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ABSTRACT
This paper considers the emerging problem of annotating
personal photo collections that are taken by digital cameras
and may have been subsequently organized by customers.
Unlike the images from the web searching engine or commer-
cial image banks (e.g. the Corel database), the photos in the
same personal collection are related to each other in time,
location, and content. Advanced technologies can record the
GPS coordinates for each photo, and thus provide a richer
source of context to model and enforce the correlation be-
tween the photos in the same collection. Recognizing the
well-known limitations (”semantic gap”) of visual recognition
algorithms, we exploit the correlation between the photos
to enhance the annotation performance. In our approach,
high-confidence annotation labels are first obtained for cer-
tain photos and then propagated to the remaining photos in
the same collection, according to time, location, and visual
proximity (or similarity). A novel generative probabilistic
model is employed, which outperforms the pervious linear
propagation scheme. Experimental results have shown the
advantages of the proposed annotation scheme.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models; I.4 [Image Processing and Computer Vision]:
Feature Measurement, Image Representation

General Terms
Algorithms, Experimentation

Keywords
Photo Collection, Label Propagation, Photo Similarities, Times-
tamp, GPS, SIFT, Color Histogram

1. INTRODUCTION
In the recent years, the popularity of digital cameras has
lead to a flourish of personal digital photos. For example,
Flickr [1] and Picassa Web Album [2] host millions of new

personal photos uploaded every month. Compared with pro-
fessional image banks such as Corel [3], these personal pho-
tos constitute an overwhelming source of images requiring
efficient management. Recognizing and annotating these
photos are of both high commercial potentials and broad
research interests.

The difficulties in annotating personal photos lie in two as-
pects. First, such photos are of highly varying qualities,
because they were taken by different people with differ-
ent photography skills in different conditions. In contrast,
the images in the Corel dataset were taken by professionals
and thus share similarly well-controlled exposure conditions,
Second, personal photos are far more complex in terms of
semantic meaning. While Corel images are categorized in
well-defined object and scene classes, personal photos con-
tain unconstrained content and often are records of people,
places, and events. All these factors pose greater changes
for annotation, search and retrieval tasks.

One distinct but often overlooked feature of personal photos
is that they are usually organized into collections or albums
by time, location, and events. Since the users always move
their photos from the camera to a computer, the photos are
inevitably separated into file folders according to different
dates. When the users want to share the photos with their
friends, a natural and also informative way is to group the
photos by location and date. The photos within the same file
folder are often closely correlated to each other, since they
were likely to be taken at the same time, place or event.
This characteristic does not hold for generic image datasets.
The motivation of this work is to utilize the folder organiza-
tion to improve the annotation of diverse personal photos,
and we differentiate our framework as annotation of photo
collections.

In essence, photo collections provide rich information be-
yond the sum of individual photos. We assume that the
photos in the same collection are taken by the same person
using the camera under similar capture conditions. Under
such an assumption, if two consecutive photos share simi-
lar visual features, it is likely that they describe the same
scene or event. This is a powerful context that would not
exist for general photos, which can describe different seman-
tic content even if they contain similar color of texture fea-
tures. In other words, the ”semantic gap” in image similarity
matching is inherently limited with the same photo collec-
tion. Moreover, computing the similarity among all possible
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Figure 1: Overview of the proposed framework for annotating photo collections.

image pairs in a large database would be time consuming,
while the computation for image pairs within a photo collec-
tion involves fewer photos that are already ordered in time
and even location (when GPS information is available).

We can also model the photo similarity using metadata in-
formation such as timestamp and GPS tags. Every JPEG
image file records the date and time when the photo was
taken. An advanced camera can even record the location via
a GPS receiver. However, due to the sensitivity limitation
of the GPS receiver, GPS tags can be missing (especially for
indoor photos). Since the photos in a collection are taken by
the same camera, we can estimate whether labels of two pho-
tos are the same by the time and GPS information, either
independent of or in conjunction with visual features. When
the two photos are taken in a short time interval, it is un-
likely that the scene or event labels change. Similarly, when
two photos location does not change, the photos probably
describe the same scene and event. Such metadata informa-
tion was often overlooked in previous annotation work until
recently [21]. Here we show that they are also useful for
propagating labels in the same photo collection.

