Learning to Search Efficiently in High Dimensions

Zhen Li * Huazhong Ning Liangliang Cao
uluc Google Inc. IBM T.J. Watson Research Center
zhenl i 3@i uc. edu huazhong@ooogl e. com Iiangliang. cao@is.i bm com
Tong Zhang Yihong Gong Thomas S. Huang*
Rutgers University NEC China uluc
t zhang@t at . rut gers. edu ygongca@mai | . com huang@ f p. ui uc. edu
Abstract

High dimensional similarity search in large scale databdszomes an impor-
tant challenge due to the advent of Internet. For such agijiics, specialized
data structures are required to achieve computationalesftig. Traditional ap-
proaches relied on algorithmic constructions that arenaftgta independent (such
as Locality Sensitive Hashing) or weakly dependent (suckdasees,k-means
trees). While supervised learning algorithms have beetiegpto related prob-
lems, those proposed in the literature mainly focused omieg hash codes op-
timized for compact embedding of the data rather than sesffidiency. Conse-
quently such an embedding has to be used with linear scarothiersearch algo-
rithm. Hencdearning to hastioes not directly address the search efficiency issue.
This paper considers a new framework that applies superigsening to directly
optimize a data structure that supports efficient largeessahrch. Our approach
takes both search quality and computational cost into denation. Specifically,
we learn aboosted search foreshat is optimized using pair-wise similarity la-
beled examples. The output of this search forest can beegftigiconverted into
an inverted indexing data structure, which can leverageamoixt search infras-
tructure to achieve both scalability and efficiency. Expenmtal results show that
our approach significantly outperforms the start-of-thidesarning to hash meth-
ods (such as spectral hashing), as well as state-of-theghrtiimensional search
algorithms (such as LSH aridmeans trees).

1 Introduction

The design of efficient algorithms for large scale similasiéarch (such as nearest neighbor search)
has been a central problem in computer science. This prob&omes increasingly challenging
in modern applications because the scale of modern datbaseyrown substantially and many of
them are composed of high dimensional data. This meansldssical algorithms such as kd-trees
are no longer suitable [25] and new algorithms have to begdesito handle high dimensionality.
However, existing approaches for large scale search in diiglension relied mainly on algorith-
mic constructions that are either data independent or wabldpendent. Motivated by the success
of machine learning in the design of ranking functions fdofmation retrieval (thdearning to
rank problem [13, 9]) and the design of compact embedding intafyisodes (théearning to hash
problem [10]), it is natural to ask whether we can use macldaming (in particular, supervised
learning) to optimize data structures that can improvecteefficiency. We call this probletearn-

ing to search and this paper demonstrates that supervised learningeeantd improved search
efficiency over algorithms that are not optimized using suiged information.

*These authors were sponsored in part by the U.S. Nationah&eiFoundation under grant 11S-1049332 EAGER and by th&Bao
Seed Grant.



To leverage machine learning techniques, we need to carsislealable search structure with pa-
rameters optimizable using labeled data. The data stedionsidered in this paper is motivated
by the success of vocabulary tree method in image retrié&l37, 15], which has been adopted
in modern image search engines to find near duplicate imadgsugh the original proposal was
based on “bag of local patch” image representation, thigpepnsiders a general setting where
each database item is represented as a high dimensionat.Vieetent advances in computer vision
show that it is desirable to represent images as numericébrgeof as high as thousands or even
millions of dimensions [12, 28]. We can easily adapt the botary tree to this setting: we partition
the high dimensional space into disjoint regions usinganricalk-means, and regard them as the
“vocabulary”. This representation can then be integramgad &n inverted index based text search
engine for efficient large scale retrieval. In this paper,refer to this approach a@smeans trees
because the underlying algorithm is the same as in [5, 16§ Natk-means trees can be used for
high dimensional data, while the classical kd-trees [1,23,a2e limited to dimensions of no more
than a few hundreds.

In this paper, we also adopt the tree structural representatnd propose a learning algorithm to
construct the trees using supervised data. It is worth gatiat thek-means trees approach suffers
from several drawbacks that can be addressed in our appréact thek-means trees only use
unsupervised clustering algorithm, which is not optimifedsearch purposes; as we will show in
the experiments, by employing supervised information Jeaiming to search approach can achieve
significantly better performance. Second, the underlyingeans clustering limits thé-means
tree approach to Euclidean similarity measures (thoughiplasto extended to Bregman distances),
while our approach can be easily applied to more generalieadincluding semantic ones) that
prove effective in many scenarios [8, 11, 7]. Neverthelesseaperiments still focus on Euclidean
distance search, which is to show the advantage ovet-theans trees.

