
Learning to Search Efficiently in High Dimensions

Zhen Li ∗

UIUC
zhenli3@uiuc.edu

Huazhong Ning
Google Inc.

huazhong@gooogle.com

Liangliang Cao
IBM T.J. Watson Research Center

liangliang.cao@us.ibm.com

Tong Zhang
Rutgers University

tzhang@stat.rutgers.edu

Yihong Gong
NEC China

ygongca@gmail.com

Thomas S. Huang∗

UIUC
huang@ifp.uiuc.edu

Abstract

High dimensional similarity search in large scale databases becomes an impor-
tant challenge due to the advent of Internet. For such applications, specialized
data structures are required to achieve computational efficiency. Traditional ap-
proaches relied on algorithmic constructions that are often data independent (such
as Locality Sensitive Hashing) or weakly dependent (such askd-trees,k-means
trees). While supervised learning algorithms have been applied to related prob-
lems, those proposed in the literature mainly focused on learning hash codes op-
timized for compact embedding of the data rather than searchefficiency. Conse-
quently such an embedding has to be used with linear scan or another search algo-
rithm. Hencelearning to hashdoes not directly address the search efficiency issue.
This paper considers a new framework that applies supervised learning to directly
optimize a data structure that supports efficient large scale search. Our approach
takes both search quality and computational cost into consideration. Specifically,
we learn aboosted search forestthat is optimized using pair-wise similarity la-
beled examples. The output of this search forest can be efficiently converted into
an inverted indexing data structure, which can leverage modern text search infras-
tructure to achieve both scalability and efficiency. Experimental results show that
our approach significantly outperforms the start-of-the-art learning to hash meth-
ods (such as spectral hashing), as well as state-of-the-arthigh dimensional search
algorithms (such as LSH andk-means trees).

1 Introduction

The design of efficient algorithms for large scale similarity search (such as nearest neighbor search)
has been a central problem in computer science. This problembecomes increasingly challenging
in modern applications because the scale of modern databases has grown substantially and many of
them are composed of high dimensional data. This means that classical algorithms such as kd-trees
are no longer suitable [25] and new algorithms have to be designed to handle high dimensionality.
However, existing approaches for large scale search in highdimension relied mainly on algorith-
mic constructions that are either data independent or weakly dependent. Motivated by the success
of machine learning in the design of ranking functions for information retrieval (thelearning to
rankproblem [13, 9]) and the design of compact embedding into binary codes (thelearning to hash
problem [10]), it is natural to ask whether we can use machinelearning (in particular, supervised
learning) to optimize data structures that can improve search efficiency. We call this problemlearn-
ing to search, and this paper demonstrates that supervised learning can lead to improved search
efficiency over algorithms that are not optimized using supervised information.

∗These authors were sponsored in part by the U.S. National Science Foundation under grant IIS-1049332 EAGER and by the Beckman
Seed Grant.

1

To leverage machine learning techniques, we need to consider a scalable search structure with pa-
rameters optimizable using labeled data. The data structured considered in this paper is motivated
by the success of vocabulary tree method in image retrieval [18, 27, 15], which has been adopted
in modern image search engines to find near duplicate images.Although the original proposal was
based on “bag of local patch” image representation, this paper considers a general setting where
each database item is represented as a high dimensional vector. Recent advances in computer vision
show that it is desirable to represent images as numerical vectors of as high as thousands or even
millions of dimensions [12, 28]. We can easily adapt the vocabulary tree to this setting: we partition
the high dimensional space into disjoint regions using hierarchicalk-means, and regard them as the
“vocabulary”. This representation can then be integrated into an inverted index based text search
engine for efficient large scale retrieval. In this paper, werefer to this approach ask-means trees
because the underlying algorithm is the same as in [5, 16]. Note thatk-means trees can be used for
high dimensional data, while the classical kd-trees [1, 3, 22] are limited to dimensions of no more
than a few hundreds.

In this paper, we also adopt the tree structural representation, and propose a learning algorithm to
construct the trees using supervised data. It is worth noting that thek-means trees approach suffers
from several drawbacks that can be addressed in our approach. First thek-means trees only use
unsupervised clustering algorithm, which is not optimizedfor search purposes; as we will show in
the experiments, by employing supervised information, ourlearning to search approach can achieve
significantly better performance. Second, the underlyingk-means clustering limits thek-means
tree approach to Euclidean similarity measures (though possible to extended to Bregman distances),
while our approach can be easily applied to more general metrics (including semantic ones) that
prove effective in many scenarios [8, 11, 7]. Nevertheless our experiments still focus on Euclidean
distance search, which is to show the advantage over thek-means trees.

