hand limit

f(xo−) = limx↗xo f(x) is defined similarly. If f is monotone nondecreasing, then

the left-hand and right-hand limits exist, and f(xo−) ≤ f(xo) ≤ f(xo+) for all

xo.

A function f is called right-continuous at xo if f(xo) = f(xo+). A function f

is simply called right-continuous if it is right-continuous at all points.

definition 11.4 A function f on a bounded interval (open, closed, or mixed)

with endpoints a < b is piecewise continuous, if there exist n ≥ 1 and a = t0 <

t1 < · · · < tn = b, such that, for 1 ≤ k ≤ n: f is continuous over (tk−1, tk) and

has finite limits at the endpoints of (tk−1, tk).

More generally, if T is all of R or an interval in R, f is piecewise continuous over

T if it is piecewise continuous over every bounded subinterval of T.

11.4 Derivatives of functions

Let f be a function on R and let xo ∈ R. Then f is differentiable at xo if the

following limit exists and is finite:

lim
x→xo

f(x)− f(xo)

x− xo
.

The value of the limit is the derivative of f at xo, written as f ′(xo). In more

detail, this condition that f is differentiable at xo means there is a finite value

f ′(xo) so that, for any ε > 0, there exists δ > 0, so that∣∣∣∣f(x)− f(xo)

x− xo
− f ′(xo)

∣∣∣∣ ≤ δ
whenever 0 < |x − xo| < ε. Alternatively, in terms of convergence of sequences,

it means there is a finite value f ′(xo) so that

lim
n→∞

f(xn)− f(xo)

xn − xo
= f ′(xo)

whenever (xn : n ≥ 1) is a sequence with values in R − {xo} converging to xo.

The function f is differentiable if it is differentiable at all points.

The right-hand derivative of f at a point xo, denoted by D+f(xo), is defined

the same way as f ′(xo), except the limit is taken using only x such that x > xo.
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The extra condition x > xo is indicated by using a slanting arrow in the limit

notation:

D+f(x0) = lim
x↘xo

f(x)− f(xo)

x− xo
.

Similarly, the left-hand derivative of f at a point xo isD−f(x0) = limx↗xo
f(x)−f(xo)

x−xo .

Theoretical Exercise
1. Suppose f is defined on an open interval containing xo, then f ′(xo) exists if

and only if D+f(xo) = D−f(x0). If f ′(xo) exists then D+f(xo) = D−f(x0) =

f ′(xo).

We write f ′′ for the derivative of f ′. For an integer n ≥ 0 we write f (n) to

denote the result of differentiating f n times.

theorem 11.5 (Mean value form of Taylor’s theorem) Let f be a function

on an interval (a, b) such that its nth derivative f (n) exists on (a, b). Then for

a < x, x0 < b,

f(x) =

n−1∑
k=0

f (k)(x0)

k!
(x− x0)k +

f (n)(y)(x− x0)n

n!

for some y between x and x0.

Clearly differentiable functions are continuous. But they can still have rather

odd properties, as indicated by the following example.

Example 11.6 Let f(t) = t2 sin(1/t2) for t 6= 0 and f(0) = 0. This function f

is a classic example of a differentiable function with a derivative function that is

not continuous. To check the derivative at zero, note that | f(s)−f(0)
s | ≤ |s| → 0

as s → 0, so f ′(0) = 0. The usual calculus can be used to compute f ′(t) for

t 6= 0, yielding

f ′(t) =

{
2t sin( 1

t2 )− 2 cos( 1
t2

)

t t 6= 0

0 t = 0
.

The derivative f ′ is not even close to being continuous at zero. As t approaches

zero, the cosine term dominates, and f reaches both positive and negative values

with arbitrarily large magnitude.

Even though the function f of Example 11.6 is differentiable, it does not

satisfy the fundamental theorem of calculus (stated in the next section). One

way to rule out the wild behavior of Example 11.6, is to assume that f is con-

tinuously differentiable, which means that f is differentiable and its derivative

function is continuous. For some applications, it is useful to work with functions
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more general than continuously differentiable ones, but for which the fundamen-

tal theorem of calculus still holds. A possible approach is to use the following

condition.

definition 11.6 A function f on a bounded interval (open, closed, or mixed)

with endpoints a < b is continuous and piecewise continuously differentiable, if f

is continuous over the interval, and if there exist n ≥ 1 and a = t0 < t1 < · · · <
tn = b, such that, for 1 ≤ k ≤ n: f is continuously differentiable over (tk−1, tk)

and f ′ has finite limits at the endpoints of (tk−1, tk).

More generally, if T is all of R or a subinterval of R, then a function f on T
is continuous and piecewise continuously differentiable if its restriction to any

bounded interval is continuous and piecewise continuously differentiable.

Example 11.7 Two examples of continuous, piecewise continuously differen-

tiable functions on R are: f(t) = min{t2, 1} and g(t) = | sin(t)|.

Example 11.8 The function given in Example 11.6 is not considered to be

piecewise continuously differentiable because the derivative does not have finite

limits at zero.

Theoretical Exercises
1. Suppose f is a continuously differentiable function on an open bounded in-

terval (a, b). Show that if f ′ has finite limits at the endpoints, then so does

f .

2. Suppose f is a continuous function on a closed, bounded interval [a, b] such

that f ′ exists and is continuous on the open subinterval (a, b). Show that if

the right-hand limit of the derviative at a, f ′(a+) = limx↘a f
′(x), exists, then

the right-hand derivative at a, defined by

D+f(a) = lim
x↘a

f(x)− f(a)

x− a
also exists, and the two limits are equal.

Let g be a function from Rn to Rm. Thus for each vector x ∈ Rn, g(x) is an

m vector. The derivative matrix of g at a point x, ∂g
∂x (x), is the n ×m matrix

with ijth entry ∂gi
∂xj

(x). Sometimes for brevity we write y = g(x) and think of y

as a variable depending on x, and we write the derivative matrix as ∂y
∂x (x).

theorem 11.7 (Implicit function theorem) If m = n and if ∂y
∂x is continuous

in a neighborhood of x0 and if ∂y
∂x (x0) is nonsingular, then the inverse mapping

x = g−1(y) is defined in a neighborhood of y0 = g(x0) and

∂x

∂y
(y0) =

(
∂y

∂x
(x0)

)−1

.
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11.5 Integration

11.5.1 Riemann integration

Let g be a bounded function on a bounded interval of the form (a, b]. Given:

• A partition of (a, b] of the form (t0, t1], (t1, t2], · · · , (tn−1, tn], where n ≥ 0 and

a = t0 < t1 · · · < tn = b

• A sampling point from each subinterval, vk ∈ (tk−1, tk], for 1 ≤ k ≤ n,

the corresponding Riemann sum for g is defined by

n∑
k=1

g(vk)(tk − tk−1).

The norm of the partition is defined to be maxk |tk−tk−1|. The Riemann integral∫ b
a
g(x)dx is said to exist and its value is I if the following is true. Given any

ε > 0, there is a δ > 0 so that |
∑n
k=1 g(vk)(tk − tk−1) − I| ≤ ε whenever the

norm of the partition is less than or equal to δ. This definition is equivalent to

the following condition, expressed using convergence of sequences. The Riemann

integral exists and is equal to I, if for any sequence of partitions, specified by

((tm1 , t
m
2 , . . . , t

m
nm) : m ≥ 1), with corresponding sampling points ((vm1 , . . . , v

m
nm) :

m ≥ 1), such that norm of the mth partition converges to zero as m → ∞,
the corresponding sequence of Riemann sums converges to I as m → ∞. The

function g is said to be Riemann integrable over (a, b] if the integral
∫ b
a
g(x)dx

exists and is finite.

Next, suppose g is defined over the whole real line. If for every interval (a, b],

g is bounded over [a, b] and Riemann integrable over (a, b], then the Riemann

integral of g over R is defined by∫ ∞
−∞

g(x)dx = lim
a,b→∞

∫ b

−a
g(x)dx

provided that the indicated limit exists as a, b jointly converge to +∞. The values

+∞ or −∞ are possible.

A function that is continuous, or just piecewise continuous, is Riemann inte-

grable over any bounded interval. Moreover, the following is true for Riemann

integration:

theorem 11.8 (Fundamental theorem of calculus) Let f be a continuously

differentiable function on R. Then for a < b,

f(b)− f(a) =

∫ b

a

f ′(x)dx. (11.4)

More generally, if f is continuous and piecewise continuously differentiable,

(11.4) holds with f ′(x) replaced by the right-hand derivative, D+f(x). (Note that

D+f(x) = f ′(x) whenever f ′(x) is defined.)
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We will have occasion to use Riemann integrals in two dimensions. Let g be a

bounded function on a bounded rectangle of the form (a1, b1]× (a2, b2]. Given:

• A partition of (a1, b1]× (a2, b2] into n1×n2 rectangles of the form (t1j , t
1
j−1]×

(t2k, t
2
k−1], where ni ≥ 1 and ai = ti0 < ti1 < · · · < tini = bi for i = 1, 2

• A sampling point (v1
jk, v

2
jk) inside (t1j , t

1
j−1] × (t2k, t

2
k−1] for 1 ≤ j ≤ n1 and

1 ≤ k ≤ n2,

the corresponding Riemann sum for g is

n1∑
j=1

n2∑
k=1

g(v1
j,k, v

2
j,k)(t1j − t1j−1)(t2k − t2k−1).

The norm of the partition is maxi∈{1,2}maxk | tik − tik−1|. As in the case of

one dimension, g is said to be Riemann integrable over (a1, b1] × (a2, b2], and∫ ∫
(a1,b1]×(a2,b2]

g(x1, x2)dsdt = I, if the value of the Riemann sum converges to

I for any sequence of partitions and sampling point pairs, with the norms of the

partitions converging to zero.

The above definition of a Riemann sum allows the n1× n2 sampling points to

be selected arbitrarily from the n1×n2 rectangles. If, instead, the sampling points

are restricted to have the form (v1
j , v

2
k), for n1+n2 numbers v1

1 , . . . , v
1
n1 , v2

1 , . . . v
2
n2 ,

we say the corresponding Riemann sum uses aligned sampling. We define a func-

tion g on [a, b]× [a, b] to be Riemann integrable with aligned sampling in the same

way as we defined g to be Riemann integrable, except the family of Riemann

sums used are the ones using aligned sampling. Since the set of sequences that

must converge is more restricted for aligned sampling, a function g on [a, b]×[a, b]

that is Riemann integrable is also Riemann integrable with aligned sampling.

proposition 11.9 A sufficient condition for g to be Riemann integrable (and

hence Riemann integrable with aligned sampling) over (a1, b1] × (a2, b2] is that

g be the restriction to (a1, b1] × (a2, b2] of a continuous function on [a1, b1] ×
[a2, b2]. More generally, g is Riemann integrable over (a1, b1] × (a2, b2] if there

is a partition of (a1, b1] × (a2, b2] into finitely many subrectangles of the form

(t1j , t
1
j−1] × (t2k, t

2
k−1], such that g on (t1j , t

1
j−1] × (t2k, t

2
k−1] is the restriction to

(t1j , t
1
j−1]× (t2k, t

2
k−1] of a continuous function on [t1j , t

1
j−1]× [t2k, t

2
k−1].

Proposition 11.9 is a standard result in real analysis. It’s proof uses the fact

that continuous functions on bounded, closed sets are uniformly continuous, from

which if follows that, for any ε > 0, there is a δ > 0 so that the Riemann sums

for any two partitions with norm less than or equal to δ differ by most ε. The

Cauchy criteria for convergence of sequences of numbers is also used.
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11.5.2 Lebesgue integration

Lebesgue integration of a random variable with respect to a probability measure

(a.k.a. conditional expectation) is defined in Section 1.5 and is written as

E[X] =

∫
Ω

X(ω)P (dω).

The idea is to first define the expectation for simple random variables, then

for nonnegative random variables, and then for general random variables by

E[X] = E[X+]−E[X−]. The same approach can be used to define the Lebesgue

integral ∫ ∞
−∞

g(ω)dω

for Borel measurable functions g on R. Such an integral is well defined if either∫∞
−∞ g+(ω)dω < +∞ or

∫∞
−∞ g−(ω)dω < +∞.

11.5.3 Riemann-Stieltjes integration

Let g be a bounded function on a closed interval [a, b] and let F be a nonde-

creasing function on [a, b]. The Riemann-Stieltjes integral

∫ b

a

g(x)dF (x) (Riemann-Stieltjes)

is defined the same way as the Riemann integral, except that the Riemann sums

are changed to

n∑
k=1

g(vk)(F (tk)− F (tk−1)).

Extension of the integral over the whole real line is done as it is for Riemann

integration. An alternative definition of
∫∞
−∞ g(x)dF (x), preferred in the context

of these notes, is given next.

11.5.4 Lebesgue-Stieltjes integration

Let F be a CDF. As seen in Section 1.3, there is a corresponding probability

measure P̃ on the Borel subsets of R. Given a Borel measurable function g on

R, the Lebesgue-Stieltjes integral of g with respect to F is defined to be the

Lebesgue integral of g with respect to P̃ :

(Lebesgue-Stieltjes)

∫ ∞
−∞

g(x)dF (x) =

∫ ∞
−∞

g(x)P̃ (dx) (Lebesgue).
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The same notation
∫∞
−∞ g(x)dF (x) is used for both Riemann-Stieltjes (RS) and

Lebesgue-Stieltjes (LS) integration. If g is continuous and the LS integral is finite,

then the integrals agree. In particular,
∫∞
−∞ xdF (x) is identical as either an LS

or RS integral. However, for equivalence of the integrals∫
Ω

g(X(ω))P (dω) and

∫ ∞
−∞

g(x)dF (x),

even for continuous functions g, it is essential that the integral on the right be

understood as an LS integral. Hence, in these notes, only the LS interpretation

is used, and RS integration is not needed.

If F has a corresponding pdf f , then

(Lebesgue-Stieltjes)

∫ ∞
−∞

g(x)dF (x) =

∫ ∞
−∞

g(x)f(x)dx (Lebesgue).

for any Borel measurable function g.

11.6 On convergence of the mean

Suppose (Xn : n ≥ 1) is a sequence of random variables such that Xn
p.→ X∞, for

some random variable X∞. The theorems in this section address the question of

whether E[Xn]→ E[X∞]. The hypothesis Xn
p.→ X∞ means that for any ε > 0

and δ > 0, P{|Xn − X∞| ≤ ε} ≥ 1 − δ. Thus, the event that Xn is close to

X∞ has probability close to one. But the mean of Xn can differ greatly from the

mean of X if, in the unlikely event that |Xn −X∞| is not small, it is very, very

large.

Example 11.9 Suppose U is a random variable with a finite mean, and suppose

A1, A2, . . . is a sequence of events, each with positive probability, but such that

P (An) → 0, and let b1, b2, · · · be a sequence of nonzero numbers. Let Xn =

U + bnIAn for n ≥ 1. Then for any ε > 0, P{|Xn − U | ≥ ε} ≤ P{Xn 6= U} =

P (An) → 0 as n → ∞, so Xn
p.→ U . However, E[Xn] = E[U ] + bnP (An). Thus,

if the bn have very large magnitude, the mean E[Xn] can be far larger or far

smaller than E[U ], for all large n.

The simplest way to rule out the very, very large values of |Xn − X∞| is to

require the sequence (Xn) to be bounded. That would rule out using constants

bn with arbitrarily large magnitudes in Example 11.9. The following result is a

good start–it is generalized to yield the dominated convergence theorem further

below.
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theorem 11.10 (Bounded convergence theorem) Let X1, X2, . . . be a sequence

of random variables such that for some finite L, P{|Xn| ≤ L} = 1 for all n ≥ 1,

and such that Xn
p.→ X as n→∞. Then E[Xn]→ E[X].

Proof For any ε > 0, P{| X |≥ L + ε} ≤ P{| X − Xn |≥ ε} → 0, so that

P{| X |≥ L + ε} = 0. Since ε was arbitrary, P{| X |≤ L} = 1. Therefore,

P{|X −Xn| ≤ 2L} = 1 for all n ≥ 1. Again let ε > 0. Then

|X −Xn| ≤ ε+ 2LI{|X−Xn|≥ε}, (11.5)

so that |E[X]−E[Xn]| = |E[X −Xn]| ≤ E[|X −Xn|] ≤ ε+ 2LP |X −Xn| ≥ ε}.
By the hypotheses, P{|X −Xn| ≥ ε} → 0 as n→∞. Thus, for n large enough,

|E[X]− E[Xn]| < 2ε. Since ε is arbitrary, E[Xn]→ E[X].

Equation (11.5) is central to the proof just given. It bounds the difference

|X −Xn| by ε on the event {|X −Xn| < ε}, which has probability close to one

for n large, and on the complement of this event, the difference |X −Xn| is still

bounded so that its contribution is small for n large enough.

The following lemma, used to establish the dominated convergence theorem,

is similar to the bounded convergence theorem, but the variables are assumed

to be bounded only on one side: specifically, the random variables are restricted

to be greater than or equal to zero. The result is that E[Xn] for large n can

still be much larger than E[X∞], but cannot be much smaller. The restriction

to nonnegative Xn’s would rule out using negative constants bn with arbitrarily

large magnitudes in Example 11.9. The statement of the lemma uses “liminf,”

which is defined in Appendix 11.2.

lemma 11.11 (Fatou’s lemma) Suppose (Xn) is a sequence of nonnegative ran-

dom variables such that Xn
p.→ X∞. Then lim infn→∞E[Xn] ≥ E[X∞]. (Equiv-

alently, for any γ < E[X∞], E[Xn] ≥ γ for all sufficiently large n.)

Proof We shall prove the equivalent form of the conclusion given in the lemma,

so let γ be any constant with γ < E[X∞]. By the definition of E[X∞], there is a

simple random variable Z with Z ≤ X∞ such that E[Z] ≥ γ. Since Z = X∞∧Z,

|Xn ∧ Z − Z| = |Xn ∧ Z −X∞ ∧ Z| ≤ |Xn −X∞|
p.→ 0,

so Xn ∧ Z
p.→ Z. By the bounded convergence theorem, limn→∞E[Xn ∧ Z] =

E[Z] > γ. Since E[Xn] ≥ E[Xn∧Z], it follows that E[Xn] ≥ γ for all sufficiently

large n.

theorem 11.12 (Dominated convergence theorem) If X1, X2, . . . is a sequence

of random variables and X∞ and Y are random variables such that the following

three conditions hold:

(i) Xn
p.→ X∞ as n→∞

(ii) P{|Xn| ≤ Y } = 1 for all n

(iii) E[Y ] < +∞.
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then E[Xn]→ E[X∞].

Proof The hypotheses imply that (Xn+Y : n ≥ 1) is a sequence of nonnegative

random variables which converges in probability to X∞ + Y . So Fatou’s lemma

implies that lim infn→∞E[Xn + Y ] ≥ E[X∞ + Y ], or equivalently, subtracting

E[Y ] from both sides, lim infn→∞E[Xn] ≥ E[X∞]. Similarly, since (−Xn +

Y : n ≥ 1) is a sequence of nonnegative random variables which converges in

probability to −X∞+Y , Fatou’s lemma implies that lim infn→∞E[−Xn+Y ] ≥
E[−X∞ + Y ], or equivalently, lim supn→∞E[Xn] ≤ E[X∞]. Summarizing,

lim sup
n→∞

E[Xn] ≤ E[X∞] ≤ lim inf
n→∞

E[Xn].

In general, the liminf of a sequence is less than or equal to the limsup, and if

the liminf is equal to the limsup, then the limit exists and is equal to both the

liminf and limsup. Thus, E[Xn]→ E[X∞].

corollary 11.13 (A consequence of integrability) If Z has a finite mean,

then given any ε > 0, there exits a δ > 0 so that if P (A) < δ, then |E[ZIA]| ≤ ε.

Proof If not, there would exist a sequence of events An with P (An) → 0 with

|E[ZIAn ]| ≥ ε. But ZIAn
p.→ 0, and ZIAn is dominated by the integrable ran-

dom variable Z for all n, so the dominated convergence theorem implies that

E[ZIAn ]→ 0, which would result in a contradiction.

The following theorem is based on a different way to control the difference

between E[Xn] for large n and E[X∞]. Rather than a domination condition, it

is assumed that the sequence is monotone in n.

theorem 11.14 (Monotone convergence theorem) Let X1, X2, . . . be a se-

quence of random variables such that E[X1] > −∞ and such that X1(ω) ≤
X2(ω) ≤ · · · . Then the limit X∞ given by X∞(ω) = limn→∞Xn(ω) for all ω is

an extended random variable (with possible value ∞) and E[Xn] → E[X∞] as

n→∞.

Proof By adding min{0,−X1} to all the random variables involved if necessary,

we can assume without loss of generality that X1, X2, . . . , and therefore also X,

are nonnegative. Recall that E[X] is equal to the supremum of the expectation of

simple random variables that are less than or equal to X. So let γ be any number

such that γ < E[X]. Then, there is a simple random variable X̃ less than or equal

to X with E[X̃] ≥ γ. The simple random variable X̃ takes only finitely many

possible values. Let L be the largest. Then X̃ ≤ X ∧ L, so that E[X ∧ L] >

γ. By the bounded convergence theorem, E[Xn ∧ L] → E[X ∧ L]. Therefore,

E[Xn ∧ L] > γ for all large enough n. Since E[Xn ∧ L] ≤ E[Xn] ≤ E[X], if

follows that γ < E[Xn] ≤ E[X] for all large enough n. Since γ is an arbitrary

constant with γ < E[X], the desired conclusion, E[Xn]→ E[X], follows.
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11.7 Matrices

An m× n matrix over the reals R has the form

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

am1 am2 · · · amn


where aij ∈ R for all i, j. This matrix has m rows and n columns. A matrix

over the complex numbers C has the same form, with aij ∈ C for all i, j. The

transpose of an m × n matrix A = (aij) is the n × m matrix AT = (aji). For

example (
1 0 3

2 1 1

)T
=

 1 2

0 1

3 1

 .

The matrix A is symmetric if A = AT . Symmetry requires that the matrix A

be square: m = n. The diagonal of a matrix is comprised by the entries of the

form aii. A square matrix A is called diagonal if the entries off of the diagonal

are zero. The n × n identity matrix is the n × n diagonal matrix with ones on

the diagonal. We write I to denote an identity matrix of some dimension n.

If A is an m× k matrix and B is a k × n matrix, then the product AB is the

m×n matrix with ijth element
∑k
l=1 ailblj . A vector x is an m×1 matrix, where

m is the dimension of the vector. Thus, vectors are written in column form:

x =


x1

x2

...

xm

 .

The set of all dimension m vectors over R is the m dimensional Euclidean space

Rm. The inner product of two vectors x and y of the same dimension m is the

number xT y, equal to
∑m
i=1 xiyi. The vectors x and y are orthogonal if xT y = 0.

The Euclidean length or norm of a vector x is given by ‖x‖ = (xTx)
1
2 . A set of

vectors ϕ1, . . . , ϕn is orthonormal if the vectors are orthogonal to each other and

‖ϕi‖ = 1 for all i.

A set of vectors v1, . . . , vn in Rm is said to span Rm if any vector in Rm
can be expressed as a linear combination α1v1 + α2v2 + · · · + αnvn for some

α1, . . . , αn ∈ R. An orthonormal set of vectors ϕ1, . . . , ϕn in Rm spans Rm if and

only if n = m. An orthonormal basis for Rm is an orthonormal set of m vectors

in Rm. An orthonormal basis ϕ1, . . . , ϕm corresponds to a coordinate system for

Rm. Given a vector v in Rm, the coordinates of v relative to ϕ1, . . . , ϕm are

given by αi = ϕTi v. The coordinates α1, . . . , αm are the unique numbers such

that v = α1ϕ1 + · · ·+ αmϕm.
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A square matrix U is called orthonormal if any of the following three equivalent

conditions is satisfied:

1. UTU = I

2. UUT = I

3. the columns of U form an orthonormal basis.

Given an m×m orthonormal matrix U and a vector v ∈ Rm, the coordinates of

v relative to U are given by the vector UT v. Given a square matrix A, a vector ϕ

is an eigenvector of A and λ is an eigenvalue of A if the eigen relation Aϕ = λϕ

is satisfied.

A permutation π of the numbers 1, . . . ,m is a one-to-one mapping of {1, 2, . . . ,m}
onto itself. That is (π(1), . . . , π(m)) is a reordering of (1, 2, . . . ,m). Any permu-

tation is either even or odd. A permutation is even if it can be obtained by an

even number of transpositions of two elements. Otherwise a permutation is odd.

We write

(−1)π =

{
1 if π is even

−1 if π is odd

The determinant of a square matrix A, written det(A), is defined by

det(A) =
∑
π

(−1)π
m∏
i=1

aiπ(i).

The absolute value of the determinant of a matrix A is denoted by | A |. Thus

| A |=| det(A) |.
Some important properties of determinants are the following. Let A and B be

m×m matrices.

1. If B is obtained from A by multiplication of a row or column of A by a scaler

constant c, then det(B) = cdet(A).

2. If U is a subset of Rm and V is the image of U under the linear transformation

determined by A:

V = {Ax : x ∈ U}

then

(the volume of U) = | A | × (the volume of V).

3. det(AB) = det(A) det(B)

4. det(A) = det(AT )

5. |U | = 1 if U is orthonormal.

6. The columns of A span Rn if and only if det(A) 6= 0.

7. The equation p(λ) = det(λI − A) defines a polynomial p of degree m called

the characteristic polynomial of A.

8. The zeros λ1, λ2, . . . , λm of the characteristic polynomial of A, repeated ac-

cording to multiplicity, are the eigenvalues of A, and det(A) =
∏n
i=1 λi. The

eigenvalues can be complex valued with nonzero imaginary parts.
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If K is a symmetric m×m matrix, then the eigenvalues λ1, λ2, . . . , λm, are real-

valued (not necessarily distinct) and there exists an orthonormal basis consisting

of the corresponding eigenvectors ϕ1, ϕ2, . . . , ϕm. Let U be the orthonormal ma-

trix with columns ϕ1, . . . , ϕm and let Λ be the diagonal matrix with diagonal

entries given by the eigenvalues

Λ =


λ1

λ2

. . .

λm

 .

Then the relations among the eigenvalues and eigenvectors may be written as

KU = UΛ. ThereforeK = UΛUT and Λ = UTKU . A symmetricm×mmatrix A

is positive semidefinite if αTAα ≥ 0 for all m-dimensional vectors α. A symmetric

matrix is positive semidefinite if and only if its eigenvalues are nonnegative.

The remainder of this section deals with matrices over C. The Hermitian

transpose of a matrix A is the matrix A∗, obtained from AT by taking the

complex conjugate of each element of AT . For example,(
1 0 3 + 2j

2 j 1

)∗
=

 1 2

0 −j
3− 2j 1

 .

The set of all dimension m vectors over C is the m-complex dimensional space

Cm. The inner product of two vectors x and y of the same dimension m is the

complex number y∗x, equal to
∑m
i=1 xiy

∗
i . The vectors x and y are orthogonal if

x∗y = 0. The length or norm of a vector x is given by ‖x‖ = (x∗x)
1
2 . A set of

vectors ϕ1, . . . , ϕn is orthonormal if the vectors are orthogonal to each other and

‖ϕi‖ = 1 for all i.

A set of vectors v1, . . . , vn in Cm is said to span Cm if any vector in Cm
can be expressed as a linear combination α1v1 + α2v2 + · · · + αnvn for some

α1, . . . , αn ∈ C. An orthonormal set of vectors ϕ1, . . . , ϕn in Cm spans Cm if and

only if n = m. An orthonormal basis for Cm is an orthonormal set of m vectors

in Cm. An orthonormal basis ϕ1, . . . , ϕm corresponds to a coordinate system for

Cm. Given a vector v in Rm, the coordinates of v relative to ϕ1, . . . , ϕm are

given by αi = ϕ∗i v. The coordinates α1, . . . , αm are the unique numbers such

that v = α1ϕ1 + · · ·+ αmϕm.

A square matrix U over C is called unitary (rather than orthonormal) if any

of the following three equivalent conditions is satisfied:

1. U∗U = I

2. UU∗ = I

3. the columns of U form an orthonormal basis.

Given an m ×m unitary matrix U and a vector v ∈ Cm, the coordinates of v

relative to U are given by the vector U∗v. Eigenvectors, eigenvalues, and deter-

minants of square matrices over C are defined just as they are for matrices over
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R. The absolute value of the determinant of a matrix A is denoted by | A |. Thus

| A |=| det(A) |.
Some important properties of determinants of matrices over C are the follow-

ing. Let A and B by m×m matrices.