The learning to search framework proposed in this papersedan a formulation of search as a
supervised learning problem that jointly optimizes two kagtors of searchretrieval qualityand
computational costSpecifically, we learn a set s&lection functions the form of a tree ensemble,
as motivated by the aforementioned kd-trees Awdeans trees approaches. However, unlike the
traditional methods that are based only on unsupervisedirdtion, our trees are learned under the
supervision of pairwise similarity information, and ardiopzed for the defined search criteria, i.e.,
to maximize the retrieval quality while keeping the compiotaal cost low. In order to form the
forest, boosting is employed to learn the trees sequentlk call this particular methoBoosted
Search Forest(BSF).

It is worth comparing the influential Locality Sensitive Hiasy (LSH) [6, 2] approach with our
learning to search approach. The idea of LSH is to employamanplrojections to approximate the
Euclidean distance of original features. An inverted insieMcture can be constructed based on the
hashing results [6], which facilitates efficient search.widwer, the LSH algorithm is completely
data independent (using random projections), and thus dkee structure is constructed without
any learning. While interesting theoretical results caol@ined for LSH, as we shall see with the
experiments, in practice its performance is inferior todhta-dependent search structures optimized
via the learning to search approach of this paper.

Another closely related problemlisarning to hashwhich includes BoostSSC [20], Spectral Hash-
ing [26], Restricted Boltzmann Machines [19], Semi-Sujsae Hashing [24], Hashing with Graphs
[14], etc. However, the motivation of hashing problem isdamentally different from that of the
search problem considered in this paper. Specifically, ta of learning to hash is to embed data
into compact binary codes so that the hamming distance leetiveo codes reflects their original
similarity. In order to perform efficient hamming distan@asch using the embedded representa-
tion, an additional efficient algorithmic structure is Istikeded. (How to come up with such an
efficient algorithm is an issue usually ignored by learniadhash algorithms.) The compact hash
codes were traditionally believed to achieve low searchniey by employing either linear scan,
hash table lookup, or more sophisticated search mechamsmve shall see in our experiments,
however, linear scan on the Hamming space is not a feasihlé®sofor large scale search prob-
lems. Moreover, if other search data structure is implesgeah top of the hash code, the optimality
of the embedding is likely to be lost, which usually yield®sptimal solution inferior to directly
optimizing a search criteria.



2 Background

Given a databas®& = {z1,...,z,} and a query,, the search problem is to return top ranked items
from the database that are most similar to the query. sigtz) > 0 be a ranking function that
measures the similarity betweemandz. In large-scale search applications, the database:siza

be billions or larger. Explicitly evaluating the rankingnfttion s(g, ) against all samples is very
expensive. On the other hand, in order to achieve accuratelseesults, a complicated ranking
functions(g, z) is indispensible.

Modern search engines handle this problem by first emplogimgn-negativeselection function
T(q,x) that selects a small set of candidatés= {z : T'(¢,z) > 0,z € X'} with most of the top
ranked itemsT (¢, z) = 0 means “not selected”). This is calledndidate selectiorstage, which is
followed by areranking stage where a more costly ranking functign, =) is evaluated ori;.

Two properties of the selection functi@i(q, =) are: 1) It must be evaluated much more efficiently
than the ranking functios(q, z). In particular, for a given query, the complexity of evalogt
T(q, z) over the entire dataset should be sublinear or even consthith is usually made possible
by delicated data structures such as inverted index taB)eghe selection function is an approxi-
mation tos(q, x). In other word, with high probability, the more similaandx are, the more likely

x is contained inX, (which meand’(q, x) should take a larger value).

This paper focuses on the candidate selection stagegiaenihg the selection functidfi(g, x). In
order to achieve both effectiveness and efficiency, thrpeds need to be taken into account:

o X, can be efficiently obtained (this is ensured by propertiesetéction function).
o The size ofY, should be small since it indicates tbemputational costor reranking.
e Theretrieval qualityof X; measured by the total similarily, . , s(q, ) should be large.