To test our method, we build a new database of photo col-
lection by handing out cameras to different users over the
period of 8 months. The database consists of 103 photo col-
lections with different sizes (from 4 and 249 photos). To
characterize the diverse semantics of personal photos, we la-
beled the database using an ontology of 12 events and 12
scenes. Note that the 12 events include a null category for
”none of the above”, which means our method can also han-
dle the collections that are not of high interest. This is
an important feature for a practical system. Consequently,
each photo can be categorized into one and only one of these
mutually-exclusive events. To make the labeling process
consistent, we clarify the definitions of the event labels in
Table 1. We also labeled each image with the scene labels us-
ing the same class definitions from [4]: coast, open-country,
forest, mountain, inside-city, suburb, highway, livingroom,
bedroom, office, and kitchen. Note that here inside-city in-
cludes the three original classes of inside-city, street and tall-
building, since our annotation task does not need to distin-
guish these three classes that are visually and semantically
similar. Again, we also added a null scene class to handle
the unspecified cases.

2. RELATED WORK

There has been a rich amount of research on image anno-
tation. The most common approaches treat annotation as
a supervised classification problem. These methods usually
employ low level visual features [5] [10]. However, due to the
diversity and complexity of visual content, it is difficult to
obtain a satisfactory classifier for general images. To over-
come the limitations of low level features, it is crucial to
employ other sources of information for annotation.

One popular way to introduce useful new information in im-
age retrieval is relevance feedback [6]. Relevance feedback
requires the user to label some negative and positive exam-
ples from the initial retrieval results, and then the retrieval
engine is updated in response to the use feedback. The up-
dating algorithm can use simple re-weighting or query move-
ment algorithms [6], or employ more sophisticate models [7]
[8] [9] [25]. Relevance feedback is a powerful technique, but
it relies on the user input which can become unpleasant if
feedback is needed repeatedly.

This paper presents another way to enhance and extend the
ability of supervised classifiers. Instead of employing the
user interaction, we explore the pairwise similarity within
a photo collection to develop an automatic annotation ap-
proach. Although there is no perfect classifier that can per-
fectly classify all the images, we can expect the classifier
to be more accurate for those samples for which the classi-
fier has high confidence. This was known as ”rejection” and
proved a good practice for SVM classifiers [24]. We treat
those labels with high confidence as the initial ”seed” la-
bels, and propagate these labels to the remaining images in
the same photo collection. We employ a probabilistic algo-
rithm to accomplish the propagate task. The goal is to show
that such a reject-and-propagate approach can significantly
improve the recognition accuracy of photo annotation over
running supervised classifiers over the images and accepting
the individual results.

The overview of the proposed framework is shown in Fig. 1.
The idea of our approach is partly motivated by the recent
progress in semi-supervised learning algorithms [11] [12] [13].
This line of work designs a similarity matrix among data
samples, and propagates initial labels to all the remaining
samples using the similarity matrix. The propagation rules
are usually iterative, for example, the iterative method in
[13] is:

Y (t + 1) = αS · Y (t) + (1− α)Y 0 (1)

where α is a parameter controlling the propagation rate,
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Figure 2: Modeling photo similarity using visual appearance features and metadata features. Left - similarity
via appearance features: the red lines connect the similar SIFT patches corresponding to the same object, and
the blue lines indicate high correlation between the color histograms. The thickness of the lines represents
the degree of similarity. Right - similarity via metadata features: the blue text shows the timestamp tag of
each image, while the red text shows the GPS tag. Note the actual coordinates of the GPS tags are removed
to preserve privacy. Again the thickness of the lines denotes the degree of similarity.

and S is the Laplacian matrix computed from the similarity
matrix. In each iteration, we obtain a score that estimates
how likely samples are assigned with the given class, and Y 0

is the initial labels.