The learning to search framework proposed in this paper is based on a formulation of search as a
supervised learning problem that jointly optimizes two keyfactors of search:retrieval qualityand
computational cost. Specifically, we learn a set ofselection functionsin the form of a tree ensemble,
as motivated by the aforementioned kd-trees andk-means trees approaches. However, unlike the
traditional methods that are based only on unsupervised information, our trees are learned under the
supervision of pairwise similarity information, and are optimized for the defined search criteria, i.e.,
to maximize the retrieval quality while keeping the computational cost low. In order to form the
forest, boosting is employed to learn the trees sequentially. We call this particular methodBoosted
Search Forest(BSF).

It is worth comparing the influential Locality Sensitive Hashing (LSH) [6, 2] approach with our
learning to search approach. The idea of LSH is to employ random projections to approximate the
Euclidean distance of original features. An inverted indexstructure can be constructed based on the
hashing results [6], which facilitates efficient search. However, the LSH algorithm is completely
data independent (using random projections), and thus the data structure is constructed without
any learning. While interesting theoretical results can beobtained for LSH, as we shall see with the
experiments, in practice its performance is inferior to thedata-dependent search structures optimized
via the learning to search approach of this paper.

Another closely related problem islearning to hash, which includes BoostSSC [20], Spectral Hash-
ing [26], Restricted Boltzmann Machines [19], Semi-Supervised Hashing [24], Hashing with Graphs
[14], etc. However, the motivation of hashing problem is fundamentally different from that of the
search problem considered in this paper. Specifically, the goal of learning to hash is to embed data
into compact binary codes so that the hamming distance between two codes reflects their original
similarity. In order to perform efficient hamming distance search using the embedded representa-
tion, an additional efficient algorithmic structure is still needed. (How to come up with such an
efficient algorithm is an issue usually ignored by learning to hash algorithms.) The compact hash
codes were traditionally believed to achieve low search latency by employing either linear scan,
hash table lookup, or more sophisticated search mechanism.As we shall see in our experiments,
however, linear scan on the Hamming space is not a feasible solution for large scale search prob-
lems. Moreover, if other search data structure is implemented on top of the hash code, the optimality
of the embedding is likely to be lost, which usually yields suboptimal solution inferior to directly
optimizing a search criteria.

2

2 Background

Given a databaseX = {x1, . . . , xn} and a queryq, the search problem is to return top ranked items
from the database that are most similar to the query. Lets(q, x) ≥ 0 be a ranking function that
measures the similarity betweenq andx. In large-scale search applications, the database sizen can
be billions or larger. Explicitly evaluating the ranking functions(q, x) against all samples is very
expensive. On the other hand, in order to achieve accurate search results, a complicated ranking
functions(q, x) is indispensible.

Modern search engines handle this problem by first employinga non-negativeselection function
T (q, x) that selects a small set of candidatesXq = {x : T (q, x) > 0, x ∈ X} with most of the top
ranked items (T (q, x) = 0 means “not selected”). This is calledcandidate selectionstage, which is
followed by areranking stage where a more costly ranking functions(q, x) is evaluated onXq.

Two properties of the selection functionT (q, x) are: 1) It must be evaluated much more efficiently
than the ranking functions(q, x). In particular, for a given query, the complexity of evaluating
T (q, x) over the entire dataset should be sublinear or even constant, which is usually made possible
by delicated data structures such as inverted index tables.2) The selection function is an approxi-
mation tos(q, x). In other word, with high probability, the more similarq andx are, the more likely
x is contained inXq (which meansT (q, x) should take a larger value).

This paper focuses on the candidate selection stage, i.e., learning the selection functionT (q, x). In
order to achieve both effectiveness and efficiency, three aspects need to be taken into account:

• Xq can be efficiently obtained (this is ensured by properties ofselection function).
• The size ofXq should be small since it indicates thecomputational costfor reranking.
• Theretrieval qualityof Xq measured by the total similarity

∑

x∈Xq
s(q, x) should be large.