Therefore, our objective is to retrieve a set of items thatimaes the ranking quality while lower-
ing the computational cost (keeping the candidate set ak ampossible). In additiona, to achieve
search efficiency, the selection stage employs the invartik structure as in standard text search
engines to handle web-scale dataset.

3 Learning to Search

This section presents the proposedrning to searctiramework. We present the general formula-
tion first, followed by a specific algorithm based on booseateh trees.

3.1 Problem Formulation

As stated in Section 2, the set of candidates returned foreayquis given by X, = {z € X :
T(g,x) > 0}. Intuitively, thequality of this candidate set can be measured by the overall sitiglgri
while the reranking cost is linear ji,|. Mathematically, we define:

Retrieval Quality: QT) =YY s(q,2)1(T(g,z) > 0) 1)
q xEX

Computational Cost: c(T) = Z Z 1(T(q,z) > 0) 2
q xEX

wherel(-) is the indicator function.

Thelearning to searchframework considers the search problem as a machine lggoniblem that
finds the optimal selection functidh as follows:

max Q(T) subjecttoC(T) < Cy, 3)

where(C is the upper-bound of computational cost. Alternativelg, @an rewrite the optimization
problem in (3) by applying Lagrange multiplier:

max Q(T)— XC(T), (4)

where is a tuning parameter that balances the retrieval qualiycamputational cost.



To simplify the learning process, we assume that the quareecandomly drawn from the database.
Let z; andz; be two arbitrary samples in the dataset, anaslet= s(z;,z;) € {1,0} indicate if
they are “similar” or “dissimilar”. Problem in (4) becomes:

mTaxJ(T) = mj@XZsijl(T(mi,acJ )\Z (@i, xj) > 0)

masz” (xi,25) > 0) (5)

where

(6)

L 1—X forsimilar pairs
R Y for dissimilar pairs

3.2 Learning Ensemble Selection Function via Boosting

Note that (5) is nonconvex ifi’ and thus is difficult to optimize. Inspired by AdaBoost [4]lew
employ the standard trick of using a convex relaxation, arghrticular, we consider the exponential
loss as a convex surrogate:

m1n£ Zefz” 20:25) = R[e~*T(@025)], )

Here we replace the summation oWémi, zj) € X x X by the expectation over twid.d. random

variablesr; andz;. We also drop the subscripts af and regard as a random variable conditioned

onz; andz;.

We define the ensemble selection function as a weighted sansetfof base selection functions:
M

T(xz,y) = Z Cm -t (T4, T5). (8)

m=1

Suppose we have leardit base functions, and we are about to learn thé + 1)-th selection
function, denoted a&z;, ;) with weight given byc. The updated loss function is hence given by

mtinﬁ(t, C) _ E[e—Z[T(fL"L7517j)+(1t($i7f1/'j)]] =E, [e—czt(l'i;l']‘)], (9)
whereE,, [-] denotes theveighted expectatiowith weights given by

—(1=NT(zi,2; .o .
ws; = wws, ) = =T e = L€ (=NT(z:x5)  for similar pairs
v o AT (@a25) for dissimilar pairs

(10)

This reweighting scheme leads to the boosting algorithmlgoAthm 1.

In many application scenarios, each base selection funttig, ;) takes only binary values 1 or
0. Thus, we may want to minimiz&(¢, c) by choosing the optimal value ofz;, ;) for any given
pair (x;, ;).

Case 1l:t(z;,z;) =0

L(t,c) =E,le™ =1. (11)
Case 2:t(z;,z;) =1
L(t,c) =E,[e %] = e~ (1=Ve. Pusij = 1las, ;] + e Pu(sij = 0|z, x;]. (12)
Comparing the two cases leads to:
£ (1, 35) = {1 if Pw[si_j = 1|z, 5] > 11__6616 13
0 otherwise
To find the optimat, we first decomposg in the following way:
L(t,c) = Eyle ool
= Pylt(zi,x;) = 0lz;, x;] + e~ c1=2) . Pult(zi, z;) =1, 855 = 1|xs, 5]
+e - Py [t(wi, x5) = 1,855 = Olai, ;). (14)

4



Taking the derivative of with respect ta;, we arrive at the optimal solution fer
(1 — )\)Pu,[t(wi,acj) = 1, Sij = 1|.I'i,l'j]
APy [t(zi, ;) = 0,845 = 1|2, 23]

