:> d.

Law of large numbers Suppose X1, Xo,... is a sequence of random variables such that each X;
has finite mean m. Let S, = X1 +---+ X,. Then

(a) % "2 m (hence also S—T{L 2 m and % 4, m) if for some constant ¢, Var(X;) < ¢ for all ¢, and

Cov(X;, X;) =014 #j (i.e. if the variances are bounded and the X;’s are uncorrelated).
(b) o= Pom if X1, Xy, ... are iid. (weak law)

(c) %" 2 m if X1, Xo, ... are iid. (strong law)

Central limit theorem Suppose X1, Xo,... are i.i.d., each with mean ; and variance o?. Let
S, =X1+---+X,,. Then S”;\/;“ converges in distribution to the N (0, ¢?) distribution as n — oc.

Cramér’s theorem Suppose F[X;] is finite, and that E[X1] < a. Then for € > 0 there exists a
number n, such that P {% > a} > exp(—n(l(a) + €)) for all n > n.. Combining this bound with
the Chernoff inequality yields lim, .o % In P {57” >a} = —l(a).
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A Brownian motion, also called a Wiener process, with parameter ¢ is a random process

W = (W, :t > 0) such that
o P{Wp=0}=1,
e W has independent increments,
e W, — W has the N(0,02(t — s)) distribution for ¢ > s, and
e W is sample path continuous with probability one.
A Poisson process with rate A is a random process N = (N; : t > 0) such that
e N is a counting process,
e N has independent increments, and

e N(t) — N(s) has the Poi(A(t — s)) distribution for ¢ > s.

Kolomorov forward equations for time-homogeneous, continuous-time, discrete-state Markov
processes:

825&0:77@)@ or a@ft)zzﬁi(t)qz‘j or 87T(;75(t): > mltay = D m(a,

= i€S,i#j €S, ij




The orthogonality principle Let V be a closed, linear subspace of L?(Q2, F, P), and let X €
L?(Q, F, P), for some probability space (€2, F, P). There exists a unique element Z* (also denoted
by Iy(X)) in V so that E[(X — Z*)2 < E[(X — Z)?] for all Z € V.

(a) (Characterization) Let W be a random variable. Then W = Z* if and only if the following
two conditions hold:

i)y weVy
(ii)) (X = W) L Z for all Z in V.
(b)(Error expression) E[(X — Z*)?] = E[X?] — E[(Z*)?].
Special cases:

V=R Z* = BX]
V={g9(Y): ¢g:R" >R, E[g(Y)?] < +oo} Z* = E[X|Y]
V:{CO+01Y1+CQY2+...+CnYn:CO,Cl,...,CnER} Z*:E[X‘Y]

For random vectors: E[X|Y] = E[X] 4 Cov(X,Y)Cov(Y,Y) (Y — EY)
and for e = X — E[X|Y]: Cov(e) = Cov(X) — Cov(X,Y)Cov(Y,Y) 1Cov(Y, X).

Conditional pdf for jointly Gaussian random vectors Let X and Y be jointly Gaussian
vectors. Given Y = y, the conditional distribution of X is N(E[X|Y = y], Cov(e)).

Maximum likelihood (ML) and maximum a posterior (MAP) estimators

O (y) = arg max py (y/0) Orrap(y) = arg max peyy(0]y) = arg max pe (0)py (y/0) = arg maxpe,y (6, y)

Proposition Suppose X is irreducible, aperiodic, discrete-time discrete-state Markov
(a) All states are transient, or all are positive recurrent, or all are null recurrent.

(b) For any initial distribution 7(0), lim;—, m;(t) = 1/M;, with the understanding that the limit
is zero if M; = +o00, where M; is the mean time to return to state i starting from state .

(¢) An equilibrium probability distribution 7 exists if and only if all states are positive recurrent.

(d) If it exists, the equilibrium probability distribution 7 is given by m; = 1/M;. (In particular, if
it exists, the equilibrium probability distribution is unique).

A Karhunen-Loéve (KL) expansion for a random process X = (X;:a <t <b)isa
representation of the form X; = Z,]yzl Cnon(t) with N < oo such that:

(1) the functions (¢,,) are orthonormal: (¢, ¢n) = I{m—n}, and

(2) the coordinate random variables C,, are mutually orthogonal: E[C,,C}] =0 if n # m.

X U

N h4>

Y \%

1 k4>

Jointly WSS X and Y in LTI systems: Ryy = hoxk * Rxy < Syyv = HK*Sxy