Therefore, our objective is to retrieve a set of items that maximizes the ranking quality while lower-
ing the computational cost (keeping the candidate set as small as possible). In additiona, to achieve
search efficiency, the selection stage employs the invertedindex structure as in standard text search
engines to handle web-scale dataset.

3 Learning to Search

This section presents the proposedlearning to searchframework. We present the general formula-
tion first, followed by a specific algorithm based on boosted search trees.

3.1 Problem Formulation

As stated in Section 2, the set of candidates returned for a query q is given byXq = {x ∈ X :
T (q, x) > 0}. Intuitively, thequalityof this candidate set can be measured by the overall similarities
while the reranking cost is linear in|Xq|. Mathematically, we define:

Retrieval Quality: Q(T) =
∑

q

∑

x∈X

s(q, x)1(T (q, x) > 0) (1)

Computational Cost: C(T) =
∑

q

∑

x∈X

1(T (q, x) > 0) (2)

where1(·) is the indicator function.

Thelearning to searchframework considers the search problem as a machine learning problem that
finds the optimal selection functionT as follows:

max
T

Q(T) subject toC(T) ≤ C0, (3)

whereC0 is the upper-bound of computational cost. Alternatively, we can rewrite the optimization
problem in (3) by applying Lagrange multiplier:

max
T

Q(T)− λC(T), (4)

whereλ is a tuning parameter that balances the retrieval quality and computational cost.

3

To simplify the learning process, we assume that the queriesare randomly drawn from the database.
Let xi andxj be two arbitrary samples in the dataset, and letsij = s(xi, xj) ∈ {1, 0} indicate if
they are “similar” or “dissimilar”. Problem in (4) becomes:

max
T

J(T) = max
T

∑

i,j

sij1(T (xi, xj) > 0)− λ
∑

i,j

1(T (xi, xj) > 0)

= max
T

∑

i,j

zij1(T (xi, xj) > 0) (5)

where

zij =

{

1− λ for similar pairs
−λ for dissimilar pairs

. (6)

3.2 Learning Ensemble Selection Function via Boosting

Note that (5) is nonconvex inT and thus is difficult to optimize. Inspired by AdaBoost [4], we
employ the standard trick of using a convex relaxation, and in particular, we consider the exponential
loss as a convex surrogate:

min
T
L(T) =

∑

i,j

e−zijT (xi,xj) = E[e−zT (xi,xj)]. (7)

Here we replace the summation over∀(xi, xj) ∈ X × X by the expectation over twoi.i.d. random
variablesxi andxj . We also drop the subscripts ofzij and regardz as a random variable conditioned
onxi andxj .

We define the ensemble selection function as a weighted sum ofa set of base selection functions:

T (x, y) =

M
∑

m=1

cm · tm(xi, xj). (8)

Suppose we have learntM base functions, and we are about to learn the(M + 1)-th selection
function, denoted ast(xi, xj) with weight given byc. The updated loss function is hence given by

min
t
L(t, c) = E[e−z[T (xi,xj)+ct(xi,xj)]] = Ew[e

−czt(xi,xj)], (9)

whereEw[·] denotes theweighted expectationwith weights given by

wij = w(xi, xj) = e−zT (xi,xj) =

{

e−(1−λ)T (xi,xj) for similar pairs
eλT (xi,xj) for dissimilar pairs

(10)

This reweighting scheme leads to the boosting algorithm in Algorithm 1.

In many application scenarios, each base selection function t(xi, xj) takes only binary values 1 or
0. Thus, we may want to minimizeL(t, c) by choosing the optimal value oft(xi, xj) for any given
pair (xi, xj).

Case 1:t(xi, xj) = 0
L(t, c) = Ew[e

−0] = 1. (11)
Case 2:t(xi, xj) = 1

L(t, c) = Ew[e
−zc] = e−(1−λ)c · Pw[sij = 1|xi, xj] + eλc · Pw[sij = 0|xi, xj]. (12)

Comparing the two cases leads to:

t∗(xi, xj) =

{

1 if Pw[sij = 1|xi, xj] >
1−e−λc

1−e−c

0 otherwise
(13)

To find the optimalc, we first decomposeL in the following way:

L(t, c) = Ew[e
−czt(xi,xj)]

= Pw[t(xi, xj) = 0|xi, xj] + e−c(1−λ) · Pw[t(xi, xj) = 1, sij = 1|xi, xj]

+ecλ · Pw[t(xi, xj) = 1, sij = 0|xi, xj]. (14)