The approach of Eq.(1) is linear and simple to implement,
and it has attracted much interest in image or video ranking
[14] [15] [16] [17]. However, we chose not to employ Eq. (1)
in our annotation task due to several reasons. First, using
the updating process of Eq.(1), the initial labels may change
in the propagation process. In other words, a sample with a
positive initial label may be labeled as ”negative” after the
iterations. Second, there is no good theory to select the pa-
rameter α. One must try different values and select one em-
pirically according to the experimental results. When there
are multiple cues present to indicate image similarity, there
would be more parameters to tune [18]. Finally, a simple
linear model is not sufficient for modeling the probabilistic
relationship in our label propagation task. Our goal is to
design a probabilistic propagation model which does not re-
quires numerous parameters of fusion weights and will not
change the initial labels.

This paper is organized as follows: Section 3 describes how
to model the pair-wise proximity or similarity between two
images. We introduce our probabilistic propagation frame-
work in Section 4, for the scenarios of both multi-label (scene)
and multi-class (event) recognition. Section 5 compares
the performance of our method with single classifiers, and
presents examples of the different annotation approaches.
The results validate the success of our propagation frame-
work. We conclude this paper in Section 6.

3. SIMILARITIES WITHIN PHOTO COL-
LECTIONS

Most existing work [14] [15] [16] typically model the similar-
ity between two images using low-level visual features. Due

to the well-known gap between high-level semantics and low-
level features, many images with different semantic content
may share similar visual features, which suggest that it is
beneficial to employ other sources of features to model the
photo similarity. To model the photo correlation within the
same collection, we employ both low level color features and
scale invariant structure features (SIFT), together with the
metadata features such as time and location. These meta-
data features are well suited for personal photo annotations,
but not so for analyzing single photos. For example, for
photos with close timestamps in the same personal photo
collection, we can expect the photos to be semantically re-
lated to each other. However, if the two photos are taken
by different people, most likely they are uncorrelated even
if they were taken in the same time.

We employ two types of photo features to model pair-wise
similarities between consecutive images. The first type is
appearance features, including low level color features and
SIFT features. The second type corresponds to metadata
features, e.g., time and GPS. Fig.2 shows examples of these
two types of similarity features, which will be discussed in
detail below.

There are many forms of low level visual features, such as
color, texture, and shape features. We do not use shape
features in this study because the shape of the primary photo
subject, people, changes with different actions and therefore
is not invariant. We compute the color histogram in the
LAB space for each photo, and use the correlation between
two color histograms to model visual similarity.

Inspired by the recent advance in object recognition, we
employ the SIFT features [19] together with the low level
color features to model the visual similarity. SIFT is well
suited for matching the same object in different images, and
has shown effectiveness in image alignment and panoramic
reconstruction [20]. Within the same photo collection, we



Table 1: Definitions of the 12 events
Event name Detailed definition

BeachFun Containing people playing
on the beach.

Ballgames Containing players and the
playing field, with or without
balls. The field can be baseball,
soccer, or football.

Skiing Containing both snow and skier;
on a slope as opposed to
a backyard. Not at night.

Graduation At least one subject in
academic cap or gown.

Wedding Bride must be present.
Better with groom.

BirthdayParty There should be cake or balloon
or birthday hat.
Can be indoor or outdoor.

Christmas Christmas decoration,
e.g., Christmas tree.

UrbanTour Large portion of the photo should
be buildings, (tall or many)
and pavement. Not much green.

YardPark Containing either grass or trees.
May see short building.
No sports field nor pavement.
It should not be close-up of
plants/grass/flowers.

FamilyTime In the family or living room,
with more than 2 people.
Sofa or rug must appear,
with some furniture.

Dining Containing a table and dishes,
with more than 2 people.