¢ = log (15)

Algorithm 1 Boosted Selection Function Learning

Input: A set of data pointst’; pairwise similaritiess;; € {0, 1} and weightsy;; = 1
1: formel,2,--- ,Mdo

2. Learn a base selection function (x, y) based on weights; ;

3:  Update ensemblel’(z;, x;) < T'(zi, ;) + cm - tm (@i, T5)

4:  Update weights: w;; < w;; - e~¢mtm(@i2;)

5: end for

3.3 Tree Implementation of Base Selection Function

Simultaneously solving (13) and (15) leads to the optimalt&ins at each iteration of boosting. In
practice, however, the optimality can hardly be achievelis Ts particularly because the binary-
valued base selection functiot(s;;, z;) has to be selected from limited function families to ensure
the wearability (finite model complexity) and more impottgythe efficiency. As mentioned in Sec-
tion 2, evaluating(q, ) for Vo € X needs to be accomplished in sublinear or constant time when
a queryq comes. This suggests using an inverted table data struasuae efficient implantation

of the selection function. Specificalli{z;,z;) = 1 if z; andz; get hashed into the same bucket
of the inverted table, an@l otherwise. This paper considers trees (we name it “seagels’ly as an
approximation to the optimal selection functions, and Rinwerted table lookup follows naturally.

A natural consideration for the tree construction is thatttiee must be balanced. However, we do
not need to explicitly enforce this constraint: the balaress is automatically favored by the term
C'in (4) as balanced trees give the minimum computational toshis sense, unlike other methods
that explicitly enforce balancing constraint, we relax kilg jointly optimizing the retrieval quality
and computational cost.

Consider a search tree wifhleaf nodes( ¢y, - - - , ¢1}. The selection function given by this tree is

defined as
L

t(ziazj) = Zt(ziazj;gk)a (16)
k=1
wheret(z;, z;; ¢) € {0,1} indicating whether bothy; andz; reach the same leaf nodg. Similar
to (5), the objective function for a search tree can be wrids:

L L

m?XJ:m?XZwijzith(xi,xj;Ek) :m?XZJk, a7
1,7 k=1 k=1

whereJk = Zij wqjziit(zi, x5 0y iS @ partial objective function for thie-th leaf node, ana;; is

given by (10).

The appealing additive property of the objective functibmakes it trackable to analyze each split

when the search tree grows. In particular, we splitita leaf node into two child nodég1) and

k(2) if and only if it increases the overall objective functigh") + J*2) > jk_ Moreover, we

optimize each split by choosing the one that maximiz&d) + Jj*(2),

To find the optimal split for a leaf nod&., we confine to the hyperplane split cases, i.e., a sample
is assigned to the left chile),;) if p"z+b = p" & > 0 and right child otherwise, whefe= [p" b] "
andz = [z " 1] are the augmented projection and data vectors. The sglittiterion is given by:

max J*1) + JF?) = max Zwijzijl(ﬁ—ri’i 'ﬁ—ri’j > 0)
Ill=1 3

Q

T~ ~T ~
max » wi;zii[p &, Pl
I7l1=1 4

= max prXMXp, (18)
pll=1

5



whereM;; = w;jzij, andX is the stack of all augmented samples at ngdeNote that ad (a >
0) = isign(a) + 3 is non-differentiable, we approximate it usidg + 1. The optimalp of the
above objective function is the eigenvector correspontlirie largest eigenvalue 6f A/ X .

The search tree construction algorithm is listed in Aldgorit2. In the implementation, if compu-
tation resource is critical, we may use stump functions ti 8pe nodes with a large amount of
samples, while applying the optimal projectiprio the small nodes. The selection of the stump
functions is similar to that in traditional decision treesx the given leaf node, a set of stump func-
tions are attempted and the one that maximizes (17) is selédhe objective function increases.

Algorithm 2 Search Tree Construction

Input: A set of data pointsy’; pairwise similaritiess;; € {0, 1} and weightsv;; given by (10)
Output: Treet

1. AssignX’ as root; enqueue root

2: repeat

3:  Find a leaf nodé€ in the queue; dequeue
4:  Find the optimal split fo¢ by solving (18)
5. if criteriain (17) increasethen

6: Split Z into ¢; and/,; enqueud; and/y
7:  endif

8: until Queue is empty

3.4 Boosted Search Forest

In summary, we present a Boosted Search Forest (BSF) ddgotit thelearning to searchproblem.