4

Taking the derivative ofL with respect toc, we arrive at the optimal solution forc:

c∗ = log
(1− λ)Pw[t(xi, xj) = 1, sij = 1|xi, xj]

λPw[t(xi, xj) = 0, sij = 1|xi, xj]
. (15)

Algorithm 1 Boosted Selection Function Learning

Input: A set of data pointsX ; pairwise similaritiessij ∈ {0, 1} and weightswij = 1
1: for m ∈ 1, 2, · · · ,M do
2: Learn a base selection functiontm(x, y) based on weightswij

3: Update ensemble:T (xi, xj)← T (xi, xj) + cm · tm(xi, xj)

4: Update weights: wij ← wij · e
−cm·tm(xi,xj)

5: end for

3.3 Tree Implementation of Base Selection Function

Simultaneously solving (13) and (15) leads to the optimal solutions at each iteration of boosting. In
practice, however, the optimality can hardly be achieved. This is particularly because the binary-
valued base selection functionst(xi, xj) has to be selected from limited function families to ensure
the wearability (finite model complexity) and more importantly, the efficiency. As mentioned in Sec-
tion 2, evaluatingt(q, x) for ∀x ∈ X needs to be accomplished in sublinear or constant time when
a queryq comes. This suggests using an inverted table data structureas an efficient implantation
of the selection function. Specifically,t(xi, xj) = 1 if xi andxj get hashed into the same bucket
of the inverted table, and0 otherwise. This paper considers trees (we name it “search trees”) as an
approximation to the optimal selection functions, and quick inverted table lookup follows naturally.

A natural consideration for the tree construction is that the tree must be balanced. However, we do
not need to explicitly enforce this constraint: the balanceness is automatically favored by the term
C in (4) as balanced trees give the minimum computational cost. In this sense, unlike other methods
that explicitly enforce balancing constraint, we relax it while jointly optimizing the retrieval quality
and computational cost.

Consider a search tree withL leaf nodes{ℓ1, · · · , ℓL}. The selection function given by this tree is
defined as

t(xi, xj) =

L
∑

k=1

t(xi, xj ; ℓk), (16)

wheret(xi, xj ; ℓk) ∈ {0, 1} indicating whether bothxi andxj reach the same leaf nodeℓk. Similar
to (5), the objective function for a search tree can be written as:

max
t

J = max
t

∑

i,j

wijzij

L
∑

k=1

t(xi, xj ; ℓk) = max
t

L
∑

k=1

Jk, (17)

whereJk =
∑

ij wijzijt(xi, xj ; ℓk) is a partial objective function for thek-th leaf node, andwij is
given by (10).

The appealing additive property of the objective functionJ makes it trackable to analyze each split
when the search tree grows. In particular, we split thek-th leaf node into two child nodesk(1) and
k(2) if and only if it increases the overall objective functionJk(1) + Jk(2) > Jk. Moreover, we
optimize each split by choosing the one that maximizesJk(1) + Jk(2).

To find the optimal split for a leaf nodeℓk, we confine to the hyperplane split cases, i.e., a samplex
is assigned to the left childℓk(1) if p⊤x+b = p̃⊤x̃ > 0 and right child otherwise, wherẽp = [p⊤ b]⊤

andx̃ = [x⊤ 1]⊤ are the augmented projection and data vectors. The splitting criterion is given by:

maxJk(1) + Jk(2) = max
‖p̃‖=1

∑

ij

wijzij1(p̃
⊤x̃i · p̃

⊤x̃j > 0)

≈ max
‖p̃‖=1

∑

ij

wijzij [p̃
⊤x̃ix̃

⊤
j p̃]

= max
‖p̃‖=1

p̃⊤X̃MX̃⊤p̃, (18)

5

whereMij = wijzij , andX̃ is the stack of all augmented samples at nodeℓk. Note that as1(a >

0) = 1
2sign(a) + 1

2 is non-differentiable, we approximate it using12a + 1
2 . The optimalp̃ of the

above objective function is the eigenvector correspondingto the largest eigenvalue of̃XMX̃⊤.

The search tree construction algorithm is listed in Algorithm 2. In the implementation, if compu-
tation resource is critical, we may use stump functions to split the nodes with a large amount of
samples, while applying the optimal projectionp to the small nodes. The selection of the stump
functions is similar to that in traditional decision trees:on the given leaf node, a set of stump func-
tions are attempted and the one that maximizes (17) is selected if the objective function increases.