1. If B is obtained from A by multiplication of a row or column of A by a

constant c ∈ C, then det(B) = cdet(A).

2. If U is a subset of Cm and V is the image of U under the linear transformation

determined by A:

V = {Ax : x ∈ U}

then

(the volume of U) = | A |2 × (the volume of V).

3. det(AB) = det(A) det(B)

4. det∗(A) = det(A∗)

5. | U |= 1 if U is unitary.

6. The columns of A span Cn if and only if det(A) 6= 0.

7. The equation p(λ) = det(λI − A) defines a polynomial p of degree m called

the characteristic polynomial of A.

8. The zeros λ1, λ2, . . . , λm of the characteristic polynomial of A, repeated ac-

cording to multiplicity, are the eigenvalues of A, and det(A) =
∏n
i=1 λi. The

eigenvalues can be complex valued with nonzero imaginary parts.

A matrix K is called Hermitian symmetric if K = K∗. If K is a Hermitian

symmetric m × m matrix, then the eigenvalues λ1, λ2, . . . , λm, are real-valued

(not necessarily distinct) and there exists an orthonormal basis consisting of the

corresponding eigenvectors ϕ1, ϕ2, . . . , ϕm. Let U be the unitary matrix with

columns ϕ1, . . . , ϕm and let Λ be the diagonal matrix with diagonal entries given

by the eigenvalues

Λ =


λ1

λ2

. . .

λm

 .

Then the relations among the eigenvalues and eigenvectors may be written as

KU = UΛ. Therefore K = UΛU∗ and Λ = U∗KU . A Hermitian symmetric

m ×m matrix A is positive semidefinite if α∗Aα ≥ 0 for all α ∈ Cm. A Hermi-

tian symmetric matrix is positive semidefinite if and only if its eigenvalues are

nonnegative.

Many questions about matrices over C can be addressed using matrices over R.

If Z is an m×m matrix over C, then Z can be expressed as Z = A+Bj, for some

m×m matrices A and B over R. Similarly, if x is a vector in Cm then it can be

written as x = u+jv for vectors u, v ∈ Rm. Then Zx = (Au−Bv)+j(Bu+Av).
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There is a one-to-one and onto mapping from Cm to R2m defined by u+jv →
(
u
v

)
.

Multiplication of x by the matrix Z is thus equivalent to multiplication of
(
u
v

)
by Z̃ =

(
A −B
B A

)
. We will show that

|Z|2 = det(Z̃) (11.6)

so that Property 2 for determinants of matrices over C follows from Property 2

for determinants of matrices over R.

It remains to prove (11.6). Suppose that A−1 exists and examine the two

2m× 2m matrices(
A −B
B A

)
and

(
A 0

B A+BA−1B

)
. (11.7)

The second matrix is obtained from the first by left multiplying each sub-block

in the right column of the first matrix by A−1B, and adding the result to the

left column. Equivalently, the second matrix is obtained by right multiplying

the first matrix by

(
I A−1B

0 I

)
. But det

(
I A−1B

0 I

)
= 1, so that the two

matrices in (11.7) have the same determinant. Equating the determinants of the

two matrices in (11.7) yields det(Z̃) = det(A) det(A + BA−1B). Similarly, the

following four matrices have the same determinant:(
A+Bj 0

0 A−Bj

)(
A+Bj A−Bj

0 A−Bj

)
(11.8)(

2A A−Bj
A−Bj A−Bj

)(
2A 0

A−Bj A+BA−1B
2

)
.

Equating the determinants of the first and last of the matrices in (11.8) yields

that |Z|2 = det(Z) det∗(Z) = det(A + Bj) det(A − Bj) = det(A) det(A +

BA−1B). Combining these observations yields that (11.6) holds if A−1 exists.

Since each side of (11.6) is a continuous function of A, (11.6) holds in general.
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1.2 A ballot problem There are
(

6
4

)
= 15 possibilities for the positions of the

winning ballots, and the event in question can be written as

{110110, 110101, 111001, 111010, 111100}, so the event has probability 5
15 = 1

3 .

It can be shown in general that if k of the ballots are for the winning candidate

and n − k are for the losing candidate, then the winning candidate has a strict

majority throughout the counting with probability 2k−n
n . This remains true even

if the cyclic order of the ballots counted is fixed, with only the identify of the

first ballot counted being random and uniform over the n possibilities.

1.4 Independent vs. mutually exclusive (a) If E is an event independent of

itself, then P (E) = P (E ∩ E) = P (E)P (E). This can happen if P (E) = 0. If

P (E) 6= 0 then canceling a factor of P (E) on each side yields P (E) = 1. In

summary, either P (E) = 0 or P (E) = 1.

(b) In general, we have P (A ∪ B) = P (A) + P (B) − P (AB). If the events

A and B are independent, then P (A ∪ B) = P (A) + P (B) − P (A)P (B) =

0.3 + 0.4 − (0.3)(0.4) = 0.58. On the other hand, if the events A and B are

mutually exclusive, then P (AB) = 0 and therefore P (A ∪B) = 0.3 + 0.4 = 0.7.

(c) If P (A) = 0.6 and P (B) = 0.8, then the two events could be independent.

However, if A and B were mutually exclusive, then P (A)+P (B) = P (A∪B) ≤ 1,

so it would not possible for A and B to be mutually exclusive if P (A) = 0.6 and

P (B) = 0.8.

1.6 Frantic search Let D,T ,B, and O denote the events that the glasses are

in the drawer, on the table, in the briefcase, or in the office, respectively. These

four events partition the probability space.

(a) Let E denote the event that the glasses were not found in the first drawer

search.

P (T |E) = P (TE)
P (E) = P (E|T )P (T )

P (E|D)P (D)+P (E|Dc)P (Dc) = (1)(0.06)
(0.1)(0.9)+(1)(0.1) = 0.06

0.19 ≈ 0.315

(b) Let F denote the event that the glasses were not found after the first drawer
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search and first table search.

P (B|F ) =
P (BF )

P (F )

=
P (F |B)P (B)

P (F |D)P (D) + P (F |T )P (T ) + P (F |B)P (B) + P (F |O)P (O)

=
(1)(0.03)

(0.1)(0.9) + (0.1)(0.06) + (1)(0.03) + (1)(0.01)
≈ 0.22.

(c) Let G denote the event that the glasses were not found after the two drawer

searches, two table searches, and one briefcase search.

P (O|G) =
P (OG)

P (G)

=
P (G|O)P (O)

P (G|D)P (D) + P (G|T )P (T ) + P (G|B)P (B) + P (G|O)P (O)

=
(1)(0.01)

(0.1)2(0.9) + (0.1)2(0.06) + (0.1)(0.03) + (1)(0.01)
≈ 0.4225.

1.8 Conditional probabilities–basic computations of iterative decoding (a) Here

is one of several approaches to this problem. Note that the n pairs (B1, Y1), . . . , (Bn, Yn)

are mutually independent, and λi(bi)
def
= P (Bi = bi|Yi = yi) = qi(yi|bi)

qi(yi|0)+qi(yi|1) .

Therefore

P (B = 1|Y1 = y1, . . . , Yn = yn)

=
∑

b1,...,bn:b1⊕···⊕bn=1

P (B1 = b1, . . . , Bn = bn|Y1 = y1, . . . , Yn = yn)

=
∑

b1,...,bn:b1⊕···⊕bn=1

n∏
i=1

λi(bi).

(b) Using the definitions,

P (B = 1|Z1 = z1, . . . , Zk = zk) =
p(1, z1, . . . , zk)

p(0, z1, . . . , zk) + p(1, z1, . . . , zk)

=
1
2

∏k
j=1 rj(1|zj)

1
2

∏k
j=1 rj(0|zj) + 1

2

∏k
j=1 rj(1|zj)

=
η

1 + η
where η =

k∏
j=1

rj(1|zj)
rj(0|zj)

.

1.10 Blue corners (a) There are 24 ways to color 5 corners so that at least

one face has four blue corners (there are 6 choices of the face, and for each face

there are four choices for which additional corner to color blue.) Since there are(
8
5

)
= 56 ways to select 5 out of 8 corners, P (B|exactly 5 corners colored blue) =

24/56 = 3/7.

(b) By counting the number of ways that B can happen for different numbers of
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blue corners we find P (B) = 6p4(1− p)4 + 24p5(1− p)3 + 24p6(1− p)2 + 8p7(1−
p) + p8.

1.12 Recognizing cumulative distribution functions (a) Valid (draw a sketch)

P{X2 ≤ 5} = P{X ≤ −
√

5}+ P{X ≥
√

5} = F1(−
√

5) + 1− F1(
√

5) = e−5

2 .

(b) Invalid. F (0) > 1. Another reason is that F is not nondecreasing

(c) Invalid, not right continuous at 0.

1.14 CDF and characteristic function of a mixed type random variable

(a) Range of X is [0, 0.5]. For 0 ≤ c ≤ 0.5, P{X ≤ c]} = P{U ≤ c+0.5} = c+0.5

Thus,

FX(c) =


0 c < 0

c+ 0.5 0 ≤ c ≤ 0.5

1 c ≥ 0.5

(b) ΦX(u) = 0.5 +
∫ 0.5

0
ejuxdx = 0.5 + eju/2−1

ju

1.16 Conditional expectation for uniform density over a triangular region

(a) The triangle has base and height one, so the area of the triangle is 0.5. Thus

the joint pdf is 2 inside the triangle.

(b)

fX(x) =

∫ ∞
−∞

fXY (x, y)dy =


∫ x/2

0
2dy = x if 0 < x < 1∫ x/2

x−1
2dy = 2− x if 1 < x < 2

0 else

(c) In view of part (c), the conditional density fY |X(y|x) is not well defined

unless 0 < x < 2. In general we have

fY |X(y|x) =



2
x if 0 < x ≤ 1 and y ∈ [0, x2 ]

0 if 0 < x ≤ 1 and y 6∈ [0, x2 ]
2

2−x if 1 < x < 2 and y ∈ [x− 1, x2 ]

0 if 1 < x < 2 and y 6∈ [x− 1, x2 ]

not defined if x ≤ 0 or x ≥ 2

Thus, for 0 < x ≤ 1, the conditional distribution of Y is uniform over the interval

[0, x2 ]. For 1 < x ≤ 2, the conditional distribution of Y is uniform over the interval

[x− 1, x2 ].

(d) Finding the midpoints of the intervals that Y is conditionally uniformly

distributed over, or integrating x against the conditional density found in part

(c), yields:

E[Y |X = x] =


x
4 if 0 < x ≤ 1

3x−2
4 if 1 < x < 2

not defined if x ≤ 0 or x ≥ 2

1.18 Density of a function of a random variable (a) P (X ≥ 0.4|X ≤ 0.8) =

P (0.4 ≤ X ≤ 0.8|X ≤ 0.8) = (0.82 − 0.42)/0.82 = 3
4 .

(b) The range of Y is the interval [0,+∞). For c ≥ 0,
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P{− ln(X) ≤ c} = P{ln(X) ≥ −c} = P{X ≥ e−c} =
∫ 1

e−c
2xdx = 1− e−2c so

fY (c) =

{
2 exp(−2c) c ≥ 0

0 else
That is, Y is an exponential random variable

with parameter 2.

1.20 Functions of independent exponential random variables

(a) Z takes values in the positive real line. So let z ≥ 0.

P{Z ≤ z)} = P{min{X1, X2} ≤ z} = P{X1 ≤ z or X2 ≤ z}
= 1− P{X1 > z and X2 > z} = 1− P (X1 > z]P{X2 > z}
= 1− e−λ1ze−λ2z = 1− e−(λ1+λ2)z.

Differentiating yields that

fZ(z) =

{
(λ1 + λ2)e−(λ1+λ2)z, z ≥ 0

0, z < 0

That is, Z has the exponential distribution with parameter λ1 + λ2.

(b) R takes values in the positive real line and by independence the joint pdf of

X1 and X2 is the product of their individual densities. So for r ≥ .0

P{R ≤ r} = P

{
X1

X2
≤ r
}

= P{X1 ≤ rX2}

=

∫ ∞
0

∫ rx2

0

λ1e
−λ1x1λ2e

−λ2x2dx1dx2

=

∫ ∞
0

(1− e−rλ1x2)λ2e
−λ2x2dx2 = 1− λ2

rλ1 + λ2
.

Differentiating yields that

fR(r) =

{
λ1λ2

(λ1r+λ2)2 r ≥ 0

0, r < 0

1.22 Gaussians and the Q function (a) Cov(3X+2Y,X+5Y+10) = 3Cov(X,X)+

10Cov(Y, Y ) = 3Var(X) + 10Var(Y ) = 13.

(b) X + 4Y is N(0, 17), so P{X + 4Y ≥ 2} = P{X+4Y√
17
≥ 2√

17
} = Q( 2√

17
).

(c) X − Y is N(0, 2), so P{(X − Y )2 > 9} = P{(X − Y ) ≥ 3 orX − Y ≤ −3} =

2P{X−Y√
2
≥ 3√

2
} = 2Q( 3√

2
).

1.24 Working with a joint density (a) The density must integrate to one, so

c = 4/19.

(b)

fX(x) =

{
4
19

∫ 2

1
(1 + xy)dy = 4

19 [1 + 3x
2 ] 2 ≤ x ≤ 3

0 else

fY (y) =

{
4
19

∫ 3

2
(1 + xy)dx = 4

19 [1 + 5y
2 ] 1 ≤ y ≤ 2

0 else
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Therefore fX|Y (x|y) is well defined only if 1 ≤ y ≤ 2. For 1 ≤ y ≤ 2:

fX|Y (x|y) =

{
1+xy
1+ 5

2y
2 ≤ x ≤ 3

0 for other x

1.26 Density of a difference (a) Method 1 The joint density is the product of

the marginals, and for any c ≥ 0, the probability P{|X−Y | ≤ c} is the integral of

the joint density over the region of the positive quadrant such that {|x−y| ≤ c},
which by symmetry is one minus twice the integral of the density over the re-

gion {y ≥ 0 and y ≤ y + c}. Thus, P{X − Y | ≤ c} = 1 − 2
∫∞

0
exp(−λ(y +

c))λ exp(−λy)dy = 1 − exp(−λc). Thus, fZ(c) =

{
λ exp(−λc) c ≥ 0

0 else
That

is, Z has the exponential distribution with parameter λ.

(Method 2 The problem can be solved without calculation by the memoryless

property of the exponential distribution, as follows. Suppose X and Y are life-

times of identical lightbulbs which are turned on at the same time. One of them

will burn out first. At that time, the other lightbulb will be the same as a new

light bulb, and |X − Y ] is equal to how much longer that lightbulb will last.

1.28 Some characteristic functions (a) Differentiation is straight-forward, yield-

ing jE[X] = Φ′(0) = 2j or E[X] = 2, and j2E[X2] = Φ′′(0) = −14, so

Var(x) = 14− 22 = 10. In fact, this is the characteristic function of a N(10, 22)

random variable.

(b) Evaluation of the derivatives at zero requires l’Hospital’s rule, and is a

little tedious. A simpler way is to use the Taylor series expansion exp(ju) =

1 + (ju) + (ju)2/2! + (ju)3/3!... The result is E[X] = 0.5 and Var(X) = 1/12. In

fact, this is the characteristic function of a U(0, 1) random variable.

(c) Differentiation is straight-forward, yielding E[X] = Var(X) = λ. In fact, this

is the characteristic function of a Poi(λ) random variable.

1.30 A transformation of jointly continuous random variables (a) We are us-

ing the mapping, from the square region {(u, v) : 0 ≤ u, v ≤ 1} in the u−v plane

to the triangular region with corners (0,0), (3,0), and (3,1) in the x − y plane,

given by

x = 3u

y = uv.

The mapping is one-to-one, meaning that for any (x, y) in the range we can

recover (u, v). Indeed, the inverse mapping is given by

u =
x

3

v =
3y

x
.
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The Jacobian determinant of the transformation is

J(u, v) = det

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
= det

(
3 0

v u

)
= 3u 6= 0, for all u, v ∈ (0, 1)2.

Therefore the required pdf is

fX,Y (x, y) =
fU,V (u, v)

|J(u, v)|
=

9u2v2

|3u|
= 3uv2 =

9y2

x
.

within the triangle with corners (0,0), (3,0), and (3,1), and fX,Y (x, y) = 0 else-

where.

(b) Integrating out y from the joint pdf yields

fX(x) =

{ ∫ x
3

0
9y2

x dy = x2

9 if 0 ≤ x ≤ 3

0 else

Therefore the conditional density fY |X(y|x) is well defined only if 0 ≤ x ≤ 3.

For 0 ≤ x ≤ 3,

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=

{
81y2

x3 if 0 ≤ y ≤ x
3

0 else

1.32 Opening a bicycle combination lock The time required has possible val-

ues from 2 seconds to 20, 000 seconds. It is well approximated (within 2 seconds)

by a continuous type random variable T that is uniformly distributed on the

interval [0, 20, 000]. In fact, if we were to round T up to the nearest multiple of

2 seconds we would get a random variable with the exact distribution of time

required. Then E[T ] = 2×104

2 seconds = 10,000 seconds = 166.66 minutes, and

the standard deviation of T is 20,000√
12

= 5773.5 seconds = 96.22 minutes.

1.34 Computing some covariances (a) Cov(X + Y,X − Y ) = Cov(X,X) −
Cov(X,Y) + Cov(Y,X)− Cov(Y,Y) = Var(X)−Var(Y ) = 0.

(b) Cov(3X+Z,3X+Y) = 9Var(X) + 3Cov(X,Y ) + 3Cov(Z,X) + Cov(Z, Y ) =

9 · 20 + 3 · 10 + 3 · 10 + 5 = 245.

(c) Since E[X + Y ] = 0, E[(X + Y )2] = Var(X + Y ) = Var(X) + 2Cov(X,Y ) +

Var(Y ) = 20 + 2 · 10 + 20 = 60.

1.36 Jointly distributed variables

(a) E[ V
2

1+U ] = E[V 2]E[ 1
1+U ] =

∫∞
0
v2λe−λvdv

∫ 1

0
1

1+udu = ( 2
λ2 )(ln(2)) = 2 ln 2

λ2 .

(b) P{U ≤ V } =
∫ 1

0

∫∞
u
λe−λvdvdu =

∫ 1

0
e−λudu = (1− e−λ)/λ.

(c) The support of both fUV and fY Z is the strip [0, 1] × [0,∞), and the

mapping (u, v)→ (y, z) defined by y = u2 and z = uv is one-to-one. Indeed, the

inverse mapping is given by u = y
1
2 and v = zy−

1
2 . The absolute value of the

Jacobian determinant of the forward mapping is |∂(x,y)
∂(u,v) | =

∣∣∣∣ 2u 0

v u

∣∣∣∣ = 2u2 =
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2y. Thus,

fY,Z(y, z) =

{
λ
2y e
−λzy−

1
2 (y, z) ∈ [0, 1]× [0,∞)

0 otherwise.

2.2 The limit of the product is the product of the limits (a) There exists n1

so large that |yn − y| ≤ 1 for n ≥ n1. Thus, |yn| ≤ L for all n, where L =

max{|y1|, |y2|, . . . , |yn1−1|, |y|+ 1}..
(b) Given ε > 0, there exists nε so large that |xn−x| ≤ ε

2L and |yn−y| ≤ ε
2(|x|+1) .

Thus, for n ≥ nε,

|xnyn − xy| ≤ |(xn − x)yn|+ |x(yn − y)| ≤ |xn − x|L+ |x||yn − y| ≤
ε

2
+
ε

2
≤ ε.

So xnyn → xy as n→∞.

2.4 Limits of some deterministic series (a) Convergent. This is the power se-

ries expansion for ex, which is everywhere convergent, evaluated at x = 3. The

value of the sum is thus e3. Another way to show the series is convergent is to

notice that for n ≥ 3 the nth term can be bounded above by 3n

n! = 33

3!
3
4

3
5 · · ·

3
n ≤

(4.5)( 3
4 )n−3. Thus, the sum is bounded by a constant plus a geometric series, so

it is convergent.

(b) Convergent. Let 0 < η < 1. Then lnn < nη for all large enough n. Also,

n+2 ≤ 2n for all large enough n, and n+5 ≥ n for all n. Therefore, the nth term in

the series is bounded above, for all sufficiently large n, by 2n·nη
n3 = 2nη−2. There-

fore, the sum in (b) is bounded above by finitely many terms of the sum, plus

2
∑∞
n=1 n

η−2, which is finite, because, for α > 1,
∑∞
n=1 n

−α < 1 +
∫∞

1
x−αdx =

α
α−1 , as shown in an example in the appendix of the notes.

(c) Not convergent. Let 0 < η < 0.2. Then log(n+1) ≤ nη for all n large enough,

so for n large enough the nth term in the series is greater than or equal to n−5η.

The series is therefore divergent. We used the fact that
∑∞
n=1 n

−α is infinite for

any 0 ≤ α ≤ 1, because it is greater than or equal to the integral
∫∞

1
x−αdx,

which is infinite for 0 ≤ α ≤ 1.

2.6 Convergence of alternating series (a) For n ≥ 0, let In denote the interval

with endpoints sn and sn+1. It suffices to show that I0 ⊃ I1 ⊃ I2 ⊃ · · · . If n is

even, then In = [sn+1, sn+1 + bn+1] ⊃ [sn+1, sn+1 + bn+2] = In+1. Similarly, if n

is odd, In = [sn+1 − bn+1, sn+1] ⊃ [sn+1 − bn+2, sn+1] = In+1. So in general, for

any n, In ⊃ In+1.

(b) Given ε > 0, let Nε be so large that bNε < ε. It remains to prove that

|sn − sm| ≤ ε whenever n ≥ Nε and m ≥ Nε. Without loss of generality, we can

assume that n ≤ m. Since Im ⊂ In it follows that sm ∈ In and therefore that

|sm − sn| ≤ bn+1 ≤ ε.
2.8 Convergence of sequences of random variables (a) The distribution ofXn

is the same for all n, so the sequence converges in distribution to any random

variable with the distribution of X1. To check for mean square convergence, use

the fact cos(a) cos(b) = (cos(a+b)+cos(a−b))/2 to calculate that E[XnXm] = 1
2

if n = m and E[XnXm] = 0 if n 6= m. Therefore, limn,m→∞E[XnXm] does not
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exist, so the sequence (Xn) does not satisfy the Cauchy criteria for m.s. conver-

gence, so it doesn’t converge in the m.s. sense. Since it is a bounded sequence,

it therefore does not converge in the p. sense either. (Because for bounded se-

quences, convergence p. implies convergence m.s.) Therefore the sequence doesn’t

converge in the a.s. sense either. In summary, the sequence converges in distri-

bution but not in the other three senses. (Another approach is to note that the

distribution of Xn−X2n is the same for all n, so that the sequence doesn’t satisfy

the Cauchy criteria for convergence in probability.)

(b) If ω is such that 0 < Θ(ω) < 2π, then |1−Θ(ω)
π | < 1 so that limn→∞ Yn(ω) = 0

for such ω. Since P{0 < Θ(ω) < 2π} = 1, it follows that (Yn) converges to zero

in the a.s. sense, and hence also in the p. and d. senses. Since the sequence is

bounded, it also converges to zero in the m.s. sense.

2.10 Convergence of random variables on (0,1 ] (a) (d. only) The graphs of

Xn and its CDF are shown in Figure 12.1, and the CDF is given by:

c

0
0

1
Xn

1 0 1

1

0

nXF

0

-1/2

1/2

1

X  -Xn 2n

Figure 12.1 Xn, Fxn , and Xn −X2n

FXn(c) =


0, if c ≤ 0

P{ω : nω − dnωe ≤ c} = n cn = c

1 if c ≤ 1.

Thus Xn is uniformly distributed over [0, 1] for all n. So trivially Xn converges

in distribution to U, where U is uniformly distributed on [0, 1]. A simple way to

show that (Xn) does not converge in probability for this problem is to consider

the distribution of Xn −X2n. The graph of Xn −X2n is shown in Figure 12.1.

Observe that for any n ≥ 1, if 0 ≤ ε ≤ 0.5, then

P{|Xn −X2n| ≥ ε} = 1− 2ε.

Therefore, P{|Xn −Xm| ≥ ε} does not converge to zero as n,m → ∞. By the

Cauchy criteria for convergence in probability, (Xn) doesn’t converge to any

random variable in probability. It therefore doesn’t converge in the m.s. sense or

a.s. sense either.

(b) (a.s, p., d., not m.s.) For any ω ∈ (0, 1] = Ω, Xn(ω) = 0 for n > 1
ω . Therefore
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limn→∞Xn(ω) = 0 for all ω ∈ Ω. Hence limn→ωXn = 0 a.s. (so limn→∞Xn = 0

d. and p. also).

It remains to check whether (Xn) converges in the m.s. sense. If Xn converges

in the m.s. sense, then it must converge to the same random variable in the

p. sense. But as already shown, Xn converges to 0 in the p. sense. So if Xn

converges in the m.s. sense, the limit must be the zero random variable. However,

E[Xn − 0|2] =
∫ 1
n

0
n4x2dx = n

3 → +∞ as n → ∞. Therefore (Xn) does not

converge in the m.s. sense.

(c) (a.s, p., d., not m.s.) For any ω ∈ Ω fixed, the deterministic sequence Xn(ω)

converges to zero. So Xn → 0 a.s. The sequence thus also converges in p. and d.

If the sequence converged in the m.s. sense, the limit would also have to be zero,

but

E[|Xn − 0|2] = E[Xn|2] =
1

n2

∫ 1

0

1

ω
dω = +∞ 6→ 0.

The sequence thus does not converge in the m.s. sense.

(d) (a.s, p., d., not m.s.) For any ω ∈ Ω fixed, except the single point 1 which has

zero probability, the deterministic sequence Xn(ω) converges to zero. So Xn → 0

a.s. The sequence also converges in p. and d. If the sequence converged in the

m.s. sense, the limit would also have to be zero, but

E[|Xn − 0|2] = E[Xn|2] = n2

∫ 1

0

ω2ndω =
n2

2n+ 1
6→ 0.

The sequence thus does not converge in the m.s. sense.

(e) (d. only) For ω fixed and irrational, the sequence does not even come close to

settling down, so intuitively we expect the sequence does not converge in any of

the three strongest senses: a.s., m.s., or p. To prove this, it suffices to prove that

the sequence doesn’t converge in p. Since the sequence is bounded, convergence

in probability is equivalent to convergence in the m.s. sense, so it also would

suffice to prove the sequence does not converge in the m.s. sense. The Cauchy

criteria for m.s. convergence would be violated if E[(Xn−X2n)2] 6→ 0 as n→∞.

By the double angle formula, X2n(ω) = 2ω sin(2πnω) cos(2πnω) so that

E[(Xn −X2n)2] =

∫ 1

0

ω2(sin(2πnω))2(1− 2 cos(2πnω))2dω.

and this integral clearly does not converge to zero as n → ∞. In fact, following

the heuristic reasoning below, the limit can be shown to equal E[sin2(Θ)(1 −
2 cos(Θ))2]/3, where Θ is uniformly distributed over the interval [0, 2π]. So the

sequence (Xn) does not converge in m.s., p., or a.s. senses.

The sequence does converge in the distribution sense. We shall give a heuristic

derivation of the limiting CDF. Note that the CDF of Xn is given by

FXn(c) =

∫ 1

0

I{f(ω) sin(2πnω)≤c}dω, (12.1)

where f is the function defined by f(ω) = ω. As n → ∞, the integrand in
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(12.1) jumps between zero and one more and more frequently. For any small

ε > 0, we can imagine partitioning [0, 1] into intervals of length ε. The number

of oscillations of the integrand within each interval converges to infinity, and the

factor f(ω) is roughly constant over each interval. The fraction of a small interval

for which the integrand is one nearly converges to P {f(ω) sin(Θ) ≤ c} , where

Θ is a random variable that is uniformly distributed over the interval [0, 2π],

and ω is a fixed point in the small interval. So the CDF of Xn converges for all

constants c to: ∫ 1

0

P {f(ω) sin(Θ) ≤ c} dω. (12.2)

(Note: The following observations can be used to make the above argument

rigorous. The integrals in (12.1) and (12.2) would be equal if f were constant

within each interval of the form ( in ,
i+1
n ). If f is continuous on [0, 1], it can

be approximated by such step functions with maximum approximation error

converging to zero as n→∞. Details are left to the reader.)