In the learning stage, this algorithm follows the boostirgriework described in Algorithm 1 to
learn an ensemble of selection functions; each base seidamction, in the form of a search tree,
is learned with Algorithm 2. We then build inverted indicesmssing all data points through the
learned search trees. In analogy to text search, each lel&f crresponds to an “index word”
in the vocabulary and the data points reaching this leaf roddhe “documents” associated with
this “index word”. In the candidate selection stage, indtehexhaustively evaluating'(q, x) for
Yz € X, we only need to traverse the search trees and retrievesithat collide with the query
example for at least one tree. The selected candidate geh by X, = {x € X' : T'(q,x) > 0}, is
statistically optimized to have a small size (small compatecost) while containing a large number
of relevant samples (good retrieval quality).

4 Experiments

We evaluate the Boosted Search Forest (BSF) algorithm @araemage search tasks. Although a
more general similarity measure can be used, for simple#ysets(z;,z;) € {0, 1} according to
whetherz; is within the topK nearest neighborg{-NN) of z; on the designated metric space. We
useK = 100 in the implementation.

We compare the performance of BSF to two most popular algnston high dimensional image
search: k-means trees and LSH. We also compare to a representativedniet the learning to
hash community: spectral hashing, although this algorittas designed for Hamming embedding
instead of search. Here linear scan is adopted on top ofrgppbeshing for search, because its more
efficient alternatives are either directly compared (steh$H) or can easily fail as noticed in [24].
Our experiment shows that exhaustive linear scan is noalsigglespecially with long hash codes
needed for better retrieval accuracy (see Table 1).

The above algorithms are most representative. We do notamnwyth other algorithms for several
reasons. Fist, LSH was reported to be superior to kd-tredsgfi2d spectral hashing was reported
to out-perform RBM and BoostSCC [26]. Second, kd-trees #m@tensions still work on low
dimensions, and is known to behave poorly on high dimensaaiike in image search. Third, since
this paper focuses on learning to search, not learning tb {tdamming embedding) or learning
distance metrics that consider different goals, it is ngeatial to compare with more recent work
on those topics such as [8, 11, 24, 7].



100 100

—B-BSF

-~ SH-32bit
g0l| =%- SH-96bit
SH-200bit

-B8-BSF

60

401

Recall of 100-NN
Recall of 100-NN

20F w /st IERE T Aicie dei
x gV Lo 4
Q v - -v-
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Number of returned images Number of returned images

@ (b)

Figure 1: Comparison of Boosted Search Forest (BSF) on @bh@60 dataset with (&)-means
trees and LSH (b) Spectral Hashing (SH) of varying bits.

4.1 Concept-1000 Dataset

This dataset consists of more than 150K images of 1000 ctmeetected from the Large Scale
Concept Ontology for Multimedia (LSCOM) [17]. The LSCOM egbries were specifically se-
lected for multimedia annotation and retrieval, and havenhesed in the TRECVID video retrieval
series. These concept names were inputed as queries ineéSand|Bing, and the top returned
images were collected.

We choose the image representation proposed in [28], whiathigh dimensionak84K) feature
with reported state-of-the-art performance in many vigeabgnition tasks. PCA is applied to
reduce the dimension to 1000. We then randomly select ar600d images as queries, and use the
remaining (-150K) images as the search database.

In image search, we are interested in the overall qualithefset of candidate images returned by
a search algorithm. This notion coincides with our formiolatof the search problem in (4) that
is aimed at maximizing retrieval quality while maintainiagelative low computational cost (for
reranking stage). The number of returned images clearlgatsfithe computational cost, and the
retrieval quality is measured by the recall of retrieveddges i.e., the number of retrieved images
that are among the 100-NN of the query. Note that we use riecédlad of accuracy because recall
gives the upper-bound performance of the reranking stage.

Figure 1(a) shows the performance comparison with two sedgorithms:k-means trees and LSH.
Since our boosted search forest consists of tree enserfdii@sfair comparison, we also construct
equivalent number of-means trees (with random initializations) and multipless# LSH codes.
Our proposed approach significantly outperformameans trees and LSH. The better performance
is due to our learning to search formulation that simultarsgomaximizes recall while minimizing
the size of returned candidate set. In contrasteans trees uses only unsupervised clustering
algorithm and LSH employs purely random projections. Meegpthe performance of-means
algorithm deteriorates when dimension increases.

It is still interesting to compare to spectral hashing, @lgh it is not a search algorithm. Since
our approach requires more trees when the number of retnoneases, we implement spectral
hashing with varying bits: 32-bit, 96-bit, and 200-bit. Alsistrated in Figure 1(b), our approach
significantly outperforms spectral hashing under all carigjons. Although the search forest does
not have an explicit concept of bits, we can measure it framrtformation theoretical point of view,
by counting every binary-branching in the trees as one bithé experiment, our approach retrieves
about 70% of 100-NN out of 500 returned images, after trangrs7 trees, each of 12 layers. This
is equivalent tal7 x 12 = 204 bits. With the same number of bits, spectral hashing onlyexels a
recall rate around 60%.

4.2 One Million Tiny Images

In order to examine the scalability of BSF, we conducted grpents on a much larger database. We
randomly sample one million images from the 80 Millions Tinyages dataset [23] as the search
database, and 5000 additional images as queries. We us84hdirBensional GIST feature pro-

vided by the authors of [23]. Comparison with search alpari (Figure 2(a)) and hashing methods



—B-BSF

=3k= SH-100bit
507 3 SH-500bit
SH-800bit

Recall of 100-NN
Recall of 100-NN

(.o

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of returned images Number of returned images

(a) (b)

Figure 2. Comparison of Boosted Search Forest (BSF) on idviglTiny Images dataset with (a)
K-means trees and LSH (b) Spectral Hashing (SH) of varyirgg bit

Table 1: Comparison of retrieval time in a database with @li®b synthesized samples.

#bits 32 64 128 256 512
Linear scan 1.55s 2.74s 5.13s 10.11s 19.79s
Boosted search forest 0.006s 0.009s 0.017s 0.034s 0.073s

(Figure 2(b)) are made in a similar way as in the previous@ectAgain, the BSF algorithm sub-
stantially outperforms the other methods: using 60 treess(than 800 bits), our approach retrieves
55.0% of the 100-NN with 5000 returns (0.5% of the entire Has&), whileék-means trees achieves
only 47.1% recall rate and LSH and spectral hashing are ewesew Note that using more bits in
spectral hashing can even hurt performance on this dataset.

4.3 Search Speed

All three aforementioned search algorithms (boosted befrees,k-means trees, and LSH) can
naturally utilize inverted index structures to facilitatery efficient search. In particular, both our
boosted search trees ahdneans trees use the leaf nodes as the keys to index a listaopdimts
in the database, while LSH uses multiple independently ige@é bits to form the indexing key. In
this sense, all three algorithm has the same order of efigiG@onstant time complexity).

On the other hand, in order to perform search with compacnhagcodes generated by a learning
to hash method (e.g. spectral hashing), one has to eithex lirsgar scan approach or a hash table
lookup technique that finds the samples within a radius-1 tdanmg ball (or more complex methods
like LSH). Although much more efficient, the hash table loplapproach is likely to fail as the
dimension of hash code grows to a few dozens, as observedijn [the retrieval speed using
exhaustive linear scan is, however, far from satisfact@ajle 1 clearly illustrates this phenomenon
on a database of 0.5 billion synthesized items. Even smakgavith 32 bits take around 1.55
seconds (without sorting). When the hash codes grow to 5$2Wwhich is not unusual for high-
dimensional image/video data), the query time is almoste&disds. This is not acceptable for
most real applications. On the contrary, our boosted sdarekt with 32 16-layer trees{512 bits)
responds in less than 0.073s. Our timing is carried out oried Xeon Quad X5560 CPU, with a
highly optimized implementation of Hamming distance whishat least 8—10 times faster than a
naive implementation.

5 Conclusion

This paper introduces a learning to search framework fdabtasimilarity search in high dimen-
sions. Unlike previous methods, our algorithm learns a teabsearch forest by jointly optimizing
search quality versus computational efficiency, under tipesvision of pair-wise similarity labels.
With a natural integration of the inverted index searchditrre, our method can handle web-scale
datasets efficiently. Experiments show that our approaatisl¢éo better retrieval accuracy than the
state-of-the-art search methods such as locality seas$itighing and-means trees.



References

[1] J. S. Beis and D. G. Lowe. Shape indexing using approx@matrest-neighbour search in
high-dimensional spaces. VPR pages 1000—-1006, 1997.
[2] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Loligy-sensitive hashing scheme based
on p-stable distributions. 18ymposium on Computational Geomefrgges 253-262, 2004.
[3] J. Friedman, J. Bentley, and R. Finkel. An algorithm faording best matches in logarithmic
expected timeACM Transactions on Mathematical Software (TONV&}P):209-226, 1977.
[4] J. Friedman, T. Hastie, and R. Tibshirani. Additive ketig regression: A statistical view of
boosting.The Annals of Statistic28(2):337-374, 2000.
[5] K. Fukunage and P. Narendra. A branch and bound algorittroomputing k-nearest neigh-
bors.|IEEE Transactions on Computeri00(7):750-753, 1975.
[6] A. Gionis, P. Indyk, and R. Motwani. Similarity searchfigh dimensions via hashing. In
VLDB, pages 518-529, 1999.
[7] J. He, W. Liu, and S.-F. Chang. Scalable similarity shamith optimized kernel hashing. In
KDD, 2010.
[8] P. Jain, B. Kulis, and K. Grauman. Fast image search fmnled metrics. II€VPR 2008.
[9] V. Jain and M. Varma. Learning to re-rank: query-depemndmage re-ranking using click
data. InWWW pages 277-286, 2011.
[10] B. Kulis and T. Darrell. Learning to hash with binary osstructive embedding®lIPS 2009.
[11] B. Kulis and K. Grauman. Kernelized locality-sensitivashing for scalable image search. In
ICCV, 2009.
[12] V. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and Huang. Large-scale image
classification: fast feature extraction and svm trainimgCVPR 2011.
[13] T.-Y. Liu. Learning to rank for information retrievaln SIGIR page 904, 2010.
[14] W. Liu, J. Wang, S. Kumar, and S. Chang. Hashing with gsapnICML, 2011.
[15] F. Moosmann, B. Triggs, and F. Jurie. Fast discrimireatisual codebooks using randomized
clustering forests. INIPS pages 985-992, 2006.
[16] M. Muja and D. G. Lowe. Fast approximate nearest neighldgth automatic algorithm con-
figuration. InVISSAPR2009.
[17] M. Naphade, J. Smith, J. Tesic, S. Chang, W. Hsu, L. Kdgn&. Hauptmann, and J. Curtis.
Large-scale concept ontology for multimediaEE Multimedia Magazingl 3(3):86—91, 2006.
[18] D. Nistér and H. Stewénius. Scalable recognitiorhvdatvocabulary tree. II€VPR pages
2161-2168, 2006.
[19] R. Salakhutdinov and G. E. Hinton. Semantic hashing.J. Approx. Reasoning0(7):969—
978, 2009.
[20] G. ShakhnarovichLearning task-specific similarityPhD thesis, Massachusetts Institute of
Technology, 2005.
[21] G. Shakhnarovich, T. Darrell, and P. Indyearest-Neighbor Methods in Learning and Vision:
Theory and PracticeThe MIT Press, 2006.
[22] C. Silpa-Anan and R. Hartley. Optimised kd-trees fastfamage descriptor matching. In
CVPR 2008.
[23] A. Torralba, R. Fergus, and W. T. Freeman. 80 milliorytimages: A large data set for
nonparametric object and scene recogniti®kEE Trans. PAM|30(11), 2008.
[24] J. Wang, O. Kumar, and S.-F. Chang. Semi-supervisedihgor scalable image retrieval. In
CVPR 2010.
[25] Weber, Roger, Schek, Hans J., and Blott, Stephen. A @ative Analysis and Performance
Study for Similarity-Search Methods in High-DimensiongbSes. IVLDB, 1998.
[26] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashingNIPS 2008.
[27] T.Yeh, J. J. Lee, and T. Darrell. Adaptive vocabulame&is br dynamic indexing and category
learning. InICCV, pages 1-8, 2007.
[28] X. Zhou, N. Cui, Z. Li, F. Liang, and T. S. Huang. Hieraichl gaussianization for image
classification. INCCV, 2009.