Algorithm 2 Search Tree Construction

Input: A set of data pointsX ; pairwise similaritiessij ∈ {0, 1} and weightswij given by (10)
Output: Treet
1: AssignX as root; enqueue root
2: repeat
3: Find a leaf nodeℓ in the queue; dequeueℓ
4: Find the optimal split forℓ by solving (18)
5: if criteria in (17) increasesthen
6: Split ℓ into ℓ1 andℓ2; enqueueℓ1 andℓ2
7: end if
8: until Queue is empty

3.4 Boosted Search Forest

In summary, we present a Boosted Search Forest (BSF) algorithm to thelearning to searchproblem.
In the learning stage, this algorithm follows the boosting framework described in Algorithm 1 to
learn an ensemble of selection functions; each base selection function, in the form of a search tree,
is learned with Algorithm 2. We then build inverted indices by passing all data points through the
learned search trees. In analogy to text search, each leaf node corresponds to an “index word”
in the vocabulary and the data points reaching this leaf nodeare the “documents” associated with
this “index word”. In the candidate selection stage, instead of exhaustively evaluatingT (q, x) for
∀x ∈ X , we only need to traverse the search trees and retrieve all items that collide with the query
example for at least one tree. The selected candidate set, given byXq = {x ∈ X : T (q, x) > 0}, is
statistically optimized to have a small size (small computation cost) while containing a large number
of relevant samples (good retrieval quality).

4 Experiments

We evaluate the Boosted Search Forest (BSF) algorithm on several image search tasks. Although a
more general similarity measure can be used, for simplicitywe sets(xi, xj) ∈ {0, 1} according to
whetherxj is within the topK nearest neighbors (K-NN) of xi on the designated metric space. We
useK = 100 in the implementation.

We compare the performance of BSF to two most popular algorithms on high dimensional image
search:k-means trees and LSH. We also compare to a representative method in the learning to
hash community: spectral hashing, although this algorithmwas designed for Hamming embedding
instead of search. Here linear scan is adopted on top of spectral hashing for search, because its more
efficient alternatives are either directly compared (such as LSH) or can easily fail as noticed in [24].
Our experiment shows that exhaustive linear scan is not scalable, especially with long hash codes
needed for better retrieval accuracy (see Table 1).

The above algorithms are most representative. We do not compare with other algorithms for several
reasons. Fist, LSH was reported to be superior to kd-trees [21] and spectral hashing was reported
to out-perform RBM and BoostSCC [26]. Second, kd-trees and its extensions still work on low
dimensions, and is known to behave poorly on high dimension data like in image search. Third, since
this paper focuses on learning to search, not learning to hash (Hamming embedding) or learning
distance metrics that consider different goals, it is not essential to compare with more recent work
on those topics such as [8, 11, 24, 7].

6

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

Number of returned images

R
ec

al
l o

f 1
00

−
N

N

BSF
K−means
LSH

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

Number of returned images

R
ec

al
l o

f 1
00

−
N

N

BSF
SH−32bit
SH−96bit
SH−200bit

(a) (b)

Figure 1: Comparison of Boosted Search Forest (BSF) on Concept1000 dataset with (a)k-means
trees and LSH (b) Spectral Hashing (SH) of varying bits.

4.1 Concept-1000 Dataset

This dataset consists of more than 150K images of 1000 concepts selected from the Large Scale
Concept Ontology for Multimedia (LSCOM) [17]. The LSCOM categories were specifically se-
lected for multimedia annotation and retrieval, and have been used in the TRECVID video retrieval
series. These concept names were inputed as queries in Google and Bing, and the top returned
images were collected.

We choose the image representation proposed in [28], which is a high dimensional (∼84K) feature
with reported state-of-the-art performance in many visualrecognition tasks. PCA is applied to
reduce the dimension to 1000. We then randomly select around6000 images as queries, and use the
remaining (∼150K) images as the search database.

In image search, we are interested in the overall quality of the set of candidate images returned by
a search algorithm. This notion coincides with our formulation of the search problem in (4) that
is aimed at maximizing retrieval quality while maintaininga relative low computational cost (for
reranking stage). The number of returned images clearly reflects the computational cost, and the
retrieval quality is measured by the recall of retrieved images, i.e., the number of retrieved images
that are among the 100-NN of the query. Note that we use recallinstead of accuracy because recall
gives the upper-bound performance of the reranking stage.