Null Event None of above.

expect that neighboring photos contain a common subject.
Note that our task is more restricted than general object
recognition, which requires a codebook or vocabulary ob-
tained by extensive training processes. In contrast, our
matching is much faster. Given two photos, we consider
them as two sets of SIFT features. For each SIFT feature,
we find two matching SIFT features in the other image, i.e.
those with the highest and the second highest correlation. If
the ratio of two correlation values is above a threshold (1.2
in our experiments), we decide that we find one pair of cor-
respondent SIFT features. The more correspondent SIFT
features are found, the more similar the two photos are.

We also employ metadata to model the similarity between
two photos in a collection. We consider two kinds of meta-
data features, time and GPS. By the time features, the sim-
ilarity between two photos is measured by the interval be-
tween the moments when the photos were taken. By the
GPS features, the similarity is measured by the distance
between the locations where the photos were taken. Such
metadata information provides us with useful information
for photo annotation. For example, if the user took photos
near the beach, it is unlikely that he could move to inside
the city within 5 minutes. Moreover, if the GPS tags show
that the user moved only a few meters, the possibility that

the user moved from mountain to indoors is extremely low.
In short, if two consecutive photos are close in time and
location, they tend to share the same labels.

4. PROBABILISTIC LABEL PROPAGATION
For the annotation task, we build a generative model for
both modeling the image similarities and propagating the
labels. The reason for developing a probabilistic model is
threefold. First, it is nontrivial to combine diverse evidences
measured by different means and represented by different
metrics. For example, color similarities are represented by
histogram correlations, and the subject similarity based on
SIFT features is represented by integer numbers. Similari-
ties by time and location are measured by minutes and me-
ters, respectively. A probabilistic evidence fusion framework
would allow all the information to be integrated in common
terms of probabilities. Second, probabilistic models are ca-
pable of handling incomplete information gracefully. This
properties are crucial especially for location features, since
GPS tags sometimes can be missing due to the sensitiv-
ity limitation of the GPS receiver. Last but not the least,
a probabilistic model can fully characterize the interacting
effects from both positive and negative evidences, and esti-
mate the true probability of each sample. Negative evidence
is a unique feature of our framework, as now it becomes
possible to propagate the fact that one image is not in a
particular class to its neighbors. This is also useful in prac-
tice because the concept classifiers can provide both positive
(that the image is of class A) and negative (that the image
is not of class B). It is also possible for a user to provide
both positive and negative initial labels, similar to relevance
feedback where both positive and negative feedback are valu-
able. In contrast, the linear propagation method in [13] does
not estimate the true probability and only utilizes positive
evidence in the propagation.

4.1 Label Initialization
Following the standard practice in concept detection [22] [26]
[27] [28], we developed a suite of SVM classifiers for both
event and scene classes. Our scene classifiers are trained on
the widely used 13-class UIUC dataset [4], which contains
photos that are significantly different from the typical con-
sumer photos used in our experiments. On the other hand,
there are no public datasets to train our event classifiers,
so we separately collected 200 photos for each event class
by ourselves, and randomly selected 70% of these images to
train the SVM classifiers [23]. Although such classifiers can-
not classify every photo correctly, we can select those photos
with high confidence scores and treat the labels generated
by the SVM classifiers as the initialization for label propaga-
tion. Because we intend to utilize both positive and negative
evidences, the labels with scores below the threshold of -1.0
are selected as negative initial evidence, and the labels with
scores above the threshold of 0.2 are selected as positive ini-
tial evidence. These selected photos are also referred to as
“seed” images.

4.2 Modeling Similarity using Multiple Fea-
tures

Given two photos i and j, we denote the label variables as
yi and yj . To model the similarity between photo i and



j, we consider photo features xi, xj , and their similarity is
measured by dij = Similarity(xi, xj).

To measure whether two images are correlated or not, we in-
troduce a new variable for modeling the correlation between
image i and j, which is defined as

sij =

{

1 if yi = yj

0 if yi 6= yj
. (2)

Note that here we do not model the photo label y directly.
Instead, we use the appearance and metadata features to
model sij , which characterizes whether the two photo la-
bels are similar. This is a significant difference between our
method and previous supervised methods [10] [21].