2.12 A Gaussian sequence We begin by considering convergence in distribu-

tion. By induction on k, Xk is a Gaussian random variable with mean zero for all

k. The variance of Xk, denoted by σ2
k, is determined by the following recursion:

σ2
0 = 0 and σ2

k+1 =
σ2
k+σ2

4 . This can be solved to get σ2
k = σ2( 1

4 + 1
42 + · · ·+ 1

4k
)

so by the formula for the sum of a geometric series, limk→∞ σ2
k = σ2

∞
4
= σ2

3 . The

CDF of Xk is given by Fk(c) = P
{
Xk
σk
≤ c

σk

}
= Φ

(
c
σk

)
, where Φ is the stan-

dard normal CDF. Since Φ is a continuous function, it follows that Fk converges

pointwise to the CDF F∞(c) = Φ( c
σ∞

), so that (Xk) converges in distribution

with the limit having the N(0, σ2
∞) distribution.

The sequence does not converge in p. Let ε > 0. Consider P{|Dk| ≥ ε} where

Dk = Xk+1 − Xk. By the recursion, Dk = Xk+Wk

2 − Xk = Wk−Xk
2 . Dk is a

Gaussian random variable and Var(Dk) =
σ2+σ2

k

4 ≥ σ2

4 . Therefore, P{|Dk| ≥
ε} = P{ 2|Dk|

σ ≥ 2ε
σ } ≥ 2Q( 2ε

σ ) > 0. So P{|Dk| ≥ ε} 6→ 0 as k → ∞ so

P{|Xn−Xm| ≥ ε} 6→ 0 as m,n→∞. That is, (Xn) is not a Cauchy sequence in

probability, and hence does not converge in probability. The sequence thus also

does not converge in the a.s. or m.s. sense.

2.14 Convergence of a sequence of discrete random variables (a) Fn is

shown in Figure 12.2. Since Fn(x) = FX
(
x− 1

n

)
, limn→∞ Fn(x) = FX(x−) all

x. So limn→∞ Fn(x) = FX(x) unless FX(x) 6= FX(x−) i.e., unless x = 1, 2, 3, 4, 5,

or 6.

(b) FX is continuous at x unless x ∈ {1, 2, 3, 4, 5, 6}.
(c) Yes, limn→∞Xn = X d. by definition.

2.16 Convergence of a minimum (a) The sequence (Xn) converges to zero in

all four senses. Here is one proof, and there are others. For any ε with 0 < ε < 1,

P{|Xn − 0| ≥ ε} = P{U1 ≥ ε, . . . , Un ≥ ε} = (1 − ε)n, which converges to zero

as n→∞. Thus, by definition, Xn → 0 p. Thus, the sequence converges to zero

in d. sense and, since it is bounded, in the m.s. sense. For each ω, as a function
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1 2 3 4 5 60

F
X

n

0

1

Figure 12.2 Fx

of n, the sequence of numbers X1(ω), X2(ω), . . . is a nonincreasing sequence of

numbers bounded below by zero. Thus, the sequence Xn converges in the a.s.

sense to some limit random variable. If a limit of random variables exists in

different senses, the limit random variable has to be the same, so the sequence

(Xn) converges a.s. to zero.

(b) For n fixed, the variable Yn is distributed over the interval [0, nθ], so let c be

a number in that interval. Then P{Yn ≤ c} = P{Xn ≤ cn−θ} = 1 − P{Xn >

cn−θ} = 1− (1− cn−θ)n. Thus, if θ = 1, limn→∞ P{Yn ≤ c} = 1− limn→∞(1−
c
n )n = 1−exp(−c) for any c ≥ 0. Therefore, if θ = 1, the sequence (Yn) converges

in distribution, and the limit distribution is the exponential distribution with

parameter one.

2.18 Limits of functions of random variables (a) Yes. Since g is a continuous

function, if a sequence of numbers an converges to a limit a, then g(an) con-

verges to g(a). Therefore, for any ω such that limn→∞Xn(ω) = X(ω), it holds

that limn→∞ g(Xn(ω)) = g(X(ω)). If Xn → X a.s., then the set of all such ω

has probability one, so g(Xn)→ g(X) a.s.

(b) Yes. A direct proof is to first note that |g(b)−g(a)| ≤ |b−a| for any numbers

a and b. So, if Xn → X m.s., then E[|g(Xn) − g(X)|2] ≤ E[|X −Xn|2] → 0 as

n → ∞. Therefore g(Xn) → g(X) m.s. A slightly more general proof would be

to use the continuity of g (implying uniform continuity on bounded intervals)

to show that g(Xn) → g(X) p., and then, since g is bounded, use the fact that

convergence in probability for a bounded sequence implies convergence in the

m.s. sense.)

(c) No. For a counter example, let Xn = (−1)n/n. Then Xn → 0 determinis-

tically, and hence in the a.s. sense. But h(Xn) = (−1)n, which converges with

probability zero, not with probability one.

(d) No. For a counter example, let Xn = (−1)n/n. Then Xn → 0 determinis-

tically, and hence in the m.s. sense. But h(Xn) = (−1)n does not converge in

the m.s. sense. (For a proof, note that E[h(Xm)h(Xn)] = (−1)m+n, which does
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not converge as m,n→∞. Thus, h(Xn) does not satisfy the necessary Cauchy

criteria for m.s. convergence.)

2.20 Sums of i.i.d. random variables, II (a) ΦX1(u) = 1
2e
ju+ 1

2e
−ju = cos(u),

so ΦSn(u) = ΦX1
(u)n = (cos(u))n, and ΦVn(u) = ΦSn(u/

√
n) = cos(u/

√
n)n.

(b)

lim
n→∞

ΦSn(u) =


1 if u is an even multiple of π

does not exist if u is an odd multiple of π

0 if u is not a multiple of π.

lim
n→∞

ΦVn(u) = lim
n→∞

(
1− 1

2

(
u√
n

)2

+ o

(
u2

n

))n
= e−

u2

2 .

(c) Sn does not converge in distribution, because, for example, limn→∞ΦSn(π) =

limn→∞(−1)n does not exist. So Sn does not converge in the m.s., a.s. or p. sense

either. The limit of ΦVn is the characteristic function of the N(0, 1) distribution,

so that (Vn) converges in distribution and the limit distribution is N(0, 1). It

will next be proved that Vn does not converge in probability. The intuitive idea

is that if m is much larger than n, then most of the random variables in the

sum defining Vm are independent of the variables defining Vn. Hence, there is no

reason for Vm to be close to Vn with high probability. The proof below looks at

the case m = 2n. Note that

V2n − Vn =
X1 + · · ·+X2n√

2n
− X1 + · · ·+Xn√

n

=

√
2− 2

2

{
X1 + · · ·+Xn√

n

}
+

1√
2

{
Xn+1 + · · ·+X2n√

n

}
.

The two terms within the two pairs of braces are independent, and by the central

limit theorem, each converges in distribution to the N(0, 1) distribution. Thus

limn→∞ d. V2n − Vn = W, where W is a normal random variable with mean 0

and Var(W ) =
(√

2−2
2

)2

+
(

1√
2

)2

= 2−
√

2. Thus, limn→∞ P (|V2n−Vn| > ε) 6= 0

so by the Cauchy criteria for convergence in probability, Vn does not converge in

probability. Hence Vn does not converge in the a.s. sense or m.s. sense either.

2.22 Convergence and robustness of the sample median (a) We show that

Yn
a.s.→ c∗. It suffices to prove that for any c0 and c1 with c0 < c∗ < c1,

P{Yn ≤ c1 for all n sufficiently large} = 1 (12.3)

P{Yn ≥ c0 for all n sufficiently large} = 1. (12.4)

Since c∗ is the unique solution to F (c∗) = 0.5, it follows that F (c1) > 0.5. By

the strong law of large numbers,

I{X1≤c1} + · · ·+ I{X2n+1≤c1}

2n+ 1

a.s.→ FX(c1).

In words, it means that the fraction of the variables X1, . . . , X2n+1 that are less
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than or equal to c1 converges to FX(c1). Since FX(c1) > 0.5, it follows that

P

{
I{X1≤c1} + · · ·+ I{X2n+1≤c1}

2n+ 1
> 0.5 for all n large enough

}
= 1,

which, in turn, implies (12.3). The proof of (12.4) is similar, and omitted.

(b) The event {|Yn| > c} is a subset of the union of the events {|Xi| ≥ c for all i ∈
A} over all A ⊂ {1, · · · , 2n + 1} with |A| = n + 1. There are less than

(
2n+1
n+1

)
such subsets A of {1, · · · , 2n+1}, and for any one of them, P{|Xi| ≥ c for all i ∈
A} = P{|X1| ≥ c}n+1. Now

(
2n+1
n+1

)
≤ 22n+1 because the number of subsets of

{1, . . . , 2n + 1} of cardinality n + 1 is less than or equal to the total number of

subsets. Thus (b) follows by the union bound.

(c) Note that for c > 0, P{|X1| ≥ c} = 2
∫∞
c

1
π(1+u2)du ≤

2
π

∫∞
c

1
u2 du = 2

πc . By

the result of part (b) with n = 1, P{|Y1| ≥ c} ≤ 8
(

2
πc

)2
= 32

(πc)2 . Thus,

E[|Y1|] =
∫∞

0
P{|Y1| ≥ c}dc ≤ 1+

∫∞
1
P{|Y1| ≥ c}dc ≤ 1+

∫∞
1

32
(πc)2 dc ≤ 1+ 32

π2 .

2.24 Normal approximation for quantization error The mean of each round-

off error is zero and the variance is
∫ 0.5

−0.5
u2du = 1

12 . Thus, E[S] = 0 and Var(S) =

100
12 = 8.333. Thus, P{|S| ≥ 5} = P

{∣∣∣∣ S√
8.333

∣∣∣∣ ≥ 5√
8.333

}
≈ 2Q( 5√

8.333
) =

2Q(1.73) = 2(1− Φ(1.732)) = 0.083.

2.26 Applications of Jensen’s inequality (a) The convex function is ϕ(u) = 1
u

and the random variable is X.

(b) The convex function is ϕ(u) = u2, and the random variable is X2.

(c) The convex function is ϕ(u) = u lnu, and the random variable is L =

f(Y )/g(Y ), where Y has probability density g. Indeed, in this case, Jensen’s

inequality is E[ϕ(L)] ≥ ϕ(E[L]). But E[ϕ(L)] =
∫
A

(
f(y)
g(y) ln f(y)

g(y)

)
g(y)dy =

D(f |g), and E[Y ] =
∫
A

(
f(y)
g(y)

)
g(y)dy =

∫
A
f(y)dy = 1 and ϕ(1) = 0, so that

Jensen’s inequality becomes D(f |g) ≥ 0.

Another solution is to use the function ϕ(u) = − lnu and the random vari-

able Z = g(X)/f(X), where X has density f . Indeed, in this case, Jensen’s

inequality is E[ϕ(Z)] ≥ ϕ(E[Z]). But E[ϕ(Z)] =
∫
A
− ln g(x)

f(x)f(x)dx = D(f |g),

and E[Z] =
∫
A

(
g(x)
f(x)

)
f(x)dx =

∫
A
g(x)dx = 1 and ϕ(1) = 0, so that Jensen’s

inequality becomes D(f |g) ≥ 0.

2.28 Understanding the Markov inequality

(a) P{|X| ≥ 10} = P{X4 ≥ 104} ≤ E[X4]
104 = 0.003.

(b) Equality holds if P{X = 10} = 0.003 and P{X = 0} = 0.997. (We could

have guessed this answer as follows. The inequality in part (a) is obtained by

taking expectations on each side of the following inequality: I{|X|≥10} ≤ X4

104 . In

order for equality to hold, we need I{|X|≥10} = X4

104 with probability one. This

requires X ∈ {−10, 0, 10} with probability one.

2.30 Portfolio allocation Let

Zn =

{
2 if you win on day n,
1
2 if you lose on day n.
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Then Wn =
∏n
k=1(1− α+ αZn).

(a) For α = 0, Wn ≡ 1 (so Wn → 1 a.s., m.s., p., d.)

(b) For α = 1, Wn = exp (
∑n
k=1 ln(Zk)). The exponent is a simple random walk-

same as Sn in *6. (Does not converge in any sense. It can be show that with

probability one, Wn is bounded neither below nor above.)

(c) lnWn =
∑n
k=1 ln(1− α+ αZk). By the strong law of large numbers,

limn→∞
lnWn

n = R(α) a.s., where R(α) = E[ln(1 − α + αZn)] = 1
2 [ln(1 + α) +

ln(1 − α
2 )]. Intuitively, this means that Wn ≈ enR(α) as n → ∞ in some sense.

To be precise, it means there is a set of ω with probability one, so that for any

ω in the set and any ε > 0, there is a finite number nε(ω) such that en(R(α)−ε) ≤
Wn ≤ en(R(α)+ε) for n ≥ n(ε). The number R(α) is the growth exponent in the

a.s. sense. If 0 < α < 1, then R(α) > 0 and Wn →∞ a.s. as n→∞. Therefore,

if 0 < α < 1, Wn → +∞ p. and d. as well, but it doesn’t make sense to say

Wn → +∞ m.s.)

(d) EWn =
∏n
k=1EZk =

(
1 + α

2

)n
which is maximized by α = 1. Even so, most

people would prefer to use some α with 0 < α < 1, in order to enjoy a positive

rate or growth.

(e) The functionR(α) achieves a maximum value of 1
2 ln 9

8 ≈ .0589 over 0 ≤ α ≤ 1

at α = 0.5. For α = 1
2 , limn→∞

1
n lnWn = 0.0589 a.s., or Wn ∼ en(0.0589). The

fact α = 1
2 maximizes the growth rate shows that a “diversified strategy” has a

higher growth rate than either “pure” strategy.

2.32 Some large deviations (a) The required bound is provided by Chernoff’s

inequality for any c > 0.5 because the U ’s have mean 0.5. If c = 0.5 the probabil-

ity is exactly 0.5 for all n and doesn’t satisfy the required bound for any b > 0.

Hence c < 0.5 doesn’t work either. In summary, the bound holds precisely when

c > 0.5.

(b) The probability in question is equal to P{X1 + · · · + Xn > 0}, where

Xk = Uk − cUn+k for 1 ≤ k ≤ n. The X’s are iid and E[Xk] = 1−c
2 . So if

c < 1 the required bound is provided by Chernoff’s inequality applied to the

X’s. If c = 1 the probability is exactly 0.5 for all n and doesn’t satisfy the re-

quired bound for any b > 0. Hence c > 1 doesn’t work either. In summary, such

b > 1 exists if and only if c < 1.

2.34 A rapprochement between the CLT and large deviations (a) Differenti-

ating with respect to θ yields M ′(θ) = (dE[exp(θX)]
dθ )/E[exp(θX)] and M ′′(θ) =(

d2E[X exp(θX)]
(dθ)2 E[exp(θX)]− (dE[exp(θX)]

dθ )2
)
/E[exp(θX)]2. Interchanging differ-

entiation and expectation yields dkE[exp(θX)]
(dθ)k

= E[Xk exp(θX)]. Therefore,

M ′(θ) = E[X exp(θX)]/E[exp(θX)], which is the mean for the tilted distribu-

tion fθ, and

M ′′(θ) =
(
E[X2 exp(θX)]E[exp(θX)]− E[X exp(θX)]2

)
/E[exp(θX)]2, which is

the second moment, minus the first moment squared, or simply the variance, for

the tilted density fθ.

(b) In particular, M ′(0) = 0 and M ′′(0) = Var(X) = σ2, so the second order

Taylor’s approximation for M near zero is M(θ) = θ2σ2/2. Therefore, `(a) for
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small a satisfies `(a) ≈ maxθ(aθ− θ2σ2

2 ) = a2

2σ2 , so as n→∞, the large deviations

upper bound behaves as P{Sn ≥ b
√
n} ≤ exp(−n`(b/

√
n)) ≈ exp(−n b2

2σ2n ) =

exp(− b2

2σ2 ). The exponent is the same as in the bound/approximation to the

central limit approximation described in the problem statement. Thus, for mod-

erately large b, the central limit theorem approximation and large deviations

bound/approximation are consistent with each other.

2.36 Large deviations of a mixed sum Modifying the derivation for iid ran-

dom variables, we find that for θ ≥ 0:

P

{
Sn
n
≥ a

}
≤ E[eθ(Sn−an)]

= E[eθX1 ]nfE[eθY1 ]n(1−f)e−nθa

= exp(−n[θa− fMX(θ)− (1− f)MY (θ)]).

where MX and MY are the log moment generating functions of X1 and Y1

respectively. Therefore,

l(f, a) = max
θ
θa− fMX(θ)− (1− f)MY (θ),

where

MX(θ) =

{
− ln(1− θ) θ < 1

+∞ θ ≥ 1
MY (θ) = ln

∞∑
k=0

eθke−1

k!
= ln(ee

θ−1) = eθ−1,

Note that l(a, 0) = a ln a + 1 − a (large deviations exponent for the Poi(1)

distribution) and l(a, 1) = a−1−ln(a) (large deviations exponent for the Exp(1)

distribution). For 0 < f < 1 we compute l(f, a) by numerical optimization. The

result is

f 0 0+ 1/3 2/3 1

l(f, 4) 2.545 2.282 1.876 1.719 1.614
.

Note: l(4, f) is discontinuous in f at f = 0. In fact, adding only one exponentially

distributed random variable to a sum of Poisson random variables can change

the large deviations exponent.

2.38 Bennett’s inequality and Bernstein’s inequality (a)

E[eθXi ] = E

[
1 + θXi +

∞∑
k=2

(θXi)
k

k!

]

≤ E

[
1 +

∞∑
k=2

|θXi|k

k!

]

≤ E

[
1 +

X2
i

L2

∞∑
k=2

(θL)k

k!

]

≤ 1 +
d2
i

L2
(eθL − 1− θL)

≤ exp

(
d2
i

L2
(eθL − 1− θL)

)
.
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(b) The function to be maximized is a differentiable concave function of θ, so

the maximizing θ is found by setting the derivative with respect to θ to zero,

yielding

α−
∑n
i=1 d

2
i

L
(eθL − 1) = 0

or θ = 1
L ln

(
1 + αL∑n

i=1 d
2
i

)
.

(c) This follows the proof of the Chernoff inequality. By the Markov inequality,

for any θ > 0,

P

{
n∑
i=1

Xi ≥ α

}
≤ E

[
exp

(
−θα+ θ

n∑
i=1

Xi

)]

≤ exp

(
−
[
θα−

∑n
i=1 d

2
i

L2
(eθL − 1− θL)

])
.

Plugging in the optimal value of θ found in part (b), which is positive as required,

and rearranging yields Bennet’s inequality.

(d) By complex analysis, the radius of convergence of the Taylor series of

ln(1 + u) about u = 0 is one. Thus, for |u| < 1, ln(1 + u) = u − u2

2 + u3

3 − . . .
Hence

ϕ(u)

u2
=

1

2
+

u

2 · 3
− u2

3 · 4
+

u3

4 · 5
− . . .

which implies, for 0 < u < 1,

∣∣∣∣ϕ(u)

u2
− 1

2

∣∣∣∣ ≤ u

6
.

(e) Straight forward substitution.

2.40 The sum of products of a sequence of uniform random variables

(a) Yes. E[(Bk − 0)2] = E[A2
1]k = ( 5

8 )k → 0 as k →∞. Thus, Bk
m.s.→ 0.

(b) Yes. Each sample path of the sequence Bk is monotone nonincreasing and

bounded below by zero, and is hence convergent. Thus, limk→∞ Bk a.s. exists.

(The limit has to be the same as the m.s. limit, so Bk converges to zero almost

surely.)

(c) If j ≤ k, then E[BjBk] = E[A2
1 · · ·A2

jAj+1 · · ·Ak] = (5
8 )j( 3

4 )k−j . Therefore,
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E[SnSm] = E[

n∑
j=1

Bj

m∑
k=1

Bk] =

n∑
j=1

m∑
k=1

E[BjBk]→
∞∑
j=1

∞∑
k=1

E[BjBk] (12.5)

= 2

∞∑
j=1

∞∑
k=j+1

(
5

8

)j (
3

4

)k−j
+

∞∑
j=1

(
5

8

)j

= 2

∞∑
j=1

∞∑
l=1

(
5

8

)j (
3

4

)l
+

∞∑
j=1

(
5

8

)j

=

 ∞∑
j=1

(
5

8

)j(2

∞∑
l=1

(
3

4

)l
+ 1

)
(12.6)

=
5

3
(2 · 3 + 1) =

35

3
.

A visual way to derive (12.6), is to note that (12.5) is the sum of all entries in

the infinite 2-d array:

...
...

... .·.(
5
8

) (
3
4

)2 (
5
8

)2 ( 3
4

) (
5
8

)3 · · ·(
5
8

) (
3
4

) (
5
8

)2 (
5
8

)2 ( 3
4

)
· · ·(

5
8

) (
5
8

) (
3
4

) (
5
8

) (
3
4

)2 · · ·

.

Therefore,
(

5
8

)j (
2
∑∞
l=1

(
3
4

)l
+ 1
)

is readily seen to be the sum of the jth term

on the diagonal, plus all terms directly above or directly to the right of that

term.

(d) Mean square convergence implies convergence of the mean. Thus, the mean

of the limit is limn→∞E[Sn] = limn→∞
∑n
k=1E[Bk] =

∑∞
k=1( 3

4 )k = 3. The

second moment of the limit is the limit of the second moments, namely 35
3 , so

the variance of the limit is 35
3 − 32 = 8

3 .

(e) Yes. Each sample path of the sequence Sn is monotone nondecreasing and is

hence convergent. Thus, limn→∞ Sn a.s. exists. The limit has to be the same as

the m.s. limit.

3.2 Linear approximation of the cosine function over an interval

Ê[Y |Θ] = E[Y ]+ Cov(Θ,Y )

Var(Θ)
(Θ−E[Θ]), where E[Y ] = 1

π

∫ π
0

cos(θ)dθ = 0, E[Θ] =

π
2 , Var(Θ) = π2

12 , E[ΘY ] =
∫ π

0
θ cos(θ)

π dθ = θ sin(θ)
π |π0 −

∫ π
0

sin(θ)
π dθ = − 2

π , and

Cov(Θ, Y ) = E[ΘY ] − E[Θ]E[Y ] = − 2
π . Therefore, Ê[Y |Θ] = − 24

π3 (Θ − π
2 ), so

the optimal choice is a = 12
π2 and b = − 24

π3 .

3.4 Valid covariance matrix Set a = 1 to make K symmetric. Choose b so that

the determinants of the following seven matrices are nonnegative:

(2) (1) (1)

(
2 1

1 1

) (
2 b

b 1

) (
1 0

0 1

)
K itself.

The fifth matrix has determinant 2− b2 and det(K) = 2−1− b2 = 1− b2. Hence
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K is a valid covariance matrix (i.e. symmetric and positive semidefinite) if and

only if a = 1 and −1 ≤ b ≤ 1.

3.6 Conditional probabilities with joint Gaussians II

(a) P{|X − 1| ≥ 2} = P{X ≤ −1 or X ≥ 3} = P{X2 ≤ −
1
2} + P{X2 ≥

3
2} =

Φ(− 1
2 ) + 1− Φ( 3

2 ).

(b) Given Y = 3, the conditional density of X is Gaussian with mean E[X] +
Cov(X,Y )

Var(Y )
(3− E[Y ]) = 1 and variance Var(X)− Cov(X,Y )2

Var(Y )
= 4− 62

18 = 2.

(c) The estimation error X − E[X|Y ] is Gaussian, has mean zero and variance

2, and is independent of Y . (The variance of the error was calculated to be 2

in part (b)). Thus the probability is Φ(− 1√
2
) + 1 − Φ( 1√

2
), which can also be

written as 2Φ(− 1√
2
) or 2(1− Φ( 1√

2
)).

3.8 An MMSE estimation problem (a) E[XY ] = 2
∫ 1

0

∫ 1+x

2x
xydxdy = 5

12 . The

other moments can be found in a similar way. Alternatively, note that the

marginal densities are given by

fX(x) =

{
2(1− x) 0 ≤ x ≤ 1

0 else
fY (y) =


y 0 ≤ y ≤ 1

2− y 1 ≤ y ≤ 2

0 else

so that E[X] = 1
3 , Var(X) = 1

18 , E[Y ] = 1, Var(Y ) = 1
6 , Cov(X,Y ) = 5

12 −
1
3 =

1
12 . So

Ê[X | Y ] =
1

3
+

1

12
(
1

6
)−1(Y − 1) =

1

3
+
Y − 1

2

E[e2] =
1

18
− (

1

12
)(

1

6
)−1(

1

12
) =

1

72
= the MMSE for Ê[X|Y ].

Inspection of Figure 12.3 shows that for 0 ≤ y ≤ 2, the conditional distribution

of X given Y = y is the uniform distribution over the interval [0, y/2] if 0 ≤ y ≤ 1

and the over the interval [y − 1, y/2] if 1 ≤ y ≤ 2. The conditional mean of X

given Y = y is thus the midpoint of that interval, yielding:

E[X|Y ] =

{
Y
4 0 ≤ Y ≤ 1

3Y−2
4 1 ≤ Y ≤ 2

To find the corresponding MSE, note that given Y , the conditional distribution

of X is uniform over some interval. Let L(Y ) denote the length of the interval.

Then

E[e2] = E[E[e2|Y ]] = E[
1

12
L(Y )2].

= 2

(
1

12

∫ 1

0

y(
y

2
)2dy

)
=

1

96
.

For this example, the MSE for the best estimator is 25% smaller than the MSE

for the best linear estimator.
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E[X|Y=y]

E[X|Y=y]

y

x

2

1

0 1

Figure 12.3 Sketch of E[X|Y = y] and Ê[X|Y = y].

(b)

E[X] =

∫ ∞
−∞
|y| 1√

2π
e−y

2/2dy = 2

∫ ∞
0

y√
2π
e−

1
2y

2

dy =

√
2

π
and E[Y ] = 0,

Var(Y ) = 1,Cov(X,Y ) = E[|Y |Y ] = 0 so Ê[X|Y ] =

√
2

π
+

0

1
Y ≡

√
2

π
.

That is, the best linear estimator is the constant E[X]. The corresponding MSE

is Var(X) = E[X2]−E[X]2 = E[Y 2]− 2
π = 1− 2

π . Note that |Y | is a function of

Y with mean square error E[(X − |Y |)2] = 0. Nothing can beat that, so |Y | is

the MMSE estimator of X given Y . So |Y | = E[X|Y ]. The corresponding MSE

is 0, or 100% smaller than the MSE for the best linear estimator.

3.10 Conditional Gaussian comparison

(a) pa = P{X ≥ 2} = P{ X√
10
≥ 2√

10
} = Q( 2√

10
) = Q(0.6324).

(b) By the theory of conditional distributions for jointly Gaussian random vari-

ables, the conditional distribution of X given Y = y is Gaussian, with mean

Ê[X|Y = y] and variance σ2
e , which is the MSE for estimation of X by Ê[X|Y ].

Since X and Y are mean zero and Cov(X,Y )

Var(Y )
= 0.8, we have Ê[X|Y = y] = 0.8y,

and σ2
e = Var(X) − Cov(X,Y )2

Var(Y )
= 3.6. Hence, given Y = y, the conditional dis-

tribution of X is N(0.8y, 3.6). Therefore, P (X ≥ 2|Y = y) = Q( 2−(0.8)y√
3.6

). In

particular, pb = P (X ≥ 2|Y = 3) = Q( 2−(0.8)3√
3.6

) = Q(−0.2108).

(c) Given the event {Y ≥ 3}, the conditional pdf of Y is obtained by set-

ting the pdf of Y to zero on the interval (−∞, 3), and then renormalizing by
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P{Y ≥ 3} = Q( 3√
10

) to make the density integrate to one. We can write this as

fY |Y≥3(y) =

 fY (y)
1−FY (3) = e−y

2/20

Q( 3√
10

)
√

20π
y ≥ 3

0 else.

Using this density, by considering the possible values of Y , we have

pc = P (X ≥ 2|Y ≥ 3) =

∫ ∞
3

P (X ≥ 2, Y ∈ dy|Y ≥ 3)

=

∫ ∞
3

P (X ≥ 2|Y = y)P (Y ∈ dy|Y ≥ 3)

=

∫ ∞
3

Q(
2− (0.8)y√

3.6
)fY |Y≥3(y)dy.

(ALTERNATIVE) The same expression can be derived in a more conventional

fashion as follows:

pe = P (X ≥ 2|Y ≥ 3) =
P{X ≥ 2, Y ≥ 3}

P{Y ≥ 3}

=

∫ ∞
3

[∫ ∞
2

fX|Y (x|y)dx

]
fY (y)dy/P{Y ≥ 3}

=

∫ ∞
3

Q

(
2− (0.8)y√

3.6

)
fY (y)dy/(1− FY (3))

=

∫ ∞
3

Q(
2− (0.8)y√

3.6
)fY |Y≥3(y)dy.

(d) We will show that pa < pb < pc. The inequality pa < pb follows from

parts (a) and (b) and the fact the function Q is decreasing. By part (c), pc is

an average of Q( 2−(0.8)y√
3.6

) with respect to y over the region y ∈ [3,∞) (using

the pdf fY |Y≥3). But everywhere in that region, Q( 2−(0.8)y√
3.6

) > pb, showing that

pc > pb.

3.12 An estimator of an estimator To show that Ê[X|Y ] is the LMMSE esti-

mator of E[X|Y ], it suffices by the orthogonality principle to note that Ê[X|Y ]

is linear in (1, Y ) and to prove that E[X|Y ]− Ê[X|Y ] is orthogonal to 1 and to

Y . However E[X|Y ] − Ê[X|Y ] can be written as the difference of two random

variables (X − Ê[X|Y ]) and (X −E[X|Y ]), which are each orthogonal to 1 and

to Y . Thus, E[X|Y ] − Ê[X|Y ] is also orthogonal to 1 and to Y , and the result

follows.

Here is a generalization, which can be proved in the same way. Suppose V0

and V1 are two closed linear subspaces of random variables with finite second

moments, such that V0 ⊃ V1. Let X be a random variable with finite second mo-

ment, and let X∗i be the variable in Vi with the minimum mean square distance

to X, for i = 0 or i = 1. Then X∗1 is the variable in V1 with the minimum mean

square distance to X∗0 .

Another solution to the original problem can be obtained by using the formula
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for Ê[Z|Y ] applied to Z = E[X|Y ]:

Ê[E[X|Y ]|Y ] = E[E[X|Y ]] + Cov(Y,E[X|Y ])Var(Y )−1(Y − E[Y ]).

which can be simplified using E[E[X|Y ]] = E[X] and

Cov(Y,E[X|Y ]) = E[Y (E[X|Y ]− E[X])]

= E[Y E[X|Y ]]− E[Y ]E[X]

= E[E[XY |Y ]]− E[Y ]E[X]

= E[XY ]− E[X]E[Y ] = Cov(X,Y ).

to yield the desired result.

3.14 Some identities for estimators (a) True. The random variable

E[X|Y ] cos(Y ) has the following two properties:

• It is a function of Y with finite second moments (because E[X|Y ] is a function

of Y with finite second moment and cos(Y ) is a bounded function of Y )

• (X cos(Y )−E[X|Y ] cos(Y )) ⊥ g(Y ) for any g with E[g(Y )2] <∞ (because for

such g, E[(X cos(Y )− E[X|Y ] cos(Y ))g(Y )] = E[(X − E[X|Y ])g̃(Y )] = 0,

where g̃(Y ) = g(Y ) cos(Y ).)

Thus, by the orthogonality principle, E[X|Y ] cos(Y ) is equal to E[X cos(Y )|Y ].

(b) True. The left hand side is the projection of X onto {g(Y ) : E[g(Y )2] <

∞} and the right hand side is the projection of X onto the space {f(Y 3) :

E[f(Y 3)2] <∞}. But these two spaces are the same, because for each function

g there is the function f(u) = g(u1/3). The point is that the function y3 is an

invertible function, so any function of Y can also be written as a function of Y 3.

(c) False. For example, let X be uniform on the interval [0, 1] and let Y be

identically zero. Then E[X3|Y ] = E[X3] = 1
4 and E[X|Y ]3 = E[X]3 = 1

8 .

(d) False. For example, let P{X = Y = 1} = P{X = Y = −1} = 0.5. Then

E[X|Y ] = Y while E[X|Y 2] = 0. The point is that the function y2 is not

invertible, so that not every function of Y can be written as a function of Y 2.

Equivalently, Y 2 can give less information than Y .

(e) False. For example, let X be uniformly distributed on [−1, 1], and let Y =

X. Then Ê[X|Y ] = Y while Ê[X|Y 3] = E[X] + Cov(X,Y 3)

Var(Y 3)
(Y 3 − E[Y 3]) =

E[X4]
E[X6]Y

3 = 7
5Y

3.

(f)) True. The given implies that the mean, E[X] has the minimum MSE over

all possible functions of Y. (i.e. E[X] = E[X|Y ]) Therefore, E[X] also has the

minimum MSE over all possible affine functions of Y, so Ê[X|Y ] = E[X]. Thus,

E[X|Y ] = E[X] = Ê[X|Y ].

3.16 Some simple examples Of course there are many valid answers for this

problem–we only give one.

(a) Let X denote the outcome of a roll of a fair die, and let Y = 1 if X is odd

and Y = 2 if X is even. Then E[X|Y ] has to be linear. In fact, since Y has only

two possible values, any function of Y can be written in the form a + bY. That

is, any function of Y is linear. (There is no need to even calculate E[X|Y ] here,
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but we note that is is given by E[Y |X] = X + 2.)

(b) Let X be a N(0,1) random variable, and let W be independent of X, with

P{W = 1} = P{W = −1} = 1
2 . Finally, let Y = XW . The conditional distribu-

tion of Y given W is N(0, 1), for either possible value of W , so the unconditional

value of Y is also N(0, 1). However, P{X − Y = 0} = 0.5, so that X − Y is not

a Gaussian random variable, so X and Y are not jointly Gaussian.

(c) Let (X,Y, Z) take on the four values (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1) with

equal probability. Then any pair of these variables takes the values (0, 0), (0, 1),

(1, 0), (1, 1) with equal probability, indicating pairwise independence. But

P{(X,Y, Z} = (0, 0, 1)} = 0 6= P{X = 0}P{Y = 0}P{Z = 1} = 1
8 . So the three

random variables are not independent.

3.18 Estimating a quadratic (a) Recall the fact that E[Z2] = E[Z]2 + Var(Z)

for any second order random variable Z. The idea is to apply the fact to the

conditional distribution of X given Y . Given Y , the conditional distribution of

X is Gaussian with mean ρY and variance 1−ρ2. Thus, E[X2|Y ] = (ρY )2+1−ρ2.

(b)

MSE = E[(X2)2]− E[(E[X2|Y ])2]

= E[X4]− ρ4E[Y 4]− 2ρ2E[Y 2](1− ρ2)− (1− ρ2)2 = 2(1− ρ4).

(c) Since Cov(X2, Y ) = E[X2Y ] = 0, it follows that Ê[X2|Y ] = E[X2] = 1.

That is, the best linear estimator in this case is just the constant estimator, 1.

3.20 An innovations sequence and its application (a) Ỹ1 = Y1.

(Note: E[Ỹ1

2
] = 1), Ỹ2 = Y2 − E[Y2Ỹ1]

E[Ỹ1
2
]
Ỹ1 = Y2 − 0.5Y1 (Note: E[Ỹ2

2
] = 0.75.)

Ỹ3 = Y3 − E[Y3Ỹ1]

E[Ỹ1
2
]
Ỹ1 − E[Y3Ỹ2]

E[Ỹ2
2
]
Ỹ2 = Y3 − (0.5)Ỹ1 − 1

3 Ỹ2 = Y3 − 1
3Y1 − 1

3Y2.

Summarizing, Ỹ1

Ỹ2

Ỹ3

 = A

 Y1

Y2

Y3

 where A =

 1 0 0

− 1
2 1 0

− 1
3 − 1

3 1

 Y1

Y2

Y3

 .

(b) Cov

 Y1

Y2

Y3

 =

 1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

 Cov

X,
 Y1

Y2

Y3

 = (0 0.25 0.25)

Cov

 Ỹ1

Ỹ2

Ỹ3

 = A

 1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

AT =

 1 0 0

0 3
4 0

0 0 2
3

 ,

Cov

X,
 Ỹ1

Ỹ2

Ỹ3


 = (0 0.25 0.25)AT = (0 1

4
1
6 ).

(c) a = Cov(X,Ỹ1)

E[Ỹ 2
1 ]

= 0 b = Cov(X,Ỹ2)

E[Ỹ 2
2 ]

= 1
3 c = Cov(X,Ỹ3)

E[Ỹ 2
3 ]

= 1
4 .

3.22 A Kalman filtering example
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(a)

x̂k+1|k = fx̂k|k−1 +Kk(yk − x̂k|k−1)

σ2
k+1 = f2(σ2

k − σ2
k(σ2

k + 1)−1σ2
k) + 1 =

σ2
kf

2

1 + σ2
k

+ 1.

and Kk = f(
σ2
k

1+σ2
k

).

(b) Since σ2
k ≤ 1 + f2 for k ≥ 1, the sequence (σ2

k) is bounded for any value of

f .

3.24 A variation of Kalman filtering Equations (3.20) and (3.21) hold as be-

fore, yielding

x̂k|k = x̂k|k−1 +
σ2
k|k−1ỹk

1 + σ2
k|k−1

σ2
k|k = σ2

k|k−1 −
σ2
k|k−1

1 + σ2
k|k−1

=
1

1 + σ2
k|k−1

.

where we write σ instead of Σ and ỹk = yk− x̂k|k−1 as usual. Since wk = yk−xk,
it follows that xk+1 = (f − 1)xk + yk, so (3.22) and (3.23) get replaced by

x̂k+1|k = Ê[(f − 1)xk + yk|yk]

= (f − 1)x̂k|k + yk

σ2
k+1|k = (f − 1)2σ2

k|k.

Combining the equations above yields

x̂k+1|k = fx̂k +Kk(yk − x̂k|k−1) Kk =
1 + fσ2

k|k−1

1 + σ2
k|k−1

σ2
k+1|k =

(f − 1)2σ2
k|k−1

1 + σ2
k|k−1

.

For f = 1 we find x̂k+1|k = yk and σ2
k+1|k = 0 because xk+1 = yk.

3.26 An innovations problem (a) E[Yn] = E[U1 · · ·Un] = E[U1] · · ·E[Un] =

2−n and E[Y 2
n ] = E[U2

1 · · ·U2
n] = E[U2

1 ] · · ·E[U2
n] = 3−n, so Var(Yn) = 3−n −

(2−n)2 = 3−n − 4−n.

(b) E[Yn|Y0, . . . , Yn−1] = E[Yn−1Un|Y0, . . . , Yn−1] = Yn−1E[Un|Y0, . . . , Yn−1] =

Yn−1E[Un] = Yn−1/2.

(c) Since the conditional expectation found in (b) is linear, it follows that

Ê[Yn|Y0, . . . , Yn−1] = E[Yn|Y0, . . . , Yn−1] = Yn−1/2.

(d) Ỹ0 = Y0 = 1, and Ỹn = Yn − Yn−1/2 (also equal to U1 · · ·Un−1(Un − 1
2 )) for

n ≥ 1.

(e) For n ≥ 1, Var(Ỹn) = E[(Ỹn)2] = E[U2
1 · · ·U2

n−1(Un− 1
2 )2] = 3−(n−1)/12 and

Cov(XM , Ỹn) = E[(U1 + · · ·+UM )Ỹn] = E[(U1 + · · ·+UM )U1 · · ·Un−1(Un− 1
2 )]

= E[Un(U1 · · ·Un−1)(Un − 1
2 )] = 2−(n−1)Var(Un) = 2−(n−1)/12. Since Ỹ0 = 1



388 Solutions to Even Numbered Problems

and all the other innovations variables are mean zero, we have

Ê[XM |Y0, . . . , YM ] =
M

2
+

M∑
n=1

Cov(XM , Ỹn)Ỹn

Var(Ỹn)

=
M

2
+

M∑
n=1

2−n+1/12

3−n+1/12
Ỹn

=
M

2
+

M∑
n=1

(
3

2

)n−1

Ỹn.

3.28 Linear innovations and orthogonal polynomials for the uniform distribution

(a)

E[Un] =

∫ 1

−1

un

2
du =

un+1

2(n+ 1)

∣∣∣∣1
−1

=

{
1

n+1 n even

0 n odd

(b) The formula for the linear innovations sequence yields:

Ỹ1 = U , Ỹ2 = U2 − 1
3 , Ỹ3 = U3 − 3U

5 , and

Ỹ4 = U4 − E[U4·1]
E[12] · 1 −

E[U4(U2− 1
3 )]

E[(U2− 1
3 )2]

(U2 − 1
3 ) = U4 − 1

5 −
(

1
7−

1
5

1
5−

2
3 +1

)
(U2 − 1) =

U4 − 6
7U

2 + 3
35 . Note: These mutually orthogonal (with respect to the uniform

distribution on [-1,1] ) polynomials 1, U , U2 − 1
3 , U3 − 3

5U , U4 − 6
7U

2 + 3
35 are

(up to constant multiples) known as the Legendre polynomials.

3.30 Example of extended Kalman filter (a) Taking the derivative, we have

Hk = cos(2πfk + x̂k|k−1). Writing σ2
k for Σk|k−1, the Kalman filter equation,

x̂k+1|k = x̂k|k−1 +Kkỹk, becomes expanded to

x̂k+1|k = x̂k|k−1 +
σ2
k cos(2πfk + x̂k|k−1)

cos2(2πfk + x̂k|k−1)σ2
k + r

(
yk − sin(x̂k|k−1 + 2πfk)

)
.

(b) To check that the feedback is in the right direction, we consider two cases.

First, if x̂k|k−1 and xk are such that the cos term is positive, that means the

sin term is locally increasing in x̂k|k−1. In that case if the actual phase xk is

slightly ahead of the estimate x̂k|k−1, then the conditional expectation of ỹk =

yk − sin(2πfk + x̂k|k−1) is positive, and this difference gets multiplied by the

positive cosine term, so the expected change in the phase estimate is positive.

So the filter is changing the estimated phase in the right direction. Second,

similarly, if x̂k|k−1 and xk are such that the cos term is negative, that means

the sin term is locally decreasing in x̂k|k−1. In that case if the actual phase

xk is slightly ahead of the estimate x̂k|k−1, then the conditional expectation of

ỹk = yk−sin(2πfk+x̂k|k−1) is negative, and this difference gets multiplied by the

negative cosine term, so the expected change in the phase estimate is positive.

So, again, the filter is changing the estimated phase in the right direction.

4.2 Correlation function of a product

RX(s, t) = E[YsZsYtZt] = E[YsYtZsZt] = E[YsYt]E[ZsZt] = RY (s, t)RZ(s, t).
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4.4 Another sinusoidal random process

(a) Since E[X1] = E[X2] = 0, E[Yt] ≡ 0. In addition,

RY (s, t) = E[X2
1 ] cos(2πs) cos(2πt)− 2E[X1X2] cos(2πs) sin(2πt)

+ E[X2
2 ] sin(2πs) sin(2πt)

= σ2(cos(2πs) cos(2πt) + sin(2πs) sin(2πt)]

= σ2 cos(2π(s− t)) (a function of s− t only).

So (Yt : t ∈ R) is WSS.

(b) If X1 and X2 are independent Gaussian random variables, then (Yt : t ∈ R)

is a real-valued Gaussian WSS random process and is hence stationary.

(c) A simple solution to this problem is to take X1 and X2 to be independent,

mean zero, variance σ2 random variables with different distributions. For exam-

ple, X1 could be N(0, σ2) and X2 could be discrete with P (X1 = σ) = P (X1 =

−σ) = 1
2 . Then Y0 = X1 and Y3/4 = X2, so Y0 and Y3/4 do not have the same

distribution, so that Y is not stationary.

4.6 A random process corresponding to a random parabola (a) The mean func-

tion is µX(t) = 0 + 0t+ t2 = t2 and the covariance function is given by

CX(s, t) = Cov(A+Bs+ s2, A+Bt+ t2)

= Cov(A,A) + stCov(B,B) = 1 + st.

Thus, Ê[X5|X1] = µX(5) + CX(5,1)
CX(1,1) (X1 − µX(1)) = 25 + 6

2 (X1 − 1).

(b) A and B are jointly Gaussian and X1 and X5 are linear combinations of A

and B, so X1 and X5 are jointly Gaussian. Thus, E[X5|X1] = Ê[X5|X1].

(c) Since X0 = A and X1 = A + B + 1, it follows that B = X1 −X0 − 1. Thus

Xt = X0 + (X1−X0− 1)t+ t2. So X0 + (X1−X0− 1)t+ t2 is a linear estimator

of Xt based on (X0, X1) with zero MSE, so it is the LMMSE estimator.

4.8 Brownian motion: Ascension and smoothing (a) Since the increments of

W over nonoverlapping intervals are independent, mean zero Gaussian random

variables,

P{Wr ≤Ws ≤Wt} = P{Ws −Wr ≥ 0, Wt −Ws ≥ 0}

= P{Ws −Wr ≥ 0}P{Wt −Ws ≥ 0} =
1

2
· 1

2
=

1

4
.

(b) Since W is a Gaussian process, the three random variables Wr,Ws,Wt are



390 Solutions to Even Numbered Problems

jointly Gaussian. They also all have mean zero, so that

E[Ws|Wr,Wt]

= Ê[Ws|Wr,Wt]

= (Cov(Ws,Wr),Cov(Ws,Wt))

(
Var(Xr) Cov(Xr, Xt)

Cov(Xt, Xr) Var(Xt)

)−1(
Wr

Wt

)
= (r, s)

(
r r

r t

)−1(
Wr

Wt

)
=

(t− s)Wr + (s− r)Wt

t− r
,

where we use the fact

(
a b

c d

)−1

= 1
ad−bc

(
d −b
−c a

)
. As s varies from r to

t, E[Ws|Wr,Wt] is obtained by linearly interpolating between Wr and Wt.

4.10 Empirical distribution functions as random processes

(a) E[F̂n(t)] = 1
n

∑n
k=1E[I{Xk≤t}] = 1

n

∑n
k=1 F (t) = F (t).

C(s, t) = Cov

(
1

n

n∑
k=1

I{Xk≤s},
1

n

n∑
l=1

I{Xl≤t}

)

=
1

n2

n∑
k=1

n∑
l=1

Cov
(
I{Xk≤s}, I{Xl≤t}

)
=

1

n2

n∑
k=1

Cov
(
I{Xk≤s}, I{Xk≤t}

)
=

1

n
Cov

(
I{X1≤s}, I{X1≤t}

)
.

where we used the fact that for k 6= l, the random variables I{Xk≤s} and I{Xl≤t}
are independent, and hence, uncorrelated, and the random variables Xk are

identically distributed. If s ≤ t, then

Cov
(
I{X1≤s}, I{X1≤t}

)
= E

[
I{X1≤s}I{X1≤t}

]
− E

[
I{X1≤s}

]
E
[
I{X1≤t}

]
= E

[
I{X1≤s}

]
− F (s)F (t) = F (s)− F (s)F (t).

Similarly, if s ≥ t,

Cov
(
I{X1≤s}, I{X1≤t}

)
= F (t)− F (s)F (t).

Thus, in general, Cov
(
I{X1≤s}, I{X1≤t}

)
= F (s ∧ t) − F (s)F (t), where s ∧ t =

min{s, t}, and so C(s, t) = F (s∧t)−F (s)F (t)
n .

(b) The convergence follows by the strong law of large numbers applied to the

iid random variables I{Xk≤t}, k ≥ 1.

(c) Let Uk = F (Xk) for all k ≥ 1 and suppose that F is a continuous CDF.

Fix v ∈ (0, 1). Then, since F is a continuous CDF, there exits a value t such
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that F (t) = v. Then P{F (Xk) ≤ v} = P{Xk ≤ t} = F (t) = v. Therefore,

as suggested in the hint, the U ’s are uniformly distributed over [0, 1]. For any

k, under the assumptions on F, {Xk ≤ t} and {F (Xk) ≤ v} are the same

events. Summing the indicator functions over k and dividing by n yields that

F̂n(t) = Ĝn(v), and therefore that |F̂n(t)− F (t)| = |Ĝn(v)− v|.
Taking the supremum over all all t ∈ R, or over all v ∈ (0, 1), while keeping

F (t) = v, shows that Dn = sup0<v<1 |Ĝn(v) − v|, and, since G(v) = v, the

LHS of this equation is just Dn for the case of the uniformly distributed random

variables Uk, k ≥ 1.

(d) Observe, for t fixed, that Xn(t) =
∑n
k=1(I{Xn≤t}−F (t))√

n
and the random

variables I{Xn≤t}−F (t) have mean zero and variance F (t)(1−F (t)). Therefore,

by the central limit theorem, for each t fixed, Xn(t) converges in distribution

and the limit is Gaussian with mean zero and variance C(t, t) = F (t)(1− F (t)).

(e) The covariance is n times the covariance function found in part (a), with

F (t) = t. The result is s ∧ t− st, as claimed in the problem statement.

(Note: The distance Dn is known as the Kolmogorov-Smirnov statistic, and by

pursuing the method of this problem further, the limiting distribution of
√
nDn

can be found and it is equal to the distribution of the maximum of a Brownian

bridge, a result due to J.L. Doob. )

4.12 MMSE prediction for a Gaussian process based on two observations

(a) Since RX(0) = 5, RX(1) = 0, and RX(2) = − 5
9 , the covariance matrix is 5 0 − 5

9

0 5 0

− 5
9 0 5

 .

(b) The variables are mean zero; E[X(4)|X(2)] = Cov(X(4),X(2))

Var(X(2)
X(2) = −X(2)

9 .

(c) X(3) is uncorrelated with (X(2), X(4))T ; the variables are jointly Gaussian;

X(3) is independent of (X(2), X(4))T . So E[X(4)|X(2)] = E[X(4)|X(2), X(3)] =

−X(2)
9 .

4.14 Poisson process probabilities (a) The numbers of arrivals in the disjoint

intervals are independent, Poisson random variables with mean λ. Thus, the

probability is (λe−λ)3 = λ3e−3λ.

(b) The event is the same as the event that the numbers of counts in the intervals

[0,1], [1,2], and [2,3] are 020, 111, or 202. The probability is thus e−λ(λ
2

2 e
−λ)e−λ+

(λe−λ)3 + (λ
2

2 e
−λ)e−λ(λ

2

2 e
−λ) = (λ

2

2 + λ3 + λ4

4 )e−3λ.

(c) This is the same as the probability the counts are 020, divided by the answer

to part (b), or λ2

2 /(
λ2

2 + λ3 + λ4

4 ) = 2λ2/(2 + 4λ+ λ2).

4.16 Adding jointly stationary Gaussian processes

(a) RZ(s, t) = E
[(

X(s)+Y (s)
2

)(
X(t)+Y (t)

2

)]
= 1

4 [RX(s−t)+RY (s−t)+RXY (s−
t) +RY X(s− t)]. So RZ(s, t) is a function of s− t. Also, RY X(s, t) = RXY (t, s).

Thus,

RZ(τ) = 1
4 [2e−|τ | + e−|τ−3|

2 + e−|τ+3|

2 ].

(b) Yes, the mean function of Z is constant (µZ ≡ 0) and RZ(s, t) is a function

of s − t only, so Z is WSS. However, Z is obtained from the jointly Gaussian
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processes X and Y by linear operations, so Z is a Gaussian process. Since Z is

Gaussian and WSS, it is stationary.

(c) P{X(1) < 5Y (2) + 1} = P
{
X(1)−5Y (2)

σ ≤ 1
σ

}
= Φ

(
1
σ

)
, where

σ2 = Var(X(1)−5Y (2)) = RX(0)−10RXY (1−2)+25RY (0) = 1− 10e−4

2 +25 =

26− 5e−4.

4.18 A linear evolution equation with random coefficients

(a) Pk+1 = E[(AkXk+Bk)2] = E[A2
kX

2
k ]+2E[AkXk]E[Bk]+E[B2

k] = σ2
APk+σ2

B .

(b) Yes. Think of n as the present time. The future values Xn+1, Xn+2, . . . are

all functions of Xn and (Ak, Bk : k ≥ n). But the variables (Ak, Bk : k ≥ n) are

independent of X0, X1, . . . Xn. Thus, the future is conditionally independent of

the past, given the present.

(c) No. For example, X1 − X0 = X1 = B1, and X2 − X1 = A2B1 + B2, and

clearly B1 and A2B1 + B2 are not independent. (Given B1 = b, the conditional

distribution of A2B1 +B2 is N(0, σ2
Ab

2 + σ2
B), which depends on b.)

(d) Suppose s, t ∈ Z with s < t. Then RY (s, t) = E[Ys(At−1Yt−1 + Bt−1)] =

E[At−1]E[YsYt−1] + E[Ys]E[Bt−1] = 0. Thus, RY (s, t) =

{
Pk if s = t = k

0 else.
(e) The variables Y1, Y2, . . . are already orthogonal by part (d) (and the fact the

variables have mean zero). Thus, Ỹk = Yk for all k ≥ 1.

4.20 A Poisson spacing probability (a) x(t) is simply the probability that ei-

ther zero or one arrivals happens in an interval of length t. So x(t) = (1+λt)e−λt.

(b) Consider t ≥ 1 and a small h > 0. For an interval of length t+ h, if there is

no arrival in the first h time units, then the conditional probability of success is

x(t). If there is an arrival in the first h time units, then the conditional proba-

bility of success is the product of the probability of no arrivals for the next unit

of time, times the probability of success for an interval of length t− 1. Thus,

x(t+ h) = (1− λh)x(t) + λhe−λx(t− 1) + o(h),

where the o(h) term accounts for the possibility of two or more arrivals in an

interval of length h and the exact time of arrival given there is one arrival in

the first h time units. Thus, x(t+h)−x(t)
h = −λx(t) + λe−λx(t− 1) + o(h)

h . Taking

h→ 0 yields x′(t) = −λx(t) + λe−λx(t− 1).

(c) The function y(t) = e−θt satisfies the equation y′(t) = −λy(t) +λe−λy(t− 1)

for all t ∈ R if θ = −λ + λeθ−λ, which has a unique positive solution θ∗. By

the ordering property mentioned in the statement of part (b), the inequalities

to be proved in part (c) are true for all t ≥ 0 if they are true for 0 ≤ t ≤ 1,

so the tightest choices of c0 and c1 are given by c0 = min0≤t≤1 x(t)eθ∗t and

c1 = max0≤t≤t x(t)eθ∗t.

(d) Given there are k arrivals during [0, t], we can view the times as uniformly dis-

tributed over the region [0, t]k, which has volume tk. By shrinking times between

arrivals by exactly one, we see there is a one-to-one correspondence between vec-

tors of k arrival times in [0, t] such that At is true, and vectors of k arrival times

in [0, t−k+ 1]. So the volume of the set of vectors of k arrival times in [0, t] such
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that At is true is (t − k + 1)k. This explains the fact given at the beginning of

part (d). The total number of arrivals during [0, t] has the Poisson distribution

with mean λt. Therefore, using the law of total probability,

x(t) =

dte∑
k=0

e−λt(λt)k

k!

(
t− k + 1

t

)k
=

dte∑
k=0

e−λt(λ(t− k + 1))k

k!
.

4.22 A fly on a cube (a)-(b) See the figures. For part (a), each two-headed

line represents a directed edge in each direction and all directed edges have

probability 1/3.

(b)

000 010

001

110100

101

011

111 1 2 30
1 2/3 1/3

12/31/3

(a) 

(c) Let ai be the mean time for Y to first reach state zero starting in state

i. Conditioning on the first time step yields a1 = 1 + 2
3a2, a2 = 1 + 2

3a1 +
1
3a3, a3 = 1 + a2. Using the first and third of these equations to eliminate a1

and a3 from the second equation yields a2, and then a1 and a3. The solution is

(a1, a2, a3) = (7, 9, 10). Therefore, E[τ ] = 1 + a1 = 8.

4.24 A random process created by interpolation (a)

tn+1n

Xt

(b) Xt is the sum of two random variables, (1 − a)Ut, which is uniformly dis-

tributed on the interval [0, 1− a], and aUn+1, which is uniformly distributed on

the interval [0, a]. Thus, the density of Xt is the convolution of the densities of

these two variables:

1

1!a
1

1!a
1

0 1!a 0 a a 1!a

1
a

* =

0

(c) CX(t, t) = a2+(1−a)2

12 for t = n+ a. Since this depends on t, X is not WSS.

(d) P{max0≤t≤10Xt ≤ 0.5} = P{Uk ≤ 0.5 for 0 ≤ k ≤ 10} = (0.5)11.

4.26 Restoring samples (a) Yes. The possible values of Xk are {1, . . . , k − 1}.
Given Xk, Xk+1 is equal to Xk with probability Xk

k and is equal to Xk + 1
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with probability 1− Xk
k . Another way to say this is that the one-step transition

probabilities for the transition from Xk to Xk+1 are given by

pij =


i
k for j = i

1− i
k for j = i+ 1

0 else

(b) E[Xk+1|Xk] = Xk(Xkk ) + (Xk + 1)
(
1− Xk

k

)
= Xk + 1− Xk

k .

(c) The Markov property of X, the information equivalence of Xk and Mk, and

part (b), imply that E[Mk+1|M2, . . . ,Mk] = E[Mk+1|Mk] = 1
k+1 (Xk+1− Xk

k ) 6=
Mk, so that (Mk) does not form a martingale sequence.

(d) Using the transition probabilities mentioned in part (a) again, yields (with

some tedious algebra steps not shown)

E[D2
k+1|Xk] =

(
Xk

k + 1
− 1

2

)2(
Xk

k

)
+

(
Xk + 1

k + 1
− 1

2

)2(
k −Xk

k

)
=

1

4k(k + 1)2

(
(4k − 8)X2

k − (4k − 8)kXk + k(k − 1)2
)

=
1

(k + 1)2

{
k(k − 2)D2

k +
1

4

}
.

(e) Since, by the tower property of conditional expectations, vk+1 = E[D2
k+1] =

E[E[D2
k+1|Xk]], taking the expectation on each side of the equation found in

part (d) yields

vk+1 =
1

(k + 1)2

{
k(k − 2)vk +

1

4

}
.

and the initial condition v2 = 0 holds. The desired inequality, vk ≤ 1
4k , is thus

true for k = 2. For the purpose of proof by induction, suppose that vk ≤ 1
4k for

some k ≥ 2. Then,

vk+1 ≤
1

(k + 1)2

{
k(k − 2)

1

4k
+

1

4

}
=

1

4(k + 1)2
{k − 2 + 1} ≤ 1

4(k + 1)
.

So the desired inequality is true for k + 1. Therefore, by proof by induction,

vk ≤ 1
4k for all k. Hence, vk → 0 as k → ∞. By definition, this means that

Mk
m.s.→ 1

2 as k → ∞. (We could also note that, since Mk is bounded, the

convergence also holds in probability, and also it holds in distribution.)

4.28 An M/M/1/B queueing system

(a) Q =


−λ λ 0 0 0
1 −(1 + λ) λ 0 0
0 1 −(1 + λ) λ 0
0 0 1 −(1 + λ) λ
0 0 0 1 −1

 .

(b) The equilibrium vector π = (π0, π1, . . . , πB) solves πQ = 0. Thus, λπ0 = π1.

Also, λπ0 − (1 + λ)π1 + π2 = 0, which with the first equation yields λπ1 = π2.
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Continuing this way yields that πn = λπn−1 for 1 ≤ n ≤ B. Thus, πn = λnπ0.

Since the probabilities must sum to one, πn = λn/(1 + λ+ · · ·+ λB).

4.30 Identification of special properties of two discrete-time processes (II)

(a) (yes, yes, no). The process is Markov by its description. Think of a time k as

the present time. Given the number of cells alive at the present time k (i.e. given

Xk) the future evolution does not depend on the past. To check for the martingale

property in discrete time, it suffices to check that E[Xk+1|X1, . . . , Xk] = Xk. But

this equality is true because for each cell alive at time k, the expected number of

cells alive at time k+ 1 is one (=0.5×0 + 0.5×2). The process does not have in-

dependent increments, because, for example, P (X2−X1 = 0|X1−X0 = −1) = 1

and P (X2 − X1 = 0|X1 − X0 = 1) = 1/2. So X2 − X1 is not independent of

X1 −X0.

(b) (yes, yes, no). Let k be the present time. Given Yk, the future values are

all determined by Yk, Uk+1, Uk+2, . . .. Since Uk+1, Uk+2, . . . is independent of

Y0, . . . , Yk, the future of Y is conditionally independent of the past, given the

present value Yk. So Y is Markov. The process Y is a martingale because

E[Yk+1|Y1, . . . , Yk] = E[Uk+1Yk|Y1, . . . , Yk]

= YkE[Uk+1|Y1, . . . , Yk] = YkE[Uk+1] = Yk.

The process Y does not have independent increments; for example Y1 − Y0 =

U1− 1 is clearly not independent of Y2−Y1 = U1(U2− 1). (To argue this further

we could note that the conditional density of Y2 − Y1 given Y1 − Y0 = y − 1 is

the uniform distribution over the interval [−y, y], which depends on y.)

4.32 Identification of special properties of two continuous-time processes (II)

(a) (yes,no,no) Z is Markov because W is Markov and the mapping from Wt to

Zt is invertible. So Wt and Zt have the same information. To see if W 3 is a

martingale we suppose s ≤ t and use the independent increment property of W

to get:

E[W 3
t |Wu, 0 ≤ u ≤ s] = E[W 3

t |Ws] = E[(Wt −Ws +Ws)
3|Ws] =

3E[(Wt −Ws)
2]Ws +W 3

s = 3(t− s)Ws +W 3
s 6= W 3

s .

Therefore, W 3 is not a martingale. If the increments were independent, then since

Ws is the increment Ws−W0, it would have to be that E[(Wt−Ws +Ws)
3|Ws]

doesn’t depend on Ws. But it does. So the increments are not independent.

(b) (no, no, no) R is not Markov because knowing Rt for a fixed t doesn’t quite

determines Θ to be one of two values. But for one of these values R has a pos-

itive derivative at t, and for the other R has a negative derivative at t. If the

past of R just before t were also known, then θ could be completely determined,

which would give more information about the future of R. So R is not Markov.

(ii)R is not a martingale. For example, observing R on a finite interval total

determines R. So E[Rt|(Ru, 0 ≤ u ≤ s] = Rt, and if s − t is not an integer,

Rs 6= Rt. (iii) R does not have independent increments. For example the in-
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crements R(0.5) − R(0) and R(1.5) − R(1) are identical random variables, not

independent random variables.

4.34 Moving balls (a) The states of the “relative-position process” can be

taken to be 111, 12, and 21. The state 111 means that the balls occupy three

consecutive positions, the state 12 means that one ball is in the left most occu-

pied position and the other two balls are one position to the right of it, and the

state 21 means there are two balls in the leftmost occupied position and one ball

one position to the right of them. With the states in the order 111, 12, 21, the

one-step transition probability matrix is given by P =

 0.5 0.5 0

0 0 1

0.5 0.5 0

.

(b) The equilibrium distribution π of the process is the probability vector sat-

isfying π = πP , from which we find π = (1
3 ,

1
3 ,

1
3 ). That is, all three states are

equally likely in equilibrium. (c) Over a long period of time, we expect the pro-

cess to be in each of the states about a third of the time. After each visit to states

111 or 12, the left-most position of the configuration advances one position to

the right. After a visit to state 21, the next state will be 12, and the left-most

position of the configuration does not advance. Thus, after 2/3 of the slots there

will be an advance. So the long-term speed of the balls is 2/3. Another approach

is to compute the mean distance the moved ball travels in each slot, and divide

by three.

(d) The same states can be used to track the relative positions of the balls as

in discrete time. The generator matrix is given by Q =

 −0.5 0.5 0

0 −1 1

0.5 0.5 −1

.

(Note that if the state is 111 and if the leftmost ball is moved to the rightmost

position, the state of the relative-position process is 111 the entire time. That

is, the relative-position process misses such jumps in the actual configuration

process.) The equilibrium distribution can be determined by solving the equa-

tion πQ = 0, and the solution is found to be π = ( 1
3 ,

1
3 ,

1
3 ) as before. When

the relative-position process is in states 111 or 12, the leftmost position of the

actual configuration advances one position to the right at rate one, while when

the relative-position process is in state is 21, the rightmost position of the actual

configuration cannot directly move right. The long-term average speed is thus

2/3, as in the discrete-time case.

4.36 Mean hitting time for a continuous-time Markov process

Q =

 −1 1 0

10 −11 1

0 5 −5

 π =

(
50

56
,

5

56
,

1

56

)
.

Consider Xh to get

a1 = h+ (1− h)a1 + ha2 + o(h)

a2 = h+ 10a1 + (1− 11h)a2 + o(h).
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or equivalently 1− a1 + a2 + o(h)
h = 0 and 1 + 10a1− 11a2 + o(h)

h = 0. Let h→ 0

to get 1− a1 + a2 = 0 and 1 + 10a1 − 11a2 = 0, or a1 = 12 and a2 = 11.

4.38 Poisson splitting This is basically the previous problem in reverse. This

solution is based directly on the definition of a Poisson process, but there are

other valid approaches. Let X be Poisson random variable, and let each of X

individuals be independently assigned a type, with type i having probability pi,

for some probability distribution p1, . . . , pK . Let Xi denote the number assigned

type i. Then,

P (X1 = i1, X2 = i2, · · · , XK = iK)

= P (X = i1 + · · ·+ iK)
(i1 + · · ·+ iK)!

i1! i2! · · · iK !
pk11 · · · p

iK
K

=

K∏
j=1

e−λjλ
ij
j

ij !
.

where λi = λpi. Thus, independent splitting of a Poisson number of individuals

yields that the number of each type i is Poisson, with mean λi = λpi and they

are independent of each other.

Now suppose that N is a rate λ Poisson process, and that Ni is the process of

type i points, given independent splitting of N with split distribution p1, . . . , pK .

By the definition of a Poisson process, the following random variables are inde-

pendent, with the ith having the Poi(λ(ti+1 − ti)) distribution:

N(t1)−N(t0) N(t2)−N(t1) · · · N(tp)−N(tp−1). (12.7)

Suppose each column of the following array is obtained by independent splitting

of the corresponding variable in (12.7).

N1(t1)−N1(t0) N1(t2)−N1(t1) · · · N1(tp)−N1(tp−1)

N2(t1)−N2(t0) N2(t2)−N2(t1) · · · N2(tp)−N2(tp−1)
...

... · · ·
...

NK(t1)−NK(t0) NK(t2)−NK(t1) · · · NK(tp)−NK(tp−1)
(12.8)

Then by the splitting property of Poisson random variables described above, we

get that all elements of the array (12.8) are independent, with the appropriate

means. By definition, the ith process Ni is a rate λpi random process for each

i, and because of the independence of the rows of the array, the K processes

N1, . . . , NK are mutually independent.

4.40 Some orthogonal martingales based on Brownian motion Throughout

the solution of this problem, let 0 < s < t, and let Y = Wt −Ws. Note that Y

is independent of Ws and it has the N(0, t− s) distribution.

(a) E[Mt|Ws] = MsE[Mt

Ms
|Ws]. Now Mt

Ms
= exp(θY − θ2(t−s)

2 ). Therefore,

E[Mt

Ms
|Ws] = E[Mt

Ms
] = 1. Thus E[Mt|Ws] = Ms. By the hint, M is a martingale.

(b) W 2
t − t = (Ws + Y )2 − s− (t− s) = W 2

s − s+ 2WsY + Y 2 − (t− s), but

E[2WsY |Ws] = 2WsE[Y |Ws] = 2WsE[Y ] = 0, and
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E[Y 2 − (t− s)|Ws] = E[Y 2 − (t− s)] = 0. So E[2WsY + Y 2 − (t− s)|Ws] = 0,;

the martingale property follows from the hint. Similarly,

W 3
t − 3tWt = (Y +Ws)

3 − 3(s+ t− s)(Y +Ws)

= W 3
s − 3sWs + 3W 2

s Y + 3Ws(Y
2− (t− s)) + Y 3− 3tY . Since Y is independent

of Ws and E[Y ] = E[Y 2 − (t− s)] = E[Y 3] = 0,

E[3W 2
s Y + 3Ws(Y

2 − (t− s)) + Y 3 − 3tY |Ws] = 0, so the martingale property

follows from the hint.

(c) Fix distinct nonnegative integers m and n. Then

E[Mn(s)Mm(t)] = E[E[Mn(s)Mm(t)|Ws]] property of cond. expectation

= E[Mn(s)E[Mm(t)|Ws]] property of cond. expectation

= E[Mn(s)Mm(s)] martingale property

= 0 orthogonality of variables at a fixed time.

5.2 A variance estimation problem with Poisson observation (a)

P{N = n} = E[P (N = n|X)] = E[
(X2)ne−X

2

n!
]

=

∫ ∞
−∞

x2ne−x
2

n!

e−
x2

2σ2

√
2πσ2

dx.

(b) To arrive at a simple answer, we could set the derivative of P{N = n} with

respect to σ2 equal to zero either before or after simplifying. Here we simplify

first, using the fact that if X is a N(0, σ̃2) random variable, then E[X2n] =
σ̃2n(2n)!
n!2n . Let σ̃2 be such that 1

2σ̃2 = 1 + 1
2σ2 , or equivalently, σ̃2 = σ2

1+2σ2 . Then

the above integral can be written as follows:

P{N = n} =
σ̃

σ

∫ ∞
−∞

x2n

n!

e
−x2

2σ̃2

√
2πσ̃2

dx

=
c1σ̃

2n+1

σ
=

c1σ
2n

(1 + 2σ2)
2n+1

2

,

where the constant c1 depends on n but not on σ2. Taking the logarithm of

P{N = n} and calculating the derivative with respect to σ2, we find that P{N =

n} is maximized at σ2 = n. That is, σ̂2
ML(n) = n.

5.4 Estimation of Bernoulli parameter in Gaussian noise by EM algorithm

(a)

P (Z1 = 1|Y1 = u, θ) =
P (Z1 = 1, Y1 = u|θ)

P (Y1 = u|θ)

=
θ exp(− (u−1)2

2 )

θ exp(− (u−1)2

2 ) + (1− θ) exp( (u+1)2

2 )

=
θeu

θeu + (1− θ)e−u
.
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So ϕ(u|θ) = P (Z1 = 1|Y1 = u, θ)− P (Z1 = −1|Y1 = u, θ) = θeu−(1−θ)e−u
θeu+(1−θ)e−u .

(b)

pcd(y, z|θ) =

T∏
t=1

{
θ

1+zt
2 (1− θ)

1−zt
2

1√
2π

exp(− (yt − zt)2

2
)

}
= θ

T+
∑
t zt

2 (1− θ)
T−

∑
t zt

2 e
∑
t ytztR(y)

where R(y) depends on y only.

Q(θ|θ(k)) =
T +

∑
t ϕ(yt, θ

(k))

2
ln(θ) +

T −
∑
t ϕ(yt, θ

(k))

2
ln(1− θ)

+

T∑
t=1

ϕ(yt, θ
(k))yt +R1(y, θ(k)).

where R1(y, θ(k)) depends on y and θ(k) only. Maximizing over θ yields

θ(k+1)(y) =
T +

∑T
t=1 ϕ(yt, θ

(k))

2T
.

5.6 Transformation of estimators and estimators of transformations (a) Yes,

because the transformation is invertible.

(b) Yes, because the transformation is invertible.

(c) Yes, because the transformation is linear, the pdf of 3+5Θ is a scaled version

of the pdf of Θ.

(d) No, because the transformation is not linear.

(e) Yes, because the MMSE estimator is given by the conditional expectation,

which is linear. That is, 3 + 5E[Θ|Y ] = E[3 + 5Θ|Y ].

(f) No. Typically E[Θ3|Y ] 6= E[Θ|Y ]3.

5.8 Finding a most likely path Finding the path z to maximize the posterior

probability given the sequence 021201 is the same as maximizing pcd(y, z|θ).
Due to the form of the parameter θ = (π,A,B), for any path z = (z1, . . . , z6),

pcd(y, z|θ) has the form c6ai for some i ≥ 0. Similarly, the variable δj(t) has

the form ctai for some i ≥ 0. Since a < 1, larger values for pcd(y, z|θ) and δj(t)

correspond to smaller values of i. Rather than keeping track of products, such

as aiaj , we keep track of the exponents of the products, which for aiaj would

be i + j. Thus, the problem at hand is equivalent to finding a path from left

to right in trellis indicated in Figure 12.4(a) with minimum weight, where the

weight of a path is the sum of all the numbers indicated on the vertices and edges

of the graph. Figure 12.4(b) shows the result of running the Viterbi algorithm.

The value of δj(t) has the form ctai, where for i is indicated by the numbers in

boxes. Of the two paths reaching the final states of the trellis, the upper one,

namely the path 000000, has the smaller exponent, 18, and therefore, the larger

probability, namely c6a18. Therefore, 000000 is the MAP path.
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Figure 12.4 Trellis diagram for finding a MAP path.

5.10 Estimation of the parameter of an exponential in exponential noise

(a) By assumption, Z has the exponential distribution with parameter θ, and

given Z = z, the conditional distribution of Y − z is the exponential distribution

with parameter one (for any θ.) So fcd(y, z|θ) = f(z|θ)f(y|z, θ) where

f(z|θ) =

{
θe−θz z ≥ 0

0 else
and for z ≥ 0 : f(y|z, θ) =

{
e−(y−z) y ≥ z

0 else.

(b)

f(y|θ) =

∫ y

0

fcd(y, z|θ)dz =

{
θe−y(e(1−θ)y−1)

1−θ θ 6= 1

ye−y θ = 1.

(c)

Q(θ|θ(k)) = E[ ln fcd(Y,Z|θ) |y, θ(k)]

= ln θ + (1− θ)E[Z|y, θ(k)]− y,

which is a concave function of θ. The maximum over θ can be identified by setting

the derivative with respect to θ equal to zero, yielding:

θ(k+1) = arg maxθ Q(θ|θ(k)) = 1
E[Z|y,θ(k)] = 1

ϕ(y,θ(k))
.
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(d)

Q(θ|θ(k)) = E[ ln fcd(Y,Z|θ) |y, θ(k)]

=

T∑
t=1

E[ ln f(yt, Zt|θ) |yt, θ(k)]

= T ln θ + (1− θ)
T∑
t=1

ϕ
(
yt, θ

(k)
)
−

T∑
t=1

yt

which is a concave function of θ. The maximum over θ can be identified by setting

the derivative with respect to θ equal to zero, yielding:

θ(k+1) = arg max
θ
Q(θ|θ(k)) =

T∑T
t=1 ϕ

(
yt, θ(k)

) .
5.12 Maximum likelihood estimation for HMMs (a) APPROACH ONE Note

that p(y|z) =
∏T
t=1 bzt,yt . Thus, for fixed y, p(y|z) is maximized with respect to

z by selecting zt to maximize bzt,yt for each t. Thus, (ẐML(y))t = arg maxi bi,yt
for 1 ≤ t ≤ T.
APPROACH TWO Let π̃i = 1

Ns
and ãi,j = 1

Ns
for all states i, j of the hidden

Markov process Z. The HMM for parameter θ̃
4
= (π̃, Ã, B) is such that all NT

s

possible values for Z are equally likely, and the conditional distribution of Y

given Z is the same as for the HMM with parameter θ. Use the Viterbi algo-

rithm with parameter θ̃ to compute ẐMAP , and that is equal to ẐML for the

HMM with parameter θ.

(b) Let π̃i = 1 if πi > 0 and π̃i = 0 if πi = 0 for 1 ≤ i ≤ Ns. Similarly, let

ãi,j = 1 if ai,j > 0 and ãi,j = 0 if ai,j = 0 for 1 ≤ i, j ≤ Ns. While π̃ and the

rows of Ã are not normalized to sum to one, they can still be used in the Viterbi

algorithm. Under parameter θ̃
4
= (π̃, Ã, B), every choice of possible trajectory for

Z has weight one, every other trajectory has weight zero, and the conditional

distribution of Y given Z is the same as for the HMM with parameter θ. Use

the Viterbi algorithm with parameter θ̃ to compute ẐMAP , and that is equal to

the constrained estimator ẐML for the HMM with parameter θ.

(c) Note that P (Y = y|Z1 = i) = βi(1)bi,y1 , where βi(1) can be computed for all

i using the backward algorithm. Therefore, Ẑ1,ML(y) = arg maxi βi(1)bi,y1 .

(d) Note that P (Y = y|Zto = i) = γi(to)P{Y=y}
P{Zto=i} , where γi(to) can be com-

puted by the forward backward algorithm, and P{Zto = i} = (πAto−1)i. Then

Ẑto,ML(y) = arg maxi
γi(to)

P{Zto=i} .

5.14 Specialization of Baum-Welch algorithm for no hidden data

(a) Suppose the sequence y = (y1, . . . , yT ) is observed. If θ(0) = θ = (π,A,B) is

such that B is the identity matrix, and all entries of π and A are nonzero, then

directly by the definitions (without using the α’s and β’s):

γi(t)
4
= P (Zt = i|Y1 = y1, . . . , YT = yT , θ) = I{yt=i}

ξij(t)
4
= P (Zt = i, Zt+1 = j|Y1 = y1, . . . , YT = yT , θ) = I{(yt,yt+1)=(i,j)}.
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Thus, (5.27) - (5.29) for the first iteration, t = 0, become

π
(1)
i = I{y1=i} i.e. the probability vector for S with all mass on y1

a
(1)
i,j =

number of (i, j) transitions observed

number of visits to i up to time T − 1

b
(1)
il =

number of times the state is i and the observation is l

number of times the state is i
.

It is assumed that B is the identity matrix, so that each time the state is i

the observation should also be i. Thus, b
(1)
il = I{i=l} for any state i that is

visited. That is consistent with the assumption that B is the identify matrix.

(Alternatively, since B is fixed to be the identity matrix, we could just work

with estimating π and A, and simply not consider B as part of the parameter

to be estimated.) The next iteration will give the same values of π and A. Thus,

the Baum-Welch algorithm converges in one iteration to the final value θ(1) =

(π(1), A(1), B(1)) already described. Note that, by Lemma 5.3, θ(1) is the ML

estimate.

(b) In view of part (a), the ML estimates are π = (1, 0) and A =

(
2
3

1
3

1
3

2
3

)
. This

estimator of A results from the fact that, of the first 21 times, the sate was zero

12 times, and 8 of those 12 times the next state was a zero. So a00 = 8/12 = 2/3

is the ML estimate. Similarly, the ML estimate of a11 is 6/9, which simplifies to

2/3.

5.16 Extending the forward-backward algorithm

(a) Forward equations: µj(t, t+ 1) =
∑
i∈S µi(t− 1, t)biytaij µi(−1, 0) = 1

Backward equations: µj(t, t− 1) =
∑
i∈S µi(t+ 1, t)biytaji µi(T + 1, T ) = 1

γi(t) =
µi(t− 1, t)µi(t+ 1, t)biyt∑
j µj(t− 1, t)µj(t+ 1, t)bjyt

. (12.9)

(b)

µi(t− 1, t) =
∑

z1,··· ,zt−1

(
az1z2az2z3 · · · azt−1i

t−1∏
s=1

bzs,ys

)
. (12.10)

µi(t+ 1, t) =
∑

zt+1,··· ,zT

(
aizt+1

azt+1zt+2
· · · azT−1zT

T∏
s=t+1

bzs,ys

)
. (12.11)

(To bring out the symmetry more, we could let ãij = aji (corresponds to AT )

and rewrite (12.11) as

µi(t+ 1, t) =
∑

zT ,··· ,zt+1

(
ãzT zT−1

ãzT−1zT−2
· · · ãzt+2zt+1

ãzt+1i

T∏
s=t+1

bzs,ys

)
.

(12.12)

Observe that (12.10) and (12.12) are the same up to time reversal.)
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A partially probabilistic interpretation can be given to the messages as follows.

First, consider how to find the marginal distribution of Zt for some t. It is

obtained by summing out all values of the other variables in the complete data

probability function, with Zt fixed at i. For Zt = i fixed, the numerator in

the joint probability function factors into three terms involving disjoint sets of

variables: (
bz1y1az1,z2bz2,y2 · · · azt−2zt−1

bzt−1yt−1
azt−1i

)
× (biyt)

×
(
aizt+1

bzt+1yt+1
azt+1,zt+2

· · · azT−1zT bzT yT
)
.

LetGi(t−1, t)i denote the sum of the first factor over all (z1, y1, z2, · · · , zt−1, yt−1),

let Goi (t) denote the sum of the second factor over all yt and let Gi(t+1, t) denote

the sum of the third factor over all (zt+1, yt+1, . . . , zT , yT ). Then the marginal

distribution of Zt can be represented as

P{Zt = i} =
Gi(t− 1, t)Goi (t)Gi(t+ 1, t)

G
,

and the constant G can be expressed as G =
∑
j Gj(t−1, t)Goj(t)Gj(t+1, t). Note

that the G’s depend on the joint distribution but do not depend on specific values

of the observation. They are simply factors in the prior (i.e. before observations

are incorporated) distribution of Zt.

For fixed y1, · · · yt−1, using the definition of conditional probability yields that

P (Y1 = y1, . . . , Yt−1 = yt−1|Zt = i) =
µi(t− 1, t)

Gi(t− 1, t)
,

or equivalently,

µi(t− 1, t) = P (Y1 = y1, . . . , Yt−1 = yt−1|Zt = i)Gi(t− 1, t) (12.13)

Equation (12.13) gives perhaps the closest we can get to a probabilistic inter-

pretation of µi(t− 1, t). In words, µi(t− 1, t) is the product of the likelihood of

the observations (y1, . . . , yt−1) and a factor Gt(t − 1, t), not depending on the

observations, that contributes to the unconditional prior distribution of Zt. A

similar interpretation holds for µi(t + 1, t). Also, byti can be thought of as a

message from the observation node of the graph at time t to the node for zt,

and byti = P (Yt = yt|Zt = i)Goi (t). Combining these observations shows that

the numerator in (12.9) is given by:

µi(t− 1, t)µi(t+ 1, t)biyt

= P (Y1 = y1, . . . , YT = YT |Zt = i)Gi(t− 1, t)Goi (t)Gi(t+ 1, t)

= P (Y1 = y1, . . . , YT = YT |Zt = i)P (Zt = i)G

= P (Y1 = y1, . . . , YT = YT , Zt = i)G.

(c) Comparison of the numerator in (12.9) to the definition of pcd(y, z|θ) given

in the problem statement shows that the numerator in (12.9) is the sum of
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pcd(y, z|θ)G over all values of {z : zt = i} for y fixed, so it is P (Y = y, Zt = i|θ)G.
Thus,

RHS of (12.9) =
P (Y = y, Zt = i|θ)G∑
j P (Y = y, Zt = j|θ)G

=
P (Y = y, Zt = i|θ)

P (Y = y|θ)
= γi(t).

5.18 Baum-Welch saddlepoint It turns out that π(k) = π(0) and A(k) = A(0),

for each k ≥ 0. Also, B(k) = B(1) for each k ≥ 1, where B(1) is the matrix with

identical rows, such that each row of B(1) is the empirical distribution of the

observation sequence. For example, if the observations are binary valued, and if

there are T = 100 observations, of which 37 observations are zero and 63 are 1,

then each row of B(1) would be (0.37, 0.63). Thus, the EM algorithm converges in

one iteration, and unless θ(0) happens to be a local maximum or local minimum,

the EM algorithm converges to an inflection point of the likelihood function.

One intuitive explanation for this assertion is that since all the rows of B(0) are

the same, then the observation sequence is initially believed to be independent

of the state sequence, and the state process is initially believed to be stationary.

Hence, even if there is, for example, notable time variation in the observed data

sequence, there is no way to change beliefs in a particular direction in order to

increase the likelihood. In real computer experiments, the algorithm may still

eventually reach a near maximum likelihood estimate, due to round-off errors in

the computations which allow the algorithm to break away from the inflection

point.

The assertion can be proved by use of the update equations for the Baum-

Welch algorithm. It is enough to prove the assertion for the first iteration only,

for then it follows for all iterations by induction.

Since the rows of B(0)) are all the same, we write bl to denote b
(0)
il for an

arbitrary value of i. By induction on t, we find αi(t) = by1 · · · bytπ
(0)
i and βj(t) =

byt+1
· · · byT . In particular, βj(t) does not depend on j. So the vector (αiβi : i ∈ S)

is proportional to π(0), and therefore γi(t) = π
(0)
i . Similarly, ξi,j(t) = P (Zt =

i, Zt+1 = j|y, θ(0)) = π
(0)
i a

(0)
i,j . By (5.27), π(1) = π(0), and by (5.28), A(1) = A(0).

Finally, (5.29) gives

b
(1)
i,l =

∑T
t=1 πiI{yt=l}

Tπi
=

number of times l is observed

T
.

5.20 Constraining the Baum-Welch algorithm A quite simple way to deal with

this problem is to take the initial parameter θ(0) = (π,A,B) in the Baum-Welch

algorithm to be such that aij > 0 if and only if aij = 1 and bil > 0 if and only if

bil = 1. (These constraints are added in addition to the usual constraints that π,

A, and B have the appropriate dimensions, with π and each row of A and b being

probability vectors.) After all, it makes sense for the initial parameter value to

respect the constraint. And if it does, then the same constraint will be satisfied

after each iteration, and no changes are needed to the algorithm itself.
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6.2 A two station pipeline in continuous time (a) S = {00, 01, 10, 11}
(b)

µ

00 01

10 11

!
µ! 1

µ 2

2

(c) Q =


−λ 0 λ 0

µ2 −µ2 − λ 0 λ

0 µ1 −µ1 0

0 0 µ2 −µ2

 .

(d) η = (π00 + π01)λ = (π01 + π11)µ2 = π10µ1. If λ = µ1 = µ2 = 1.0 then

π = (0.2, 0.2, 0.4, 0.2) and η = 0.4.

(e) Let τ = min{t ≥ 0 : X(t) = 00}, and define hs = E[τ |X(0) = s], for s ∈ S.

We wish to find h11.

h00 = 0

h01 = 1
µ2+λ + µ2h00

µ2+λ + λh11

µ2+λ

h10 = 1
µ1

+ h01

h11 = 1
µ2

+ h10

For If λ = µ1 = µ2 = 1.0

this yields


h00

h01

h10

h11

 =


0

3

4

5

. Thus, h11 = 5 is the required answer.

6.4 A simple Poisson process calculation Suppose 0 < s < t and 0 ≤ i ≤ k.

P (N(s) = i|N(t) = k) =
P{N(s) = i,N(t) = k}

P{N(t) = k}

=

(
e−λs(λs)i

i!

)(
e−λ(t−s)(λ(t− s))k−i

(k − i)!

)(
e−λt(λt)k

k!

)−1

=

(
k

i

)(s
t

)i( t− s
t

)k−1

.

That is, given N(t) = k, the conditional distribution of N(s) is binomial. This

could have been deduced with no calculation, using the fact that given N(t) = k,

the locations of the k points are uniformly and independently distributed on the

interval [0, t].

6.6 On distributions of three discrete-time Markov processes (a) A probabil-

ity vector π is an equilibrium distribution if and only if π satisfies the bal-

ance equations: π = πP. This yields π1 = π0 and π2 = π3 = π1/2. Thus,

π =
(

1
3 ,

1
3 ,

1
6 ,

1
6

)
is the unique equilibrium distribution. However, this Markov

process is periodic with period 2, so limt→∞ π(t) does not necessarily exit. (The

limit exists if and only if π0(0) + π2(0) = 0.5.)
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(b) The balance equations yield πn = 1
nπn−1 for all n ≥ 1, so that πn = π0

n! .

Thus, the Poisson distribution with mean one, πn = e−1

n! , is the unique equilib-

rium distribution. Since there is an equilibrium distribution and the process is

irreducible and aperiodic, all states are positive recurrent and limt→∞ π(t) exits

and is equal to the equilibrium distribution for any choice of initial distribution.

(c) The balance equations yield πn = n−1
n πn−1 for all n ≥ 1, so that πn = π0

n .

But since
∑∞
n=1

1
n =∞, there is no way to normalize this distribution to make it

a probability distribution. Thus, there does not exist an equilibrium distribution.

The process is thus transient or null recurrent: limt→∞ πn(t) = 0 for each state

n. (It can be shown that the process is recurrent. Indeed,

P (not return to 0|X(0) = 0) = lim
n→∞

P (hit n before return to 0|X(0) = 0)

= lim
n→∞

1 · 1

2
· 2

3
· · · · · n− 1

n
= 0.)

6.8 A Markov process on a ring Q =

 −a− 1 a 1

1 −b− 1 b

c 1 −c− 1

 and sim-

ple algebra yields (1 + c+ cb, 1 + a+ ac, 1 + b+ ba)Q = (0, 0, 0). (Since the row

sums of Q are zero it suffices to check two of the equations. By symmetry in fact

it suffices to check just the first equation.)

(b) The long term rate of jumps from state 1 to state 2 is π1a and the long

term rate of jumps from state 2 to 1 is π2. The difference is the mean cycle rate:

θ = π1a− π2. Similarly, θ = π2b− π3 and θ = π3c− π1.

ALTERNATIVELY, the average rate of clockwise jumps per unit time is π1a+

π2b+ π3c and the average rate of counterclockwise jumps is one. So the net rate

of jumps in the clockwise direction is π1a+ π2b+ π3c− 1. Since there are three

jumps to a cycle, divide by three to get θ = (π1a+ π2b+ π3c− 1)/3.

(c) By part (a), π = (1+c+cb, 1+a+ac, 1+b+ba)/Z where Z = 3+a+b+c+

ab+ ac+ bc. So then using part (b), θ = (1+c+bc)a−1−a−ac
Z = abc−1

3+a+b+c+ab+ac+bc .

The mean net cycle rate is zero if and only if abc = 1. (Note: The nice form of the

equilibrium for this problem, which generalizes to rings of any integer circum-

ference, is a special case of the tree based formula for equilibrium distributions

that can be found, for example, in the book of Freidlin and Wentzell, Random

perturbations of dynamical systems.

6.10 A mean hitting time problem (a)

2
0 1

2
1

1

2

2

πQ = 0 implies π = ( 2
7 ,

2
7 ,

3
7 ).
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(b) Clearly a1 = 0. Condition on the first step. The initial holding time in

state i has mean − 1
qii

and the next state is j with probability pJij =
−qij
qii

. Thus(
a0

a2

)
=

(
− 1
q00

− 1
q22

)
+

(
0 pJ02

pJ20 0

)(
a0

a2

)
. Solving:

(
a0

a2

)
=

(
1

1.5

)
.

(c) Clearly α2(t) = 0 for all t.

α0(t+ h) = α0(t)(1 + q00h) + α1(t)q10h+ o(h)

α1(t+ h) = α0(t)q01h+ α1(t)(1 + q11h) + o(h)

Subtract αi(t) from each side and let h→ 0; (∂α0

∂t ,
∂α1

∂t ) = (α0, α1)

(
q00 q01

q10 q11

)
with the initial condition (α0(0), α1(0)) = (1, 0). (Note: the matrix involved here

is the Q matrix with the row and column for state 2 removed.)

(d) Similarly,

β0(t− h) = (1 + q00h)β0(t) + q01hβ1(t) + o(h)

β1(t− h) = q10hβ0(t) + (1 + q11h)β1(t)) + o(h).

Subtract βi(t)’s, divide by h and let h→ 0 to get:(
−∂β0

∂t

−∂β1

∂t

)
=

(
q00 q01

q10 q11

)(
β0

β1

)
with

(
β0(tf )

β1(tf )

)
=

(
1

1

)
.

6.12 Markov model for a link with resets (a) Let S = {0, 1, 2, 3}, where the

state is the number of packets passed since the last reset.

µ

0 1 2 3
µ

! !!

µ

(b) By the PASTA property, the dropping probability is π3. We can find the

equilibrium distribution π by solving the equation πQ = 0. The balance equation

for state 0 is λπ0 = µ(1− π0) so that π0 = µ
λ+µ . The balance equation for state

i ∈ {1, 2} is λπi−1 = (λ + µ)πi, so that π1 = π0( λ
λ+µ ) and π2 = π0( λ

λ+µ )2.

Finally, λπ2 = µπ3 so that π3 = π0( λ
λ+µ )2 λ

µ = λ3

(λ+µ)3 . The dropping probability

is π3 = λ3

(λ+µ)3 . (This formula for π3 can be deduced with virtually no calculation

from the properties of merged Poisson processes. Fix a time t. Each event is a

packet arrival with probability λ
λ+µ and is a reset otherwise. The types of different

events are independent. Finally, π3(t) is the probability that the last three events

before time t were arrivals. The formula follows.)

6.14 A queue with decreasing service rate

(a)
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X(t)

0 . . . . . .

!  !  !  !  !  !  

µ µ µ µ/2 µ/2 µ/2

1 K K+2K+1

K

t

(b) S2 =
∑∞
k=0( µ2λ )k2k∧K , where k ∧ K = min{k,K}. Thus, if λ < µ

2 then

S2 < +∞ and the process is recurrent. S1 =
∑∞
k=0( 2λ

µ )k2−k∧K , so if λ < µ
2 then

S1 < +∞ and the process is positive recurrent. In this case, πk = ( 2λ
µ )2−k∧Kπ0,

where

π0 =
1

S1
=

[
1− (λ/µ)K

1− (λ/µ)
+

(λ/µ)K

1− (2λ/µ)

]−1

.

(c) If λ = 2µ
3 , the queue appears to be stable until if fluctuates above K. Eventu-

ally the queuelength will grow to infinity at rate λ− µ
2 = µ

6 . See figure above.

6.16 An M/M/1 queue with impatient customers (a)

!

31 20 . . .4

! !

µ+" µ+2" µ+3" µ+4"

!!

µ

(b) The process is positive recurrent for all λ, µ if α > 0, and

pk = cλk

µ(µ+α)···(µ+(k−1)α) where c is chosen so that the pk’s sum to one.

(c) If α = µ, pk = cλk

k!µk
= cρk

k! . Therefore, (pk : k ≥ 0) is the Poisson distribution

with mean ρ. Furthermore, pD is the mean departure rate by defecting customers,

divided by the mean arrival rate λ. Thus,

pD =
1

λ

∞∑
k=1

pk(k − 1)α =
ρ− 1 + e−ρ

ρ
→
{

1 as ρ→∞
0 as ρ→ 0

where l’Hôspital’s rule can be used to find the limit as ρ→ 0.

6.18 A queue with blocking

(a)

531 20 4

! ! !!

µ

!

µµµµ

πk = ρk

1+ρ+ρ2+ρ3+ρ4+ρ5 = ρk(1−ρ)
1−ρ6 for 0 ≤ k ≤ 5.

(b) pB = π5 by the PASTA property.

(c) W = NW /(λ(1 − pB)) where NW =
∑5
k=1(k − 1)πk. Alternatively, W =

N/(λ(1− pB))− 1
µ (i.e. W is equal to the mean time in system minus the mean
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time in service)

(d)

π0 =
1

λ(mean cycle time for visits to state zero)

=
1

λ(1/λ+ mean busy period duration)
.

Therefore, the mean busy period duration is 1
λ [ 1
π0
− 1] = ρ−ρ6

λ(1−ρ) = 1−ρ5
µ(1−ρ) .

6.20 On two distributions seen by customers As can be seen in the picture,

t

k

k+1

N(t)

between any two transitions from state k to k + 1 there is a transition form

state k + 1 to k, and vice versa. Thus, the number of transitions of one type is

within one of the number of transitions of the other type. This establishes that

|D(k, t)−R(k, t)| ≤ 1 for all k.

(b)Observe that∣∣∣∣D(k, t)

αt
− R(k, t)

δt

∣∣∣∣ ≤ ∣∣∣∣D(k, t)

αt
− R(k, t)

αt

∣∣∣∣+

∣∣∣∣R(k, t)

αt
− R(k, t)

δt

∣∣∣∣
≤ 1

αt
+
R(k, t)

αt

∣∣∣∣1− αt
δt

∣∣∣∣
≤ 1

αt
+

∣∣∣∣1− αt
δt

∣∣∣∣→ 0 as t→∞.

Thus, D(k,t)
αt

and R(k,t)
δt

have the same limits, if the limits of either exists.

6.22 Positive recurrence of reflected random walk with negative drift

Let V (x) = 1
2x

2. Then

PV (x)− V (x) = E[
(x+Bn + Ln)2

2
]− x2

2

≤ E[
(x+Bn)2

2
]− x2

2

= xB +
B2

2
.

Therefore, the conditions of the combined Foster stability criteria and moment

bound corollary apply, yielding that X is positive recurrent, and X ≤ B2

−2B
. (This

bound is somewhat weaker than Kingman’s moment bound, discussed later in

the notes: X ≤ Var(B)

−2B
.)

6.24 An inadequacy of a linear potential function Suppose x is on the posi-

tive x2 axis (i.e. x1 = 0 and x2 > 0). Then, given X(t) = x, during the slot,
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queue 1 will increase to 1 with probability a(1− d1) = 0.42, and otherwise stay

at zero. Queue 2 will decrease by one with probability 0.4, and otherwise stay

the same. Thus, the drift of V , E[V (X(t+ 1)− V (x)|X(t) = x] is equal to 0.02.

Therefore, the drift is strictly positive for infinitely many states, whereas the

Foster-Lyapunov condition requires that the drift be negative off of a finite set

C. So, the linear choice for V does not work for this example.

6.26 Opportunistic scheduling (a) The left hand side of (6.35) is the arrival

rate to the set of queues in s, and the righthand side is the probability that some

queue in s is eligible for service in a given time slot. The condition is necessary

for the stability of the set of queues in s.

(b) Fix ε > 0 so that for all s ∈ E with s 6= ∅,∑
i∈s

(ai + ε) ≤
∑

B:B∩s6=∅

w(B).

Consider the flow graph shown.

.

a b

q1

q
2

qN

s 1

s 2

s N!

a2

a
1

a
N

 sk

N!

2

1w(s  )

w(s  )

w(s   )

w(s  )k

+!

+!

+!

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

In addition to the source node a and sink node b, there are two columns of nodes

in the graph. The first column of nodes corresponds to the N queues, and the

second column of nodes corresponds to the 2N subsets of E. There are three

stages of links in the graph. The capacity of a link (a,qi) in the first stage is

ai + ε, there is a link (qi, sj) in the second stage if and only if qi ∈ sj , and each

such link has capacity greater than the sum of the capacities of all the links in

the first stage, and the weight of a link (sk, t) in the third stage is w(sk).

We claim that the minimum of the capacities of all a−b cuts is v∗ =
∑N
i=1(ai+

ε). Here is a proof of the claim. The a− b cut ({a} : V − {a}) (here V is the set

of nodes in the flow network) has capacity v∗, so to prove the claim, it suffices to

show that any other a− b cut has capacity greater than or equal to v∗. Fix any

a − b cut (A : B). Let Ã = A ∩ {q1, . . . , qN}, or in words, Ã is the set of nodes

in the first column of the graph (i.e. set of queues) that are in A. If qi ∈ Ã and

sj ∈ B such that (qi, sj) is a link in the flow graph, then the capacity of (A : B)

is greater than or equal to the capacity of link (qi, sj), which is greater than v∗,
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so the required inequality is proved in that case. Thus, we can suppose that A

contains all the nodes sj in the second column such that sj ∩ Ã 6= ∅. Therefore,

C(A : B) ≥
∑

i∈{q1,...,qN}−Ã

(ai + ε) +
∑

s⊂E:s∩Ã 6=∅

w(s)

≥
∑

i∈{q1,...,qN}−Ã

(ai + ε) +
∑
i∈Ã

(ai + ε) = v∗, (12.14)

where the inequality in (12.14) follows from the choice of ε. The claim is proved.

Therefore there is an a−b flow f which saturates all the links of the first stage

of the flow graph. Let u(i, s) = f(qi, s)/f(s, b) for all i, s such that f(s, b) > 0.

That is, u(i, s) is the fraction of flow on link (s, b) which comes from link (qi, s).

For those s such that f(s, b) = 0, define u(i, s) in some arbitrary way, respecting

the requirements u(i, s) ≥ 0, u(i, s) = 0 if i 6∈ s, and
∑
i∈E u(i, s) = I{s6=∅}. Then

ai + ε = f(a, qi) =
∑
s f(qi, s) =

∑
s f(s, b)u(i, s) ≤

∑
s w(s)u(i, s) = µi(u), as

required.

(c) Let V (x) = 1
2

∑
i∈E x

2
i . Let δ(t) denote the identity of the queue given a

potential service at time t, with δ(t) = 0 if no queue is given potential service.

Then P (δ(t) = i|S(t) = s) = u(i, s). The dynamics of queue i are given by

Xi(t + 1) = Xi(t) + Ai(t) − Ri(δ(t)) + Li(t), where Ri(δ) = I{δ=i}. Since∑
i∈E(Ai(t) − Ri(δi(t)))

2 ≤
∑
i∈E(Ai(t))

2 + (Ri(δi(t)))
2 ≤ N +

∑
i∈E Ai(t)

2

we have

PV (x)− V (x) ≤

(∑
i∈E

xi(ai − µi(u))

)
+K (12.15)

≤ −ε

(∑
i∈E

xi

)
+K (12.16)

where K = N
2 +

∑N
i=1Ki. Thus, under the necessary stability conditions we

have that under the vector of scheduling probabilities u, the system is positive

recurrent, and ∑
i∈E

Xi ≤
K

ε
. (12.17)

(d) If u could be selected as a function of the state, x, then the right hand side

of (12.15) would be minimized by taking u(i, s) = 1 if i is the smallest index

in s such that xi = maxj∈s xj . This suggests using the longest connected first

(LCF) policy, in which the longest connected queue is served in each time slot.

If PLCF denotes the one-step transition probability matrix for the LCF policy,

then (12.15) holds for any u, if P is replaced by PLCF . Therefore, under the

necessary condition and ε as in part (b), (12.16) also holds with P replaced by

PLCF , and (12.17) holds for the LCF policy.

6.28 Stability of two queues with transfers (a) System is positive recurrent

for some u if and only if λ1 < µ1 + ν, λ2 < µ2, and λ1 + λ2 < µ1 + µ2.
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(b)

QV (x)

=
∑
y:y 6=x

qxy (V (y)− V (x))

=
λ1

2
[(x1 + 1)2 − x2

1] +
λ2

2
[(x2 + 1)2 − x2

2] +
µ1

2
[(x1 − 1)2

+ − x2
1]

+
µ2

2
[(x2 − 1)2

+ − x2
2] +

uνI{x1≥1}

2
[(x1 − 1)2 − x2

1 + (x2 + 1)2 − x2
2].(12.18)

(c) If the righthand side of (12.18) is changed by dropping the positive part

symbols and dropping the factor I{x1≥1}, then it is not increased, so that

QV (x) ≤ x1(λ1 − µ1 − uν) + x2(λ2 + uν − µ2) +K

≤ −(x1 + x2) min{µ1 + uν − λ1, µ2 − λ2 − uν}+K, (12.19)

where K = λ1+λ2+µ1+µ2+2ν
2 . To get the best bound on X1 + X2, we select

u to maximize the min term in (12.19), or u = u∗, where u∗ is the point in

[0, 1] nearest to µ1+µ2−λ1−λ2

2ν . For u = u∗, we find QV (x) ≤ −ε(x1 + x2) + K

where ε = min{µ1 + ν − λ1, µ2 − λ2,
µ1+µ2−λ1−λ2

2 }. Which of the three terms is

smallest in the expression for ε corresponds to the three cases u∗ = 1, u∗ = 0,

and 0 < u∗ < 1, respectively. It is easy to check that this same ε is the largest

constant such that the stability conditions (with strict inequality relaxed to less

than or equal) hold with (λ1, λ2) replaced by (λ1 + ε, λ2 + ε).

7.2 Lack of sample path continuity of a Poisson process (a) The sample path

of N is continuous over [0, T ] if and only if it has no jumps in the interval, equiva-

lently, if and only if N(T ) = 0. So P (N is continuous over the interval [0,T] ) =

exp(−λT ). By continuity of probability (Lemma 1.1),

P (N is continuous over [0,+∞)) = lim
n→∞

P (N is continuous over [0, n])

= lim
n→∞

e−λn = 0.

(b) Since P (N is continuous over [0,+∞)) 6= 1, N is not a.s. sample continuous.

However N is m.s. continuous. One proof is to simply note that the correlation

function, given by RN (s, t) = λ(s∧ t) + λ2st, is continuous. A more direct proof

is to note that for fixed t, E[|Ns −Nt|2] = λ|s− t|+ λ2|s− t|2 → 0 as s→ t.

7.4 Some statements related to the basic calculus of random processes

(a) False. limt→∞
1
t

∫ t
0
Xsds = Z 6= E[Z] (except in the degenerate case that Z

has variance zero).

(b) False. One reason is that the function is continuous at zero, but not every-

where. For another, we would have Var(X1 −X0 −X2) = 3RX(0) − 4RX(1) +

2RX(2) = 3− 4 + 0 = −1.

(c) True. In general, RX′X(τ) = R′X(τ). Since RX is an even function, R′X(0) =

0. Thus, for any t, E[X ′tXt] = RX′X(0) = R′X(0) = 0. Since the process X has

mean zero, it follows that Cov(X ′t, Xt) = 0 as well. Since X is a Gaussian pro-

cess, and differentiation is a linear operation, Xt and X ′t are jointly Gaussian.
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Summarizing, for t fixed, X ′t and Xt are jointly Gaussian and uncorrelated, so

they are independent. (Note: X ′s is not necessarily independent of Xt if s 6= t.

)

7.6 Continuity of a process passing through a nonlinearity (a) Fix t ∈ R and

let (sn) be a sequence converging to t. Let ε > 0 be arbitrary. Let [a, b] be an

interval so large that P{Xt ∈ [a, b]} ≥ ε. Let δ with 0 < δ < 1 be so small

that |G(x) − G(x′)| ≤ ε whenever x, x′ ∈ [a − 1, b + 1] with |x − x′| ≤ δ. Since

Xsn → Xt m.s. it follows that Xsn → Xt in probability, so there exits N so large

that P{|Xsn −Xt| > δ} ≤ ε whenever n ≥ N. Then for n ≥ N ,

P{|Ysn − Yt| > ε} ≤ P{|Ysn − Yt| > ε,Xt ∈ [a, b]}+ P{Xt 6∈ [a, b]}
≤ P{|Xsn −Xt| > δ}+ ε

≤ 2ε.

Therefore, Ysn → Yt in probability as n → ∞. Since the Y ’s are bounded, the

convergence also holds in the m.s. sense. Thus, Y is m.s. continuous at an arbi-

trary t, so Y is a m.s. continuous process.

(b) Let Xt = t (a deterministic process) and G(x) = I{x≥0}. Then Yt = I{t≥0}
which is not continuous at t = 0, and so is not a m.s. continuous process.

(c) Let Xt ≡ U, (a process content in time) where U has the exponential distri-

bution with parameter one. Let G(x) = ex. Then E[Y 2
t ] =

∫∞
0

(eu)2e−udu =∞,
so that Y is not even a second order random process, so Y is not m.s. continuous

random process.

7.8 Integral of OU process (a) The process Y has mean zero because X has

mean zero. For s ≤ t,

RY (s, t) =

∫ s

0

∫ t

0

e−|u−v|dvdu

=

∫ s

0

[∫ u

0

dv−udv +

∫ t

u

eu−vdv

]
du

=

∫ s

0

1− e−u + 1− eu−tdu

= 2s− 1 + e−s + e−t − es−t,

so in general, RY (s, t) = 2(s ∧ t)− 1 + e−s + e−t − e−|s−t|.
(b) For t > 0, Yt has the N(0, σ2

t ) distribution with σ2
t = RY (t, t) = 2(t−1+e−t).

Therefore, P{|Yt| ≥ g(t)} = 2Q
(
g(t)
σt

)
, which, since Q(0.81) ≈ 0.25, means we

want g(t) = Q−1(0.25)σt ≈ (0.81)
√

2(t− 1 + e−t) ≈ (1.15)
√
t− 1 + e−t.

(c) Since

RZ(s, t) = f(α)2RY (αs, αt)

= f(α)2
[
2α(s ∧ t)− 1 + e−αs + e−αt − e−α|s−t|

]
∼ f(α)22α(s ∧ t) as α→∞,
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the choice f(α) = 1√
2α

works. Intuitively, speeding up the process X causes the

duration of the memory in X to decrease.

7.10 Cross correlation between a process and its m.s. derivative

Fix t, u ∈ T . By assumption, lims→t
Xs−
s−t = X ′t m.s. Therefore, by Corollary

2.12, E
[(

Xs−Xt
s−t

)
Xu

]
→ E[X ′tXu] as s→ t. Equivalently,

RX(s, u)−RX(t, u)

s− t
→ RX′X(t, u) as s→ t.

Hence ∂1RX(s, u) exists, and ∂1RX(t, u) = RX′X(t, u).

7.12 A windowed Poisson process (a) The sample paths of X are piecewise

constant, integer valued with initial value zero. They jump by +1 at each jump

of N , and jump by -1 one time unit after each jump of N .

(b) Method 1: If |s − t| ≥ 1 then Xs and Xt are increments of N over disjoint

intervals, and are therefore independent, so CX(s, t) = 0. If |s − t| < 1, then

there are three disjoint intervals, I0, I1, and I2, with I0 = [s, s + 1] ∪ [t, t + 1],

such that [s, s + 1] = I0 ∪ I1 and [t, t + 1] = I0 ∪ I2. Thus, Xs = D0 + D1 and

Xt = D0 + D2, where Di is the increment of N over the interval Ii. The three

increments D1, D2, and D3 are independent, and D0 is a Poisson random variable

with mean and variance equal to λ times the length of I0, which is 1 − |s − t|.
Therefore, CX(s, t) = Cov(D0 + D1, D0 + D2) = Cov(D0, D0) = λ(1 − |s − t|).

Summarizing, CX(s, t) =

{
λ(1− |s− t|) if |s− t| < 1

0 else
Method 2: CX(s, t) = Cov(Ns+1−Ns, Nt+1−Nt) = λ[min(s+1, t+1)−min(s+

1, t)−min(s, t+ 1)−min(s, t)]. This answer can be simplified to the one found

by Method 1 by considering the cases |s− t| > 1, t < s < t+ 1, and s < t < s+ 1

separately.

(c) No. X has a -1 jump one time unit after each +1 jump, so the value Xt

for a “present” time t tells less about the future, (Xs : s ≥ t), than the past,

(Xs : 0 ≤ s ≤ t), tells about the future .

(d) Yes, recall that RX(s, t) = CX(s, t) − µX(s)µX(t). Since CX and µX are

continuous functions, so is RX , so that X is m.s. continuous.

(e) Yes. Using the facts CX(s, t) is a function of s− t alone, and CX(s)→ 0 as

s→∞, we find as in the section on ergodicity,

Var( 1
t

∫ t
0
Xsds) = 2

t

∫ t
0
(1− s

t )CX(s)ds→ 0 as t→∞.

7.14 A singular integral with a Brownian motion (a) The integral
∫ 1

ε
wt
t dt ex-

ists in the m.s. sense for any ε > 0 because wt/t is m.s. continuous over [ε, 1].

To see if the limit exists we apply the correlation form of the Cauchy criteria

(Proposition 2.2.2). Using different letters as variables of integration and the fact
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Rw(s, t) = s ∧ t (the minimum of s and t), yields that as ε, ε′ → 0,

E

[∫ 1

ε

ws
s
ds

∫ 1

ε′

wt
t
dt

]
=

∫ 1

ε

∫ 1

ε′

s ∧ t
st

dsdt

→
∫ 1

0

∫ 1

0

s ∧ t
st

dsdt

= 2

∫ 1

0

∫ t

0

s ∧ t
st

dsdt = 2

∫ 1

0

∫ t

0

s

st
dsdt

= 2

∫ 1

0

∫ t

0

1

t
dsdt = 2

∫ 1

0

1dt = 2.

Thus the m.s. limit defining the integral exits. The integral has the N(0, 2)

distribution.

(b) As a, b→∞,

E

[∫ a

1

ws
s
ds

∫ b

1

wt
t
dt

]
=

∫ a

1

∫ b

1

s ∧ t
st

dsdt

→
∫ ∞

1

∫ ∞
1

s ∧ t
st

dsdt

= 2

∫ ∞
1

∫ t

1

s ∧ t
st

dsdt = 2

∫ ∞
1

∫ t

1

s

st
dsdt

= 2

∫ ∞
1

∫ t

1

1

t
dsdt = 2

∫ ∞
1

t− 1

t
dt =∞,

so that the m.s. limit does not exist, and the integral is not well defined.

7.16 Recognizing m.s. properties (a) Yes m.s. continuous since RX is continu-

ous. No not m.s. differentiable since R′X(0) doesn’t exist. Yes, m.s. integrable over

finite intervals since m.s. continuous. Yes mean ergodic in m.s. since RX(T )→ 0

as |T | → ∞.

(b) Yes, no, yes, for the same reasons as in part (a). Since X is mean zero,

RX(T ) = CX(T ) for all T . Thus

lim
|T |→∞

CX(T ) = lim
|T |→∞

RX(T ) = 1.

Since the limit of CX exists and is net zero, X is not mean ergodic in the m.s.

sense.

(c) Yes, no, yes, yes, for the same reasons as in (a).

(d) No, not m.s. continuous sinceRX is not continuous. No, not m.s. differentiable

since X is not even m.s. continuous. Yes, m.s. integrable over finite intervals,

because the Riemann integral
∫ b
a

∫ b
a
RX(s, t)dsdt exists and is finite, for the region

of integration is a simple bounded region and the integrand is piece-wise constant.

(e) Yes, m.s. continuous since RX is continuous. No, not m.s. differentiable. For
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example,

E

[(
Xt −X0

t

)2
]

=
1

t2
[RX(t, t)−RX(t, 0)−RX(0, t) +RX(0, 0)]

=
1

t2

[√
t− 0− 0 + 0

]
→ +∞ as t→ 0.

Yes, m.s. integrable over finite intervals since m.s. continuous.

7.18 A stationary Gaussian process (a) No. All mean zero stationary, Gaus-

sian Markov processes have autocorrelation functions of the form RX(t) = Aρ|t|,

where A ≥ 0 and 0 ≤ ρ ≤ 1 for continuous time (or |ρ| ≤ 1 for discrete time).

(b) E[X3|X0] = Ê[X3|X0] = RX(3)
RX(0)X0 = X0

10 . The error is Gaussian with

mean zero and variance MSE = Var(X3) − Var(X0

10 ) = 1 − 0.01 = 0.99. So

P{|X3 − E[X3|X0]| ≥ 10} = 2Q( 10√
0.99

).

(c) RX′(τ) = −R′′X(τ) = 2−6τ2

(1+τ2)3 . In particular, since −R′′X exists and is contin-

uous, X is continuously differentiable in the m.s. sense.

(d) The vector has a joint Gaussian distribution because X is a Gaussian process

and differentiation is a linear operation. Cov(Xτ , X
′
0) = RXX′(τ) = −R′X(τ) =

2τ
(1+τ2)2 . In particular, Cov(X0, X

′
0) = 0 and Cov(X1, X

′
0) = 2

4 = 0.5. Also,

Var(X ′0) = RX′(0) = 2. So (X0, X
′
0, X1)T is N

 0

0

0

 ,

 1 0 0.5

0 2 0.5

0.5 0.5 1

 .

7.20 Correlation ergodicity of Gaussian processes (a) Fix h and let

Yt = Xt+hXt. Clearly Y is stationary with mean µY = RX(h). Observe that

CY (τ) = E[YτY0]− µ2
Y

= E[Xτ+hXτXhX0]−RX(h)2

= RX(h)2 +RX(τ)RX(τ) +RX(τ + h)RX(τ − h)−RX(h)2.

Therefore, CY (τ)→ 0 as |τ | → ∞. Hence Y is mean ergodic, so X is correlation

ergodic.

(b) Xt = A cos(t+ Θ), where A is a random variable with positive variance, Θ is

uniformly distributed on the interval [0, 2π], and A is independent of Θ. Note that

µX = 0 because E[cos(t+ Θ)] = 0. Also, |
∫ T

0
Xtdt| = |A

∫ T
0

cos(t+ Θ)dt| ≤ 2|A|

so

∣∣∣∣ ∫ T0 Xtdt

T

∣∣∣∣ ≤ 2|A|
T → 0 in the m.s. sense. So X is m.s. ergodic. Similarly, we

have
∫ T
0
X2
t dt

T → A2

2 in the m.s. sense. The limit is random, so X2
t is not mean

ergodic, so X is not correlation ergodic. (The definition is violated for h = 0.)

ALTERNATIVELY Xt = cos(V t + Θ) where V is a positive random variable

with nonzero variance, Θ is uniformly distributed on the interval [0, 2π], and

V is independent of Θ. In this case, X is correlation ergodic as before. But∫ T
0
XtXt+hdt→ cos(V h)

2 in the m.s. sense. This limit is random, at least for some

values of h, so Y is not mean ergodic so X is not correlation ergodic.

7.22 Gaussian review question (a) Since X is Markovian, the best estimator



Solutions to Even Numbered Problems 417

of X2 given (X0, X1) is a function of X1 alone. Since X is Gaussian, such

estimator is linear in X1. Since X is mean zero, the estimator is given by

Cov(X2, X1)Var(X1)−1X1 = e−1X1. Thus E[X2|X0, X1] = e−1X1. No func-

tion of (X0, X1) is a better estimator! But e−1X1 is equal to p(X0, X1) for the

polynomial p(x0, x1) = x1/e. This is the optimal polynomial. The resulting mean

square error is given by MMSE = Var(X2)−(Cov(X1X2)2)/Var(X1) = 9(1−e−2)

(b) Given (X0 = π,X1 = 3), X2 is N
(
3e−1, 9(1− e−2)

)
so

P (X2 ≥ 4|X0 = π,X1 = 3) = P

{
X2 − 3e−1√
9(1− e−2)

≥ 4− 3e−1√
9(1− e−2)

}

= Q

(
4− 3e−1√
9(1− e−2)

)
.

7.24 KL expansion of a simple random process (a) Yes, because RX(τ) is

twice continuously differentiable.

(b) No. limt→∞
2
t

∫ t
0
( t−τt )CX(τ)dτ = 50 + limt→∞

100
t

∫ t
0
( t−τt ) cos(20πτ)dτ =

50 6= 0. Thus, the necessary and sufficient condition for mean ergodicity in the

m.s. sense does not hold.

(c) APPROACH ONE Since RX(0) = RX(1), the process X is periodic with

period one (actually, with period 0.1). Thus, by the theory of WSS periodic

processes, the eigen-functions can be taken to be ϕn(t) = e2πjnt for n ∈ Z. (Still

have to identify the eigenvalues.)

APPROACH TWO The identity cos(θ) = 1
2 (ejθ + e−jθ), yields

RX(s− t) = 50 + 25e20πj(s−t) + 25e−20πj(s−t)

= 50 + 25e20πjse−20πjt + 25e−20πjse20πjt

= 50ϕ0(s)ϕ∗0(t) + 25ϕ1(s)ϕ∗1(t) + 25ϕ2(s)ϕ∗2(t).

for the choice ϕ0(t) ≡ 1, ϕ1(t) = e20πjt and ϕ2 = e−20πjt. The eigenvalues

are thus 50, 25, and 25. The other eigenfunctions can be selected to fill out an

orthonormal basis, and the other eigenvalues are zero.

APPROACH THREE For s, t ∈ [0, 1] we have

RX(s, t) = 50 + 50 cos(20π(s− t))
= 50 + 50 cos(20πs) cos(20πt) + 50 sin(20πs) sin(20πt)

= 50ϕ0(s)ϕ∗0(t) + 25ϕ1(s)ϕ∗1(t) + 25ϕ2(s)ϕ∗2(t).

for the choice ϕ0(t) ≡ 1, ϕ1(t) =
√

2 cos(20πt) and ϕ2 =
√

2 sin(20πt). The

eigenvalues are thus 50, 25, and 25. The other eigenfunctions can be selected to

fill out an orthonormal basis, and the other eigenvalues are zero.

(Note: the eigenspace for eigenvalue 25 is two dimensional, so the choice of eigen

functions spanning that space is not unique.)

7.26 KL expansion for derivative process (a) Since ϕ′n(t) = (2πjn)ϕn(t), the

equation given in the problem statement leads to: X ′(t) =
∑
n〈X,ϕn〉ϕ′n(t) =
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∑
n[(2πjn)〈X,ϕn〉]ϕn(t), which is a KL expansion, because the functions ϕn are

orthonormal in L2[0, 1] and the coordinates are orthogonal random variables.

Thus,

ψn(t) = ϕn(t), 〈X ′, ψn〉 = (2πjn)〈Xn, ϕn〉, and µn = (2πn)2λn for n ∈ Z.

(Recall that the eigenvalues are equal to the means of the squared magnitudes

of the coordinates.)

(b) Note that ϕ′1 = 0, ϕ′2k(t) = −(2πk)ϕ2k+1(t) and ϕ′2k+1(t) = (2πk)ϕ2k(t).

This is similar to part (a). The same basis functions can be used for X ′ as for

X, but the (2k)th and (2k+ 1)th coordinates of X ′ come from the (2k+ 1)th and

(2k)th coordinates of X, respectively, for all k ≥ 1. Specifically, we can take

ψn(t) = ϕn(t) for n ≥ 0, µ0 = 0 (because 〈X ′, ψ0〉 = 0),

〈X ′, ψ2k〉 = 〈2πk〉〈X,ϕ2k+1〉, µ2k = (2πk)2λ2k+1,

〈X ′, ψ2k+1〉 = −(2πk)〈X,ϕ2k〉, µ2k+1 = (2πk)2λ2k, for k ≥ 1

.

Defining ψ0 was optional because the corresponding eigenvalue is zero.

(c) Note that ϕ′n(t) = (2n+1)π
2 ψn(t), where ψn(t) =

√
2 cos

(
(2n+1)πt

2

)
, n ≥ 0.

That is, ψn is the same as ϕn, but with sin replaced by cos . Or equivalently,

by the hint, we discover that ψn is obtained from ϕn by time-reversal: ψn(t) =

ϕn(1− t)(−1)n. Thus, the functions ψn are orthonormal. As in part (a), we also

have 〈X ′, ψn〉 = (2n+1)π
2 〈X,ϕn〉, and therefore, µn = ( (2n+1)π

2 )2λn. (The set of

eigenfunctions is not unique–for example, some could be multiplied by -1 to yield

another valid set.)

(d) Differentiating the KL expansion of X yields

X ′t = 〈X,ϕ1〉ϕ′1(t) + 〈X,ϕ2〉ϕ′2(t) = 〈X,ϕ1〉c1
√

3− 〈X,ϕ2〉c2
√

3.

That is, the random process X ′ is constant in time. So its KL expansion involves

only one nonzero term, with the eigenfunction ψ1(t) = 1 for 0 ≤ t ≤ 1. Then

〈X ′, ψ1〉 = 〈X,ϕ1〉c1
√

3− 〈X,ϕ2〉c2
√

3, and therefore µ1 = 3c21λ1 + 3c22λ2.

7.28 KL expansion of a Brownian bridge The (eigenfunction, eigenvalue) pairs

satisfy
∫ 1

0
RB(t, s)ϕ(s)ds = λϕ(t). Since RB(t, s) → 0 as t → 0 or t → 1 and

the function ϕ is continuous (and hence bounded) on [0, 1] by Mercer’s theorem,

it follows that ϕ(0) = ϕ(1) = 0. Inserting the expression for RB , into the eigen

relation yields ∫ 1

0

((s ∧ t)− st)ϕ(s)ds = λϕ(t).

or ∫ t

0

(1− t)sϕ(s)ds+

∫ 1

t

t(1− s)ϕ(s)ds = λϕ(t).

Differentiating both sides with respect to t, yields

−
∫ t

0

sϕ(s)ds+

∫ 1

t

(1− s)ϕ(s)ds = λϕ′(t),
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where we used the fact that the terms coming from differentiating the limit of

integration t cancel out. Differentiating a second time with respect to t yields

−tϕ(t) − (1 − t)ϕ(t) = λϕ′′(t), or ϕ′′(t) = 1
λϕ(t). The solutions to this second

order equation have the form A sin
(

t√
λ

)
+ B cos

(
t√
λ

)
. Since ϕ = 0 at the

endpoints 0 and 1, B = 0 and sin
(

1√
λ

)
= 0. Thus, 1√

λ
= nπ for some integer

n ≥ 1, so that ϕ(t) = A sin(nπt) for some n ≥ 1. Normalizing ϕ to have energy

one yields ϕn(t) =
√

2 sin(nπt) with the corresponding eigenvalue λn = 1
(nπ)2 .

Thus, the Brownian bridge has the KL representation

B(t) =

∞∑
n=1

Bn
√

2 sin(nπt)

where the (Bn) are independent with Bn having the N
(

0, 1
(nπ)2

)
distribution.

7.30 Mean ergodicity of a periodic WSS random process

1

t

∫ t

0

Xudu =
1

t

∫ t

0

∑
n

X̂ne
2πjnu/T du =

∑
n∈Z

an,tX̂n

where a0 = 1, and for n 6= 0, |an,t| = | 1t
∫ t

0
e2πjnu/T du| = | e

2πjnt/T−1
2πjnt/T | ≤

T
πnt .

The n 6= 0 terms are not important as t→∞. Indeed,

E


∣∣∣∣∣∣
∑

n∈Z,n6=0

an,tX̂n

∣∣∣∣∣∣
2
 =

∑
n∈Z,n6=0

|an,t|2pX(n) ≤ T 2

π2t2

∑
n∈Z,n6=0

pX(n)→ 0

as t → ∞. Therefore, 1
t

∫ t
0
Xudu → X̂0 m.s. The limit has mean zero and

variance pX(0). For mean ergodicity (in the m.s. sense), the limit should be zero

with probability one, which is true if and only if pX(0) = 0. That is, the process

should have no zero frequency, or DC, component. (Note: More generally, if X

were not assumed to be mean zero, then X would be mean ergodic if and only

if Var(X̂0) = 0, or equivalently, pX(0) = µ2
X , or equivalently, X̂0 is a constant

a.s.)

8.2 A second order stochastic differential equation (a) For deterministic, fi-

nite energy signals x and y, the given relationship in the frequency domain

becomes ((jω)2 + jω+ 1)ŷ(ω) = x̂(ω), so the transfer function is H(ω) = ŷ(ω)
x̂(ω) =

1
(jω)2+jω+1 = 1

1−ω2+jω . Note that |H(ω)|2 = 1
(1−ω2)2+ω2 = 1

1−ω2+ω4 . Therefore,

SY (ω) = 1
1−ω2+ω4SX(ω).

(b) Letting η = ω2, the denominator in H is 1−η+η2, which takes its minimum

value 3
4 when η = 1/2. Thus, maxω |H(ω)|2 = 4

3 , and the maximum is achieved

at ω = ±
√

0.5. If the power of X is one then the power of Y is less than or equal

to 4
3 , with equality if and only if all the power in X is at ±

√
0.5. For example, X

could take the form Xt =
√

2 cos(2π
√

0.5t+Θ), where Θ is uniformly distributed

over [0, 2π].

(c) Similarly, for the power of Y to be small for an X with power one, the
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power spectral density of X should be concentrated on high frequencies, where

H(ω) ≈ 0. This can make the power of Y arbitrarily close to zero.

8.4 On the cross spectral density Follow the hint. Let U be the output if X is

filtered by Hε and V be the output if Y is filtered by Hε. The Schwarz inequality

applied to random variables Ut and Vt for t fixed yields |RUV (0)|2 ≤ RU (0)RV (0),

or equivalently, ∣∣∣∣ ∫
Jε
SXY (ω)

dω

2π

∣∣∣∣2 ≤ ∫
Jε
SX(ω)

dω

2π

∫
Jε
SY (ω)

dω

2π
,

which implies that

|εSXY (ωo) + o(ε)|2 ≤ (εSX(ωo) + o(ε))(εSY (ωo) + o(ε)).

Letting ε→ 0 yields the desired conclusion.

8.6 Filtering a Gauss Markov process (a) The process Y is the output when

X is passed through the linear time-invariant system with impulse response func-

tion h(τ) = e−τI{τ≥0}. Thus, X and Y are jointly WSS, and

RXY (τ) = RX ∗ h̃(τ) =
∫∞
t=−∞RX(t)h̃(τ − t)dt =

∫∞
−∞RX(t)h(t − τ)dt ={

1
2e
−τ τ ≥ 0

( 1
2 − τ)eτ τ ≤ 0

(b) X5 and Y5 are jointly Gaussian, mean zero, with Var(X5) = RX(0) = 1, and

Cov(Y5, X5) = RXY (0) = 1
2 , so E[Y5|X5 = 3] = (Cov(Y5, X5)/Var(X5))3 = 3/2.

(c) Yes, Y is Gaussian, because X is a Gaussian process and Y is obtained from

X by linear operations.

(d) No, Y is not Markov. For example, we see that SY (ω) = 2
(1+ω2)2 , which does

not have the form required for a stationary mean zero Gaussian process to be

Markov (namely 2A
α2+ω2 ). Another explanation is that, if t is the present time,

given Yt, the future of Y is determined by Yt and (Xs : s ≥ t). The future could

be better predicted by knowing something more about Xt than Yt gives alone,

which is provided by knowing the past of Y .

(Note: the R2-valued process ((Xt, Yt) : t ∈ R) is Markov.)

8.8 A stationary two-state Markov process πP = π implies π = ( 1
2 ,

1
2 ) is the

equilibrium distribution so P{Xn = 1} = P{Xn = −1} = 1
2 for all n. Thus

µX = 0. For n ≥ 1

RX(n) = P (Xn = 1, X0 = 1) + P (Xn = −1, X0 = −1)

− P (Xn = −1, X0 = 1)− P (Xn = 1, X0 = −1)

=
1

2

[
1

2
+

1

2
(1− 2p)n

]
+

1

2

[
1

2
+

1

2
(1− 2p)n

]
−

1

2

[
1

2
− 1

2
(1− 2p)n

]
− 1

2

[
1

2
− 1

2
(1− 2p)n

]
= (1− 2p)n.

So in general, RX(n) = (1− 2p)|n|. The corresponding power spectral density is
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given by:

SX(ω) =

∞∑
n=−∞

(1− 2p)ne−jωn

=

∞∑
n=0

((1− 2p)e−jω)n +

∞∑
n=0

((1− 2p)ejω)n − 1

=
1

1− (1− 2p)e−jω
+

1

1− (1− 2p)ejω
− 1

=
1− (1− 2p)2

1− 2(1− 2p) cos(ω) + (1− 2p)2
.

8.10 A linear estimation problem

E[|Xt − Zt|2] = E[(Xt − Zt)(Xt − Zt)∗]
= RX(0) +RZ(0)−RXZ(0)−RZX(0)

= RX(0) + h ∗ h̃ ∗RY (0)− 2Re(h̃ ∗RXY (0))

=

∫ ∞
−∞

SX(ω) + |H(ω)|2SY (ω)− 2Re(H∗(ω)SXY (ω))
dω

2π
.

The hint with σ2 = SY (ω), zo = S(XY (ω), and z = H(ω) implies Hopt(ω) =
SXY (ω)
SY (ω) .

8.12 The accuracy of approximate differentiation

(a) SX′(ω) = SX(ω)|H(ω)|2 = ω2SX(ω).

(b) k(τ) = 1
2a (δ(τ + a) − δ(τ − a)) and K(ω) =

∫∞
−∞ k(τ)e−jωtdτ = 1

2a (ejωa −
e−jωa) = j sin(aω)

a . By l’Hôspital’s rule, lima→0K(ω) = lima→0
jω cos(aω)

1 = jω.

(c) D is the output of the linear system with input X and transfer function

H(ω)−K(ω). The output thus has power spectral density SD(ω) = SX(ω)|H(ω)−
K(ω)|2 = SX(ω)|ω − sin(aω)

a |2.

(d) Or, SD(ω) = SX′(ω)|1 − sin(aω)
aω |2. Suppose 0 < a ≤

√
0.6
ωo

(≈ 0.77
ωo

). Then by

the bound given in the problem statement, if |ω| ≤ ωo then 0 ≤ 1 − sin(aω)
aω ≤

(aω)2

6 ≤ (aωo)2

6 ≤ 0.1, so that SD(ω) ≤ (0.01)SX′(ω) for ω in the base band. In-

tegrating this inequality over the band yields that E[|Dt|2] ≤ (0.01)E[|X ′t|2].

8.14 Filtering Poisson white noise (a) Since µN ′ = λ, µX = λ
∫∞
−∞ h(t)dt.

Also, CX = h ∗ h̃ ∗ CN ′ = λh ∗ h̃. (In particular, if h(t) = I{0≤t<1}, then

CX(τ) = λ(1 − |τ |)+, as already found in Problem 4.19.) (b) In the special

case, in between arrival times of N , X decreases exponentially, following the

equation X ′ = −X. At each arrival time of N , X has an upward jump of size

one. Formally, we can write, X ′ = −X +N ′. For a fixed time to, which we think

of as the present time, the process after time to is the solution of the above

differential equation, where the future of N ′ is independent of X up to time to.

Thus, the future evolution of X depends only on the current value, and random

variables independent of the past. Hence, X is Markov.
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8.16 Linear and nonlinear reconstruction from samples

(a) E[Xt] =
∑
nE[g(t− n− U)]E[Bn] ≡ 0 because E[Bn] = 0 for all n.

RX(s, t) = E

[ ∞∑
n=−∞

g(s− n− U)Bn

∞∑
m=−∞

g(t−m− U)Bm

]

= σ2
∞∑

n=−∞
E[g(s− n− U)g(t− n− U)]

= σ2
∞∑

n=−∞

∫ 1

0

g(s− n− u)g(t− n− u)du

= σ2
∞∑

n=−∞

∫ n+1

n

g(s− v)g(t− v)dv = σ2

∫ ∞
−∞

g(s− v)g(t− v)dv

= σ2

∫ ∞
−∞

g(s− v)g̃(v − t)dv = σ2(g ∗ g̃)(s− t).

So X is WSS with mean zero and RX = σ2g ∗ g̃.
(b) By part (a), the power spectral density of X is σ2|G(ω)|2. If g is a baseband

signal, so that |G(ω)2| = 0 for ω ≥ ωo. then by the sampling theorem for WSS

baseband random processes, X can be recovered from (X(nT ) : n ∈ Z) as long

as T ≤ π
ωo
.

(c) For this case, G(2πf) = sinc2(f), which is not supported in any finite interval.

So part (a) does not apply. The sample paths of X are continuous and piecewise

linear, and at least two sample points fall within each linear portion of X. Either

all pairs of samples of the form (Xn, Xn+0.5) fall within linear regions (happens

when 0.5 ≤ U ≤ 1), or all pairs of samples of the form (Xn+0.5, Xn+1) fall within

linear regions (happens when 0 ≤ U ≤ 0.5). We can try reconstructing X using

both cases. With probability one, only one of the cases will yield a reconstruction

with change points having spacing one. That must be the correct reconstruction

of X. The algorithm is illustrated in Figure 12.5. Figure 12.5(a) shows a sample

path of B and a corresponding sample path of X, for U = 0.75. Thus, the

breakpoints of X are at times of the form n+ 0.75 for integers n. Figure 12.5(b)

shows the corresponding samples, taken at integer multiples of T = 0.5. Figure

12.5(c) shows the result of connecting pairs of the form (Xn, Xn+0.5), and Figure

12.5(d) shows the result of connecting pairs of the form (Xn+0.5, Xn+1). Of these

two, only Figure 12.5(c) yields breakpoints with unit spacing. Thus, the dashed

lines in Figure 12.5(c) are connected to reconstruct X.

8.18 approximation of white noise (a) Since E[BkB
∗
l ] = I{k=l},

E

[∣∣∣∣ ∫ 1

0

Ntdt

∣∣∣∣2
]

= E

[∣∣∣∣ATT K∑
k=1

Bk

∣∣∣∣2
]

= (ATT )2E

[
K∑
k=1

Bk

K∑
l=1

B∗l

]
= (ATT )2σ2K = A2

TTσ
2.

(b) The choice of scaling constant AT such that A2
TT ≡ 1 is AT = 1√

T
. Under

this scaling the process N approximates white noise with power spectral density
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Figure 12.5 Nonlinear reconstruction of a signal from samples

σ2 as T → 0.

(c) If the constant scaling AT = 1 is used, then E[|
∫ 1

0
Ntdt|2] = Tσ2 → 0 as

T → 0.

8.20 Synthesizing a random process with specified spectral density Recall from

Example 8.6, a Gaussian random process Z with a rectangular spectral den-

sity SZ(2πf) = I{−f0≤f≤f0} can be represented as (note, if 1
T = 2fo, then

t−nT
T = 2fot− n) :

Zt =

∞∑
n=−∞

An

(√
2fo

)
sinc(2fot− n).

where the An’s are independent, N(0, 1) random variables. (To double check that

Z is scaled correctly, note that the total power of Z is equal to both the integral

of the psd and to E[Z2
0 ].) The desired psd SX can be represented as the sum of

two rectangular psds: SX(2πf) = I{−20≤f≤20}+ I{−10≤f≤10}, and the psd of the

sum of two independent WSS processes is the sum of the psds, so X could be

represented as:

Xt =

∞∑
n=−∞

An

(√
40
)

sinc(40t− n) +

∞∑
n=−∞

Bn

(√
20
)

sinc(20t− n),

where the A’s and B’s are independent N(0, 1) random variables. This requires

60 samples per unit simulation time.

An approach using fewer samples is to generate a random process Y with psd

SY (ω) = I{−20≤f≤20} and then filter Y using a filter with impulse response H

with |H|2 = SX . For example, we could simply take H(2πf) =
√
SX(2πf) =

I{−20≤f≤20} +
(√

2− 1
)
I{−10≤f≤10}, so X could be represented as:

X =

( ∞∑
n=−∞

An

(√
40
)

sinc(40t− n)

)
∗ h,
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where h(t) = (40)sinc(40t) +
(√

2− 1
)

(20)sinc(20t). This approach requires 40

samples per unit simulation time.

8.22 Finding the envelope of a deterministic signal (a) ẑ(2πf) = 2[x̂(2π(f+

fc))]LP = δ(f + fc − 1000) + δ(f + fc − 1001). If fc = 1000.5 then ẑ(2πf) =

δ(f + 0.5) + δ(f − 0.5). Therefore z(t) = 2 cos(πt) and |z(t)| = 2| cos(πt)|.
(b) If fc = 995 then ẑ(2πf) = δ(f−5)+δ(f−6). Therefore z(t) = ej2π(5.5)t2 cos(πt)

and |z(t)| = 2| cos(πt)|.
(c) In general, the complex envelope in the frequency domain is given by ẑ(2πf) =

2[x̂(2π(f + fc))]LP . If a somewhat different carrier frequency f̃c = fc +4fc is

used, the complex envelope of x using f̃c is the original complex envelope, shifted

to the left in the frequency domain by 4f . This is equivalent to multiplication

by e−j2π(4f)t in the time domain. Since |e−j2π(4f)t| ≡ 1, the real envelope is

unchanged.

8.24 A narrowband Gaussian process (a) The power spectral density SX , which

is the Fourier transform of RX , can be found graphically as follows.

π τ

τsinc(6   )

sinc(6   )τ

2

πS  (2   f)
X

-6

-3 3

6

1/12

1/6

1/6

-24-30-36 363024

cos(2   (30   ))(sinc(6   )) 2τ

Figure 12.6 Taking the Fourier transform.

(b) A sample path of X generated by computer simulation is pictured in Figure

12.7.

Several features of the sample path are apparent. The carrier frequency is 30

Hz, so for a period of time on the order of a tenth of a second, the signal re-

sembles a pure sinusoidal signal with frequency near 30 Hz. On the other hand,

the one sided root mean squared bandwidth of the baseband signals U and V

is 2.7 Hz, so that the envelope of X varies significantly over intervals of length

1/3 of a second or more. The mean square value of the real envelope is given by

E[|Zt|2] = 2, so the amplitude of the real envelope process |Zt| fluctuates about√
2 ≈ 1.41.

(c) The power spectral densities SU (2πf) and SV (2πf) are equal, and are equal

to the Fourier transform of sinc(6τ)2, shown in Figure 12.6. The cross spectral

density SUV is zero since the upper lobe of SX is symmetric about 30Hz.

(d) The real envelope process is given by |Zt| =
√
U2
t + V 2

t . For t fixed, Ut and

Vt are independent N(0, 1) random variables. The processes U and V have unit
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Figure 12.7 A sample path of X

power since their power spectral densities integrate to one. The variables Ut and

Vt for t fixed are uncorrelated even if SXY 6= 0, since RXY is an odd function.

Thus |Zt| has the Rayleigh density with σ2 = 1. Hence

P (|Z33| ≥ 5) =

∫ ∞
5

r

σ2
e−r

2
2σ2 dr = e−

52

2σ2 = e−
25
2 = 3.7× 10−6.

8.26 Another narrowband Gaussian process (version 2) (a) Since the white

noise has mean zero, so does X, and

SX(2πf) =
No
2
|H(2πf)|2 =


No
2 19.10 ≤ |f | ≤ 19.11

No
2

19.12−|f |
0.01 19.11 ≤ |f | ≤ 19.12

0 else

(b) For any t, Xt is a real valued N(0, σ2) random variable with σ2 =(the

power of X) =
∫∞
−∞ SX(2πf)df = 3No

2 × 107. So P{X25 > 2} = Q(2/σ) =

Q

(
2/
√

3No
2 × 107

)
.

(c) See the figures:
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+

+

=

=

j

No/2
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19.10 19.12

0.01 GHz

(d) For t fixed, the real and imaginary parts of Zt are independent, N(0, σ2) ran-

dom variables. So by definition, Zt is a proper complex normal random variable

with variance 2σ2. It follows that the real envelope |Zt| has the Rayleigh(σ2)

distribution, with density f(r) = r
σ2 exp(− r2

2σ2 ) for r ≥ 0.

9.2 A smoothing problem Write X̂5 =
∫ 3

0
g(s)Ysds +

∫ 10

7
g(s)ysds. The mean

square error is minimized over all linear estimators if and only if (X5− X̂5) ⊥ Yu
for u ∈ [0, 3] ∪ [7, 10], or equivalently

RXY (5, u) =

∫ 3

0

g(s)RY (s, u)ds+

∫ 10

7

g(s)RY (s, u)ds for u ∈ [0, 3] ∪ [7, 10].

9.4 A standard noncausal estimation problem (a) ĝ(ω) =
∫∞

0
g(t)e−jωtdt +∫ 0

−∞ g(t)e−jωtdt = 1
α+jω + 1

α−jω = 2α
ω2+α2 .

(So
∫∞
−∞

1
ω2+α2

dω
2π = 1

2α .)

(b)
∫∞
−∞

1
a+bω2

dω
2π =

∫∞
−∞

1/b
a/b+ω2

dω
2π = 1/b

2
√
a/b

= 1
2
√
ab
.

(c) By Example 9.1.1 in the notes, H(ω) = SX(ω)
SX(ω)+SN (ω) . By the given and part

(a),

SX(ω) = 2α
ω2+α2 and SN (ω) = σ2. So

H(ω) =
2α

2α+ σ2(α2 + ω2)

=
2α/σ2

(2α/σ2 + α2) + ω2
↔ α√

2ασ2 + (ασ2)2
exp

(
−
√

2α/σ2 + α2
∣∣t∣∣) .
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(d) By Example 9.1.1 in the notes and part (b),

MSE =

∫ ∞
−∞

H(ω)SN (ω)
dω

2π
=

∫ ∞
−∞

2α

(2α/σ2 + α2) + ω2

dω

2π

=
α√

2α/σ2 + α2
=

1√
1 + 2/(ασ2)

.

MSE→ 0 as σ2 → 0 and MSE→ 1 = E[X2
t ] as σ2 →∞, as expected.

(e) The estimation error Dt is orthogonal to constants and to Ys for all s by the

orthogonality principle, so CD,Y ≡ 0.

9.6 Interpolating a Gauss Markov process (a) The constants must be selected

so that X0−X̂0 ⊥ Xa and X0−X̂0 ⊥ X−a, or equivalently e−a−[c1e
−2a+c2] = 0

and e−a− [c1 +c2e
−2a] = 0. Solving for c1 and c2 (one could begin by subtracting

the two equations) yields c1 = c2 = c where c = e−a

1+e−2a = 1
ea+e−a = 1

2 cosh(a) .

The corresponding minimum MSE is given by E[X2
0 ]−E[X̂2

0 ] = 1− c2E[(X−a+

Xa)2] = 1− c2(2 + 2e−2a) = e2a−e−2a

(ea+e−a)2 = (ea−e−a)(ea+e−a)
(ea+e−a)2 = tanh(a).

(b) The claim is true if (X0 − X̂0) ⊥ Xu whenever |u| ≥ a. If u ≥ a then

E[(X0 − c(X−a +Xa))Xu] = e−u − 1
ea+e−a (e−a−u + ea+u) = 0. Similarly if

u ≤ −a then E[(X0 − c(X−a +Xa))Xu] = eu − 1
ea+e−a (ea+u + e−a+u) = 0. The

orthogonality condition is thus true whenever |u| ≥ a as required.

9.8 Proportional noise (a) In order that κYt be the optimal estimator, by the

orthogonality principle, it suffices to check two things:

1. κYt must be in the linear span of (Yu : a ≤ u ≤ b). This is true since t ∈ [a, b]

is assumed.

2. Orthogonality condition: (Xt − κYt) ⊥ Yu for u ∈ [a, b].

It remains to show that κ can be chosen so that the orthogonality condition

is true. The condition is equivalent to E[(Xt − κYt)Y ∗u ] = 0 for u ∈ [a, b], or

equivalently RXY (t, u) = κRY (t, u) for u ∈ [a, b]. The assumptions imply that

RY = RX + RN = (1 + γ2)RX and RXY = RX , so the orthogonality condition

becomes RX(t, u) = κ(1 +γ2)RX(t, u) for u ∈ [a, b], which is true for κ = 1/(1 +

γ2). The form of the estimator is proved. The MSE is given by E[|Xt − X̂t|2] =

E[|Xt|2]− E[|X̂t|]2 = γ2

1+γ2RX(t, t).

(b) Since SY is proportional to SX , the factors in the spectral factorization of

SY are proportional to the factors in the spectral factorization of X:

SY = (1 + γ2)SX =
(√

1 + γ2S+
X

)
︸ ︷︷ ︸

S+
Y

(√
1 + γ2S−X

)
︸ ︷︷ ︸

S−Y

.

That and the fact SXY = SX imply that

H(ω) =
1

S+
Y

[
ejωTSXY

S−Y

]
+

=
1√

1 + γ2S+
X

[
ejωTS+

X√
1 + γ2

]
+

=
κ

S+
X(ω)

[
ejωTS+

X(ω)
]
+
.

Therefore H is κ times the optimal filter for predicting Xt+T from (Xs : s ≤ t).
In particular, if T < 0 then H(ω) = κejωT , and the estimator of Xt+T is simply
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X̂t+T |t = κYt+T , which agrees with part (a).

(c) As already observed, if T > 0 then the optimal filter is κ times the prediction

filter for Xt+T given (Xs : s ≤ t).
9.10 Short answer filtering questions (a) The convolution of a causal function

h with itself is causal, and H2 has transform h ∗ h. So if H is a positive type

function then H2 is positive type.

(b) Since the intervals of support of SX and SY do not intersect, SX(2πf)SY (2πf) ≡
0. Since |SXY (2πf)|2 ≤ SX(2πf)SY (2πf) (by the first problem in Chapter 6) it

follows that SXY ≡ 0. Hence the assertion is true.

(c) Since sinc(f) is the Fourier transform of I[− 1
2 ,

1
2 ], it follows that

[H]+(2πf) =

∫ 1
2

0

e−2πfjtdt =
1

2
e−πjf/2sinc

(
f

2

)
.

9.12 A singular estimation problem (a) E[Xt] = E[A]ej2πfot = 0, which does

not depend on t.

RX(s, t) = E[Aej2πfos(Aej2πfot)∗] = σ2
Ae

j2πfo(s−t) is a function of s− t.
Thus, X is WSS with µX = 0 and RX(τ) = σ2

Ae
j2πfoτ . Therefore, SX(2πf) =

σ2
Aδ(f − f0), or equivalently, SX(ω) = 2πσ2

Aδ(ω − ω0) (This makes RX(τ) =∫∞
−∞ SX(2πf)ej2πfτdf =

∫∞
−∞ SX(ω)ejωτ dω2π .)

(b)

(h ∗X)t =

∫ ∞
−∞

h(τ)Xt−τdτ =

∫ ∞
0

αe−α−j2πfo)τAej2πfo(t−τ)dτ

=

∫ ∞
0

αe−(ατdτAej2πfot = Xt.

Another way to see this is to note that X is a pure tone sinusoid at frequency

fo, and H(2πf0) = 1.

(c) In view of part (b), the mean square error is the power of the output due to

the noise, or MSE=(h ∗ h̃ ∗RN )(0) =
∫∞
−∞(h ∗ h̃)(t)RN (0− t)dt = σ2

Nh ∗ h̃(0) =

σ2
N ||h||2 = σ2

N

∫∞
0
α2e−2αtdt =

σ2
Nα
2 . The MSE can be made arbitrarily small by

taking α small enough. That is, the minimum mean square error for estimation of

Xt from (Ys : s ≤ t) is zero. Intuitively, the power of the signal X is concentrated

at a single frequency, while the noise power in a small interval around that

frequency is small, so that perfect estimation is possible.

9.14 A prediction problem The optimal prediction filter is given by 1
S+
X

[
ejωTS+

X

]
.

Since RX(τ) = e−|τ |, the spectral factorization of SX is given by

SX(ω) =

( √
2

jω + 1

)
︸ ︷︷ ︸

S+
X

( √
2

−jω + 1

)
︸ ︷︷ ︸

S−X

.

so [ejωTS+
X ]+ = e−TS+

X (see Figure 12.8). Thus the optimal prediction filter is

H(ω) ≡ e−T , or in the time domain it is h(t) = e−T δ(t), so that X̂T+t|t = e−TXt.
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2 e

-T

-(t+T)

t0

Figure 12.8
√

2ejωTS+
X in the time domain

This simple form can be explained and derived another way. Since linear estima-

tion is being considered, only the means (assumed zero) and correlation functions

of the processes matter. We can therefore assume without loss of generality that

X is a real valued Gaussian process. By the form of RX we recognize that X is

Markov so the best estimate of XT+t given (Xs : s ≤ t) is a function of Xt alone.

Since X is Gaussian with mean zero, the optimal estimator of Xt+T given Xt is

E[Xt+T |Xt] = Cov(Xt+T ,Xt)Xt

Var(Xt)
= e−TXt.

9.16 Spectral decomposition and factorization (a) Building up transform pairs

by steps yields:

sinc(f)↔ I{− 1
2≤t≤

1
2}

sinc(100f)↔ 10−2I{− 1
2≤

t
100≤

1
2}

sinc(100f)e2πjfT ↔ 10−2I{− 1
2≤

t+T
100 ≤

1
2}[

sinc(100f)ej2πfT
]
+
↔ 10−2I{−50−T≤t≤50−T}∩{t≥0}.

so

||x||2 = 10−4length of ([−50−T, 50−T ]∩[0,+∞)) =


10−2 T ≤ −50

10−4(50− T ) −50 ≤ T ≤ 50

0 T ≥ 50

(b) By the hint, 1 + 3j is a pole of S. (Without the hint, the poles can be found

by first solving for values of ω2 for which the denominator of S is zero.) Since S

is real valued, 1 − 3j must also be a pole of S. Since S is an even function, i.e.

S(ω) = S(−ω), −(1 + 3j) and −(1− 3j) must also be poles. Indeed, we find

S(ω) =
1

(ω − (1 + 3j))(ω − (1− 3j))(ω + 1 + 3j)(ω + 1− 3j)
.

or, multiplying each term by j (and using j4 = 1) and rearranging terms:

S(ω) =
1

(jω + 3 + j)(jω + 3− j)︸ ︷︷ ︸
S+(ω)

1

(−jω + 3 + j)(−jω + 3− j)︸ ︷︷ ︸
S−(ω)

.

or S+(ω) = 1
(jω2)+6jω+10 . The choice of S+ is unique up to a multiplication by

a unit magnitude constant.
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9.18 Estimation of a random signal, using the KL expansion Note that (Y, ϕj) =

(X,ϕj) + (N,ϕj) for all j, where the variables (X,ϕj), j ≥ 1 and (N,ϕj), j ≥ 1

are all mutually orthogonal, with E[|(X,ϕj)|2] = λj and E[|(N,ϕj)|2] = σ2. Ob-

servation of the process Y is linearly equivalent to observation of ((Y, ϕj) : j ≥ 1).

Since these random variables are orthogonal and all random variables are mean

zero, the MMSE estimator is the sum of the projections onto the individual ob-

servations, (Y, ϕj). But for fixed i, only the ith observation, (Y, ϕi) = (X,ϕi) +

(N,ϕi), is not orthogonal to (X,ϕi). Thus, the optimal linear estimator of (X,ϕi)

given Y is Cov((X,ϕi),(Y,ϕi))

Var((Y,ϕi))
(Y, ϕi) = λi(Y,ϕi)

λi+σ2 . The mean square error is (using

the orthogonality principle): E[|(X,ϕi)|2] − E[|λi(Y,ϕi)λi+σ2 |2] = λi − λ2
i (λi+σ

2)
(λi+σ2)2 =

λiσ
2

λi+σ2 .

(b) Since f(t) =
∑
j(f, ϕj)ϕj(t), we have (X, f) =

∑
j(f, ϕj)(X,ϕj). That is,

the random variable to be estimated is the sum of the random variables of the

form treated in part (a). Thus, the best linear estimator of (X, f) given Y can

be written as the corresponding weighted sum of linear estimators:

(MMSE estimator of (X, f) given Y ) =
∑
i

λi(Y, ϕi)(f, ϕi)

λi + σ2
.

The error in estimating (X, f) is the sum of the errors for estimating the terms

(f, ϕj)(X,ϕj), and those errors are orthogonal. Thus, the mean square error for

(X, f) is the sum of the mean square errors of the individual terms:

(MSE) =
∑
i

λiσ
2|(f, ϕi)|2

λi + σ2
.

9.20 Linear innovations and spectral factorization First approach: The first

approach is motivated by the fact that 1
S+
Y

is a whitening filter. Let H(z) =

β

S+
X(z)

and let Y be the output when X is passed through a linear time-invariant

system with z-transform H(z). We prove that Y is the innovations process for

X. Since H is positive type and lim|z|→∞H(z) = 1, it follows that Yk = Xk +

h(1)Xk−1 + h(2)Xk−2 + · · · Since SY (z) = H(z)H∗(1/z∗)SX(z) ≡ β2, it follows

that RY (k) = β2I{k=0}. In particular,

Yk ⊥ linear span of {Yk−1, Yk−2, · · · }.

Since H and 1/H both correspond to causal filters, the linear span of

{Yk−1, Yk−2, · · · } is the same as the linear span of {Xk−1, Xk−2, · · · }. Thus, the

above orthogonality condition becomes,

Xk − (−h(1)Xk−1 − h(2)Xk−2 − · · · ) ⊥ linear span of {Xk−1, Xk−2, · · · }.

Therefore −h(1)Xk−1−h(2)Xk−2−· · · must equal X̂k|k−1, the one step predictor

for Xk. Thus, (Yk) is the innovations sequence for (Xk). The one step prediction

error is E[|Yk|2] = RY (0) = β2.
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Second approach: The filterK for the optimal one-step linear predictor (X̂k+1|k)

is given by (take T = 1 in the general formula):

K =
1

S+
X

[
zS+

X

]
+
.

The z-transform zS+
X corresponds to a function in the time domain with value

β at time -1, and value zero at all other negative times, so [zS+
X ]+ = zS+

X − zβ.

Hence K(z) = z− zβ

S+
X(z)

. If X is filtered using K, the output at time k is X̂k+1|k.

So if X is filtered using 1 − β

S+
X(z)

, the output at time k is X̂k|k−1. So if X is

filtered using H(z) = 1 − (1 − β

S+
X(z)

) = β

S+
X(z)

then the output at time k is

Xk− X̂k|k−1 = X̃k, the innovations sequence. The output X̃ has SX̃(z) ≡ β2, so

the prediction error is RX̃(0) = β2.

9.22 A discrete-time Wiener filtering problem To begin,

zTSXY (z)

S−Y (z)
=

zT

β(1− ρ/z)(1− zoρ)
+

zT+1

β( 1
zo
− ρ)(1− zoz)

.

The right hand side corresponds in the time domain to the sum of an exponen-

tial function supported on −T,−T + 1,−T + 2, . . . and an exponential function

supported on −T − 1,−T − 2, . . .. If T ≥ 0 then only the first term contributes

to the positive part, yielding[
zTSXY

S−Y

]
+

=
zTo

β(1− ρ/z)(1− zoρ)
.

H(z) =
zTo

β2(1− zoρ)(1− zo/z)
and h(n) =

zTo
β2(1− zoρ)

zno I{n≥0}.

On the other hand if T ≤ 0 then[
zTSXY

S−Y

]
+

=
zT

β(1− ρ/z)(1− zoρ)
+

z(zT − zTo )

β( 1
zo
− ρ)(1− zoz)

,

so

H(z) =
zT

β2(1− zoρ)(1− zo/z)
+

z(zT − zTo )(1− ρ/z)
β2( 1

zo
− ρ)(1− zoz)(1− zo/z)

.

Inverting the z-transforms and arranging terms yields that the impulse response

function for the optimal filter is given by

h(n) =
1

β2(1− z2
o)

{
z|n+T |
o −

(
zo − ρ
1
zo
− ρ

)
zn+T
o

}
I{n≥0}. (12.20)

Graphically, h is the sum of a two-sided symmetric exponential function, slid to

the right by −T and set to zero for negative times, minus a one sided exponential

function on the nonnegative integers. (This structure can be deduced by consid-

ering that the optimal casual estimator of Xt+T is the optimal causal estimator
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of the optimal noncausal estimator of Xt+T .) Going back to the z-transform

domain, we find that H can be written as

H(z) =

[
zT

β2(1− zo/z)(1− zoz)

]
+

− zTo (zo − ρ)

β2(1− z2
o)( 1

zo
− ρ)(1− zo/z)

. (12.21)

Although it is helpful to think of the cases T ≥ 0 and T ≤ 0 separately, interest-

ingly enough, the expressions (12.20) and (12.21) for the optimal h and H hold

for any integer value of T .

9.24 Estimation given a strongly correlated process (a)RX = g∗g̃ ↔ SX(z) =

G(z)G∗(1/z∗),
RY = k ∗ k̃ ↔ SY (z) = K(z)K∗(1/z∗),
RXY = g ∗ k̃ ↔ SXY (z) = G(z)K∗(1/z∗).
(b) Note that S+

Y (z) = K(z) and S−Y (z) = K∗(1/z∗). By the formula for the

optimal causal estimator,

H(z) =
1

S+
Y

[
SXY
S−Y

]
+

=
1

K(z)

[
G(z)K∗(1/z∗)
K∗(1/z∗)

]
+

=
[G]+
K

=
G(z)

K(z)
.

(c) The power spectral density of the estimator process X̂ is given byH(z)H∗(1/z∗)SY (z) =

SX(z). Therefore, MSE = RX(0)−RX̂(0) =
∫ π
−π SX(ejω)dω2π −

∫ π
−π SX̂(ejω)dω2π =

0. A simple explanation for why the MSE is zero is the following. Using 1
K in-

verts K, so that filtering Y with 1
K produces the process W . Filtering that with

G then yields X. That is, filtering Y with H produces X, so the estimation error

is zero.

9.26 Linear and nonlinear filtering The equilibrium distribution π is the so-

lution to πQ = 0; π = (0.25, 0.25.0.25, 0.25). Thus, for each t, Zt takes each

of its possible values with probability 0.25. In particular, µZ =
∑
i∈S(0.25)i =

(0.25)(3+1−1−3) = 0. The Kolmogorov forward equation π′(t) = π(t)Q and the

fact
∑
i πi(t) = 1 for all t yield π′i(t) = −3λπi(t)+λ(1−πi(t)) = −4λπi(t)+λ for

each state i. Thus, π(t) = π + (π(0)− π)e−4λt. Considering the process starting

in state i yields pi,j(τ) = 0.25 + (δi,j − 0.25)e−4λτ . Therefore, for τ ≥ 0,

RZ(τ) = E[Z(τ)Z(0)] =
∑
i∈S

∑
j∈S

ijπipi,j(τ)

= (0.25)
∑
i∈S

∑
j∈S

ijδi,je
−4λτ + (0.25)2(1− e−4λτ )

∑
i∈S

∑
j∈S

ij︸ ︷︷ ︸
=0

= (0.25)((−3)2 + (−1)2 + 12 + 32)e−4λτ = 5e−4λτ .

So RZ(τ) = 5e−4λ|τ |.

(b) Thus, SZ(ω) = 40λ
16λ2+ω2 . Also, SY Z = SZ . Thus, the optimal filter is given

by

Hopt(ω) =
SZ(ω)

SZ(ω) + SN (ω)
=

40λ

40λ+ σ2(16λ2 + ω2)
.
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The MSE is given by MSE=
∫∞
−∞Hopt(ω)SN (ω)dω2π = 5√

5
2λσ2

+1
.

(c) It is known that P{|Zt| ≤ 3} = 1, so by hard limiting the estimator found in

(b) to the interval [−3, 3], a smaller MSE results. That is, let

Ẑ
(NL)
t =


3 if Ẑt ≥ 3

Ẑt if |Ẑt| ≤ 3

−3 if Ẑt ≤ −3

Then (Zt − Ẑ(NL)
t )2 ≤ (Zt − Ẑt)2, and the inequality is strict on the positive

probability event {|Ẑt| ≥ 3}.
(d) The initial distribution π for the hidden Markov model should be the equilib-

rium distribution, π = (0.25, 0.25.0.25, 0.25). By the definition of the generator

matrix Q, the one step transition probabilities for a length 4 time step are

given by pi,j(4) = δi,j + qi,j4 + o(4). So we ignore the o(4) term and let

ai,j = λ4 if i 6= j and ai,i = 1 − 3λ4 for i, j ∈ S. (ALTERNATIVELY, we

could let ai,j = pi,j(4), that is, use the exact transition probability matrix for

time duration 4.) If 4 is small enough, then Z will be constant over most of

the intervals of length 4. Given Z = i over the time interval [(k − 1)4, k4],

Ỹk = 4i +
∫ k4

(k−1)4Ntdt which has the N(4i,4σ2) distribution. Thus, we set

bi,y = 1√
2π4σ2

exp
(
− (y−i4)2

24σ2

)
.

10.2 A covering problem (a) Let Xi denote the location of the ith base station.

Then F = f(X1, . . . , Xm), where f satisfies the Lipschitz condition with constant

(2r − 1). Thus, by the method of bounded differences based on the Azuma-

Hoeffding inequality, P{|F − E[F ]| ≥ γ} ≤ 2 exp(− γ2

m(2r−1)2 ).

(b) Using the Poisson method and associated bound technique, we compare to

the case that the number of stations has a Poisson distribution with mean m.

Note that the mean number of stations that cover cell i is m(2r−1)
n , unless cell

i is near one of the boundaries. If cells 1 and n are covered, then all the other

cells within distance r of either boundary are covered. Thus,

P{X ≥ m} ≤ 2P{Poi(m) stations is not enough}
≤ 2ne−m(2r−1)/n + P{cell 1 or cell n is not covered}

→ 0 as n→∞ if m =
(1 + ε)n lnn

2r − 1
.

For a bound going the other direction, note that if cells differ by 2r− 1 or more
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then the events that they are covered are independent. Hence,

P{X ≤ m} ≤ 2P{Poi(m) stations cover all cells}

≤ 2P

{
Poi(m) stations cover cells 1 + (2r − 1)j, 1 ≤ j ≤ n− 1

2r − 1

}
≤ 2

(
1− e−

m(2r−1)
n

) n−1
2r−1

≤ 2 exp

(
−e−

m(2r−1)
n · n− 1

2r − 1

)
→ 0 as n→∞ if m =

(1− ε)n lnn

2r − 1
.

Thus, in conclusion, we can take g1(r) = g2(r) = 1
2r−1 .

10.4 Stopping time properties (a) Suppose S and T are optional stopping

times for some filtration FFF . Then it suffices to note that:

{S ∧ T ≤ n} = {S ≤ n} ∪ {T ≤ n} ∈ Fn, and

{S ∨ T ≤ n} = {S ≤ n} ∩ {T ≤ n} ∈ Fn.

{S + T ≤ n} = ∪0≤k≤n{S ≤ k} ∩ {T ≤ n− k} ∈ Fn,

(b) Since X takes on values 0 and 1 only, events of the form {Xn ≤ c} are either

empty or the whole probability space if c < 0 or if c ≥ 1, so we can ignore such

values of c. If 0 ≤ c < 1 and n ≥ 0, then {Xn ≤ c} = {T > n}. Thus, for each n

{Xn ≤ c} ∈ Fn if and only if {T ≤ n} ∈ Fn. Therefore, T is a stopping time if

and only if X is adapted.

(c) (i)

A.1 ∅ ∩ {T ≤ n} = ∅ ∈ Fn for all n, so that ∅ ∈ FT .

A.2 If A ∈ FT then A ∩ {T ≤ n} ∈ Fn for all n. Also, {T ≤ n} ∈ Fn.

So [A ∩ {T ≤ n}]c ∩ {T ≤ n} = Ac ∩ {T ≤ n} ∈ Fn for all n. Therefore,

Ac ∈ FT

A.3 If Ai ∈ FT for all i ≥ 1, then Ai∩{T ≤ n} ∈ Fn for all i, n. Therefore

∩i (Ai ∩ {T ≤ n}) = (∩iAi)∩{T ≤ n} ∈ Fn for all n. Therefore, ∩iAi ∈
Fn.

Thus FT satisfies all three axioms of a σ-algebra so it is a σ-algebra.

(ii) To show that T is measurable with respect to a σ-algebra, we need events of

the form {T ≤ m} to be in the σ algebra, for any m ≥ 0. For this event to be

in FT , we need {T ≤ m} ∩ {T ≤ n} ∈ Fn for any n ≥ 0. But {T ≤ m} ∩ {T ≤
n} = {T ≤ m ∧ n} ∈ Fm∧n ∈ Fn, as desired.

(iii) Fix a constant c. Then for any n ≥ 0, {XT ≤ c} ∩ {T = n} = {Xn ≤
c}∩ {T = n} ∈ Fn. Therefore, the event {XT ≤ c} is in FT . Since c is arbitrary,

XT is FT measurable.

10.6 Bounding the value of a game Let Xt = (Rt, Bt), where Rt denotes the

number of red marbles in the jar after t turns and Bt denotes the number of blue

marbles in the jar after t turns, let ut denote the decision taken by the player at

the beginning of turn t+ 1, and let Ft = σ(X0, . . . , Xt, u0, . . . , ut). Then X is a

controlled Markov process relative to the filtration FFF .
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(a) Suppose an initial state (ro, bo) and strategy (ut : t ≥ 0) are fixed. Let Nt =

Rt +Bt (or equivalently, N = V (Xt) for the potential function V (r, b) = r + b).

Note that E[Nt+1 −Nt|Ft] ≥ − 1
2 for all t. Therefore the process M defined by

Mt = Nt + t
2 is a submartingale relative to FFF . Observe that |Mt+1 −Mt| ≤ 2,

so that E[|Mt+1 −Mt||Ft] ≤ 2. If E[τ ] = +∞ then any lower bound on E[τ ]

is valid, so we can and do assume without loss of generality that E[τ ] < ∞.

Therefore, by a version of the optional stopping theorem, E[Mτ ] ≥ E[M0]. But

Mτ = τ
2 and M0 = ao+ bo. Thus, we find that E[τ ] ≥ 2(ao+ bo) for any strategy

of the player.

(b) Consider the strategy that selects two balls of the same color whenever pos-

sible. Let V (Xt) = f(Nt) where f(0) = 0, f(1) = 3, and f(n) = n+ 3 for n ≥ 2.

The function V was selected so that

E[V (Xt+1) − V (Xt)|Ft] ≤ − 1
2 whenever Xt 6= (0, 0). Therefore, M is a super-

martingale, where Mt = V (Xt∧τ ) + t∧τ
2 . Consequently, E[Mt] ≤ E[M0] for all

t ≥ 0. That is, E[V (Xt∧τ )] + E[ t∧τ2 ] ≤ 2f(ao + bo). Using this and the facts

E[V (Xt∧τ )] ≥ 0 and f(ao+ bo) ≤ 3+ao+ bo yields that E[t∧τ ] ≤ 2(ao+ bo)+6.

Finally, E[t ∧ τ ] → E[τ ] as t → ∞ by the monotone convergence theorem, so

that E[τ ] ≤ 2(ao + bo) + 6 for the specified strategy of the player.
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