Figure 1(a) shows the performance comparison with two search algorithms:k-means trees and LSH.
Since our boosted search forest consists of tree ensembles,for a fair comparison, we also construct
equivalent number ofk-means trees (with random initializations) and multiple sets of LSH codes.
Our proposed approach significantly outperformsk-means trees and LSH. The better performance
is due to our learning to search formulation that simultaneously maximizes recall while minimizing
the size of returned candidate set. In contrast,k-means trees uses only unsupervised clustering
algorithm and LSH employs purely random projections. Moreover, the performance ofk-means
algorithm deteriorates when dimension increases.

It is still interesting to compare to spectral hashing, although it is not a search algorithm. Since
our approach requires more trees when the number of returns increases, we implement spectral
hashing with varying bits: 32-bit, 96-bit, and 200-bit. As illustrated in Figure 1(b), our approach
significantly outperforms spectral hashing under all configurations. Although the search forest does
not have an explicit concept of bits, we can measure it from the information theoretical point of view,
by counting every binary-branching in the trees as one bit. In the experiment, our approach retrieves
about 70% of 100-NN out of 500 returned images, after traversing 17 trees, each of 12 layers. This
is equivalent to17× 12 = 204 bits. With the same number of bits, spectral hashing only achieves a
recall rate around 60%.

4.2 One Million Tiny Images

In order to examine the scalability of BSF, we conducted experiments on a much larger database. We
randomly sample one million images from the 80 Millions TinyImages dataset [23] as the search
database, and 5000 additional images as queries. We use the 384-dimensional GIST feature pro-
vided by the authors of [23]. Comparison with search algorithms (Figure 2(a)) and hashing methods

7

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

Number of returned images

R
ec

al
l o

f 1
00

−
N

N

BSF
K−means
LSH

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

Number of returned images

R
ec

al
l o

f 1
00

−
N

N

BSF
SH−100bit
SH−500bit
SH−800bit

(a) (b)

Figure 2: Comparison of Boosted Search Forest (BSF) on 1 Millions Tiny Images dataset with (a)
K-means trees and LSH (b) Spectral Hashing (SH) of varying bits.

Table 1: Comparison of retrieval time in a database with 0.5 billion synthesized samples.

#bits 32 64 128 256 512
Linear scan 1.55s 2.74s 5.13s 10.11s 19.79s

Boosted search forest 0.006s 0.009s 0.017s 0.034s 0.073s

(Figure 2(b)) are made in a similar way as in the previous section. Again, the BSF algorithm sub-
stantially outperforms the other methods: using 60 trees (less than 800 bits), our approach retrieves
55.0% of the 100-NN with 5000 returns (0.5% of the entire database), whilek-means trees achieves
only 47.1% recall rate and LSH and spectral hashing are even worse. Note that using more bits in
spectral hashing can even hurt performance on this dataset.

4.3 Search Speed

All three aforementioned search algorithms (boosted search trees,k-means trees, and LSH) can
naturally utilize inverted index structures to facilitatevery efficient search. In particular, both our
boosted search trees andk-means trees use the leaf nodes as the keys to index a list of data points
in the database, while LSH uses multiple independently generated bits to form the indexing key. In
this sense, all three algorithm has the same order of efficiency (constant time complexity).

On the other hand, in order to perform search with compact hamming codes generated by a learning
to hash method (e.g. spectral hashing), one has to either usea linear scan approach or a hash table
lookup technique that finds the samples within a radius-1 Hamming ball (or more complex methods
like LSH). Although much more efficient, the hash table lookup approach is likely to fail as the
dimension of hash code grows to a few dozens, as observed in [24]. The retrieval speed using
exhaustive linear scan is, however, far from satisfactory.Table 1 clearly illustrates this phenomenon
on a database of 0.5 billion synthesized items. Even small codes with 32 bits take around 1.55
seconds (without sorting). When the hash codes grow to 512 bits (which is not unusual for high-
dimensional image/video data), the query time is almost 20 seconds. This is not acceptable for
most real applications. On the contrary, our boosted searchforest with 32 16-layer trees (∼512 bits)
responds in less than 0.073s. Our timing is carried out on a Intel Xeon Quad X5560 CPU, with a
highly optimized implementation of Hamming distance whichis at least 8–10 times faster than a
naive implementation.