Now we can model the probability of image correlation by
P (sij |dij). Using the Bayesian formula, we have

P (sij = δ|dij) =
P (dij |sij = δ)P (sij = δ)

∑

δ1={0,1} P (dij |sij = δ1)P (sij = δ1)
,

(3)
where δ is Kronecker’s delta function.

The probabilistic formulation of Eq. (3) can be easily learned
from the data. Another benefit of Eq. (3) is that it provides
a good framework to introduce multiple features. When each
image is associated with multiple visual and metadata fea-
tures, we denote them by xi = {xk

i } and xj = {xk
j }, where

1 ≤ k ≤ K denotes the feature type. Now the similarity dij

is represented by dij = dk
ij , and each dk

ij measures the simi-

larity between xk
i and xk

j . Now we can model the conditional
similarity as

P (di,j |sij) =
K
∏

k=1

P (dk
ij |si,j , d

1
ij , ..., d

k−1

ij ) (4)

Out of the four features, the metadata features (time and
location) are independent with respect to the visual features.
The visual features, SIFT and Color Histogram, describe
the different aspect of photo content. Our previous study
[29] has shown that we can treat such visual features as
conditionally independent. So we can simplify P (di,j |sij) as

P (di,j |sij) =
∏

k

P (dk
ij |si,j). (5)

By combining Eqs. (3) and (5) we determine the correlation
probability P (sij |di,j).

Our probabilistic model can handle the partially missing
GPS without difficulty. Suppose one feature k0 is missing,
then we can treat Eq.(3) as

P (sij = δ|dij) =

∏

k 6=k0 P (dk
ij |sij = δ)P (sij = δ)

∑

δ1={0,1}

∏

k 6=k0 P (dk
ij |sij = δ1)P (sij = δ1)

5. LABEL PROPAGATION MODEL
Next we discuss our label propagation model. To make the
representation simpler to follow, we begin our discussion
with a two-class problem. For each task, we aim to infer
the label y for each image, where yi = 1 means an image
should be assigned to the label, and yi = 0 means not. The

probability of image labels satisfies the constraint

P (yi = 1) + P (yi = 0) = 1.

Using the initialization method in Section 4.1, we obtain a
set L of labeled images, where P (yi = 1) = 1 or P (yi = 0) =
1 if i ∈ L. The other images belong to the set of unlabeled
images U , where P (yi = 1) = P (yi = 0) = 0.5 for i ∈ U .

Based on the discussion in Section 4.2, we can estimate the
probability of label propagation using the correlation prob-
ability P (sij |dij)

P (yi → yj) = λi · P (sij = 1|dij), (6)

where λi is a normalization constant satisfying

λi = 1/
∑

k 6=i

P (sik = 1|dik)

In our scheme, each unlabeled photo j ∈ U updates its prob-
ability by considering label probability of the other photos
which are similar by any measure. There are two possible
labels, y = 0 or y = 1, and we can compute them separately.

P+

j =
∑

i6=j

P (yi = 1)P (yi → yj)

P−
j =

∑

i6=j

P (yi = 0)P (yi → yj) (7)

Note that the updated probability does not satisfy the con-
straint of P (yi = 1) + P (yi = 0) = 1. We need to normalize
them after each updating stage.

P (yj = 1)←
P+

j

P−
j + P+

j

P (yj = 0)←
P−

j

P−
j + P+

j

(8)

Since we have high confidence in the labeled set L, we only
update the probability for j ∈ U . In each iteration, we up-
date the probability for every unlabeled photo using (7) and
(8). This procedure continues until it converges or reaches
a maximum number of iterations (100 in our experiment).

Our propagation algorithm is summarized as follows:

Procedure of our algorithm

Input: Pairwise image similarity dij . Initialized photo set
L with the labels yi = 1 or yi = 0, for i ∈ L.

Output: The estimated labels of photos in the unlabeled
set U .

Procedure:

1. Estimate the correlation probability P (sij |di,j) ac-
cording to eqs. (3) and (5).

2. Obtain propagation probability P (yi → yj) by nor-
malizing P (sij |dij) using eq. (6)

3. Initialize P (yi = 1) = 1 or P (yi = 0) = 1 if i ∈ L.
Initialize P (yj = 1) = P (yj = 0) = 0.5 for j ∈ U .



4. For each unlabeled photo j ∈ U , update P (yj) using
eqs. (7) and (8).

5. Repeat step 4 until it converges or reaches a maximum
number of iterations.

6. Assign yj = 1 if P (yj = 1) > 0.5. Otherwise let
yj = 0.

Our approach is different from the previous graph-based
ranking algorithms [13] [14] [15] [16] in two aspects. On
one hand, we adopt a full Bayesian framework which grace-
fully handles the feature fusion and missing GPS problems
without the trouble of tuning extra parameters. On the
other hand, our model provides explicit probabilistic esti-
mations, while the linear propagation method in [13] only
provides ranking scores without probabilistic meaning and
may change the initial labels in the propagation process.

Our approach can be easily generalized to a multi-label prob-
lem by treating it as multiple two-class problems. If we do
not allow more than one label for each image, we simply
select the one with the largest probability of P (yj = 1).

6. EXPERIMENTAL RESULTS
We test our algorithm using the photo dataset described
earlier. The dataset contains two types of annotation for
each photo, events and scenes. The definition of events and
scenes are described in Section 1. Note that we allow the
labels of ”NULL event” and ”NULL scene”.

From the dataset, we randomly selected 50% of the folders
to learn the distributions of photo similarity for both event
and scene correlation. Four types of features are employed
for modeling photo similarities: SIFT, color histogram, time,
and GPS (may be missing for some photos).

Fig. 3 compares the performances of our probabilistic prop-
agation framework with the single SVM classifier over event
recognition. It can be seen that our propagation model sig-
nificantly outperforms the baseline of SVM classifiers. For
the task of event annotation, our model obtains better re-
calls for all the 11 events. Moreover, our precision rates are
similar to the baseline SVM classifiers, except for gradua-
tion, Christmas, family time and eating events where the
propagation achieved considerably higher precision. With
the help of our probabilistic model, the average of preci-
sions for 11 events increases from 0.381 to 0.411, while the
average of recalls increases from 0.331 to 0.506. In other
words, our probabilistic propagation significantly improves
the recall of event annotation by 52.9% and the precision by
7.9%.

Fig. 4 shows the confusion matrix for 11 events, with and
without the Null event. We can see that the introduction of
the Null event makes our annotation task more difficult. If
we know that each photo belongs to one and only one of the
11 events, the event recognition error is significantly smaller.
The main errors occur when distinguishing the event pairs
that share much visual similarity, for example, wedding is of-
ten confused with graduation when the graduates happen to
wear white gown, and birthday can be confused with Christ-
mas because both allow children dressing up and colorful
decorations are popular in both cases.

The task of scene annotation is a more challenging problem
than event annotation, due to a cross-domain issue We used
the standard scene dataset in [4] to train scene classifiers but
it is somewhat different from the typical customer photos.
The standard scene dataset hardly contains human subjects,
which is one of the most important figures in personal pho-
tos. Scene photos in [4] are often taken from the perspectives
of long or moderate distance, while the customer photos are
often taken within 5-7 feet. Consequently, the SVM classifier
itself does not perform scene annotation as well as in event
annotation. However, Fig. 5 shows that our probabilistic
propagation approach still significantly improves both pre-
cision and recall. With the help of probabilistic propagation,
the average of precisions for 11 scenes increases from 0.097
to 0.106, while average of the recalls rise from 0.206 to 0.358.
In other words, our model improves the recall of scene an-
notation by 73.8% and the precision by 9.3%.

To better understand the effects of different features for
modeling photo similarity, we also conduct experiments which
employ each of the four types of features for the propaga-
tion task. Table 2 shows the results of these experiments.
Of the four similarity features we used for label propagