
m.s.  

p. d.

a.s.

(If s
equence is d

ominated by

a fin
ite second moment.)

a sin
gle random variable with

Law of large numbers Suppose X1, X2, . . . is a sequence of random variables such that each Xi

has finite mean m. Let Sn = X1 + · · ·+Xn. Then

(a) Sn
n

m.s.→ m (hence also Sn
n

p.→ m and Sn
n

d.→ m) if for some constant c, Var(Xi) ≤ c for all i, and
Cov(Xi, Xj) = 0 i 6= j (i.e. if the variances are bounded and the Xi’s are uncorrelated).

(b) Sn
n

p.→ m if X1, X2, . . . are iid. (weak law)

(c) Sn
n

a.s.→ m if X1, X2, . . . are iid. (strong law)

Central limit theorem Suppose X1, X2, . . . are i.i.d., each with mean µ and variance σ2. Let
Sn = X1 + · · ·+Xn. Then Sn−nµ√

n
converges in distribution to the N(0, σ2) distribution as n→∞.

Cramér’s theorem Suppose E[X1] is finite, and that E[X1] < a. Then for ε > 0 there exists a
number nε such that P

{
Sn
n ≥ a

}
≥ exp(−n(l(a) + ε)) for all n ≥ nε. Combining this bound with

the Chernoff inequality yields limn→∞
1
n lnP

{
Sn
n ≥ a

}
= −l(a).

A Brownian motion, also called a Wiener process, with parameter σ2 is a random process
W = (Wt : t ≥ 0) such that

• P{W0 = 0} = 1,

• W has independent increments,

• Wt −Ws has the N(0, σ2(t− s)) distribution for t ≥ s, and

• W is sample path continuous with probability one.

A Poisson process with rate λ is a random process N = (Nt : t ≥ 0) such that

• N is a counting process,

• N has independent increments, and

• N(t)−N(s) has the Poi(λ(t− s)) distribution for t ≥ s.

Kolomorov forward equations for time-homogeneous, continuous-time, discrete-state Markov
processes:

∂π(t)
∂t

= π(t)Q or
∂πj(t)
∂t

=
∑
i∈S

πi(t)qij or
∂πj(t)
∂t

=
∑

i∈S,i 6=j
πi(t)qij −

∑
i∈S,i 6=j

πj(t)qji,



The orthogonality principle Let V be a closed, linear subspace of L2(Ω,F , P ), and let X ∈
L2(Ω,F , P ), for some probability space (Ω,F , P ). There exists a unique element Z∗ (also denoted
by ΠV(X)) in V so that E[(X − Z∗)2 ≤ E[(X − Z)2] for all Z ∈ V.

(a) (Characterization) Let W be a random variable. Then W = Z∗ if and only if the following
two conditions hold:

(i) W ∈ V
(ii) (X −W ) ⊥ Z for all Z in V.

(b)(Error expression) E[(X − Z∗)2] = E[X2]− E[(Z∗)2].

Special cases:

V = R Z∗ = E[X]
V = {g(Y ) : g : Rm → R, E[g(Y )2] < +∞} Z∗ = E[X|Y ]

V = {c0 + c1Y1 + c2Y2 + . . .+ cnYn : c0, c1, . . . , cn ∈ R} Z∗ = Ê[X | Y ]

For random vectors: Ê[X|Y ] = E[X] + Cov(X,Y )Cov(Y, Y )−1(Y − EY )
and for e = X − Ê[X|Y ] : Cov(e) = Cov(X)− Cov(X,Y )Cov(Y, Y )−1Cov(Y,X).

Conditional pdf for jointly Gaussian random vectors Let X and Y be jointly Gaussian
vectors. Given Y = y, the conditional distribution of X is N(Ê[X|Y = y],Cov(e)).

Maximum likelihood (ML) and maximum a posterior (MAP) estimators

θ̂ML(y) = arg max
θ
pY (y|θ) Θ̂MAP (y) = arg max

θ
pΘ|y(θ|y) = arg max

θ
pΘ(θ)pY (y|θ) = arg max

θ
pΘ,Y (θ, y)

Proposition Suppose X is irreducible, aperiodic, discrete-time discrete-state Markov

(a) All states are transient, or all are positive recurrent, or all are null recurrent.

(b) For any initial distribution π(0), limt→∞ πi(t) = 1/Mi, with the understanding that the limit
is zero if Mi = +∞, where Mi is the mean time to return to state i starting from state i.

(c) An equilibrium probability distribution π exists if and only if all states are positive recurrent.

(d) If it exists, the equilibrium probability distribution π is given by πi = 1/Mi. (In particular, if
it exists, the equilibrium probability distribution is unique).

A Karhunen-Loève (KL) expansion for a random process X = (Xt : a ≤ t ≤ b) is a
representation of the form Xt =

∑N
n=1Cnφn(t) with N ≤ ∞ such that:

(1) the functions (φn) are orthonormal: 〈φm, φn〉 = I{m=n}, and
(2) the coordinate random variables Cn are mutually orthogonal: E[CmC∗n] = 0 if n 6= m.

Jointly WSS X and Y in LTI systems:

h

Y

X U

Vk RU,V = h ∗ k̃ ∗RXY ↔ SU,V = HK∗SX,Y