5 Conclusion

This paper introduces a learning to search framework for scalable similarity search in high dimen-
sions. Unlike previous methods, our algorithm learns a boosted search forest by jointly optimizing
search quality versus computational efficiency, under the supervision of pair-wise similarity labels.
With a natural integration of the inverted index search structure, our method can handle web-scale
datasets efficiently. Experiments show that our approach leads to better retrieval accuracy than the
state-of-the-art search methods such as locality sensitive hashing andk-means trees.

8

References

[1] J. S. Beis and D. G. Lowe. Shape indexing using approximate nearest-neighbour search in
high-dimensional spaces. InCVPR, pages 1000–1006, 1997.

[2] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based
on p-stable distributions. InSymposium on Computational Geometry, pages 253–262, 2004.

[3] J. Friedman, J. Bentley, and R. Finkel. An algorithm for finding best matches in logarithmic
expected time.ACM Transactions on Mathematical Software (TOMS), 3(3):209–226, 1977.

[4] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of
boosting.The Annals of Statistics, 28(2):337–374, 2000.

[5] K. Fukunage and P. Narendra. A branch and bound algorithmfor computing k-nearest neigh-
bors. IEEE Transactions on Computers, 100(7):750–753, 1975.

[6] A. Gionis, P. Indyk, and R. Motwani. Similarity search inhigh dimensions via hashing. In
VLDB, pages 518–529, 1999.

[7] J. He, W. Liu, and S.-F. Chang. Scalable similarity search with optimized kernel hashing. In
KDD, 2010.

[8] P. Jain, B. Kulis, and K. Grauman. Fast image search for learned metrics. InCVPR, 2008.
[9] V. Jain and M. Varma. Learning to re-rank: query-dependent image re-ranking using click

data. InWWW, pages 277–286, 2011.
[10] B. Kulis and T. Darrell. Learning to hash with binary reconstructive embeddings.NIPS, 2009.
[11] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search. In

ICCV, 2009.
[12] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T.Huang. Large-scale image

classification: fast feature extraction and svm training. In CVPR, 2011.
[13] T.-Y. Liu. Learning to rank for information retrieval.In SIGIR, page 904, 2010.
[14] W. Liu, J. Wang, S. Kumar, and S. Chang. Hashing with graphs. InICML, 2011.
[15] F. Moosmann, B. Triggs, and F. Jurie. Fast discriminative visual codebooks using randomized

clustering forests. InNIPS, pages 985–992, 2006.
[16] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm con-

figuration. InVISSAPP, 2009.
[17] M. Naphade, J. Smith, J. Tesic, S. Chang, W. Hsu, L. Kennedy, A. Hauptmann, and J. Curtis.

Large-scale concept ontology for multimedia.IEEE Multimedia Magazine, 13(3):86–91, 2006.
[18] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. InCVPR, pages

2161–2168, 2006.
[19] R. Salakhutdinov and G. E. Hinton. Semantic hashing.Int. J. Approx. Reasoning, 50(7):969–

978, 2009.
[20] G. Shakhnarovich.Learning task-specific similarity. PhD thesis, Massachusetts Institute of

Technology, 2005.
[21] G. Shakhnarovich, T. Darrell, and P. Indyk.Nearest-Neighbor Methods in Learning and Vision:

Theory and Practice. The MIT Press, 2006.
[22] C. Silpa-Anan and R. Hartley. Optimised kd-trees for fast image descriptor matching. In

CVPR, 2008.
[23] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data set for

nonparametric object and scene recognition.IEEE Trans. PAMI, 30(11), 2008.
[24] J. Wang, O. Kumar, and S.-F. Chang. Semi-supervised hashing for scalable image retrieval. In

CVPR, 2010.
[25] Weber, Roger, Schek, Hans J., and Blott, Stephen. A Quantitative Analysis and Performance

Study for Similarity-Search Methods in High-Dimensional Spaces. InVLDB, 1998.
[26] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing.In NIPS, 2008.
[27] T. Yeh, J. J. Lee, and T. Darrell. Adaptive vocabulary forests br dynamic indexing and category

learning. InICCV, pages 1–8, 2007.
[28] X. Zhou, N. Cui, Z. Li, F. Liang, and T. S. Huang. Hierarchical gaussianization for image

classification. InICCV, 2009.

9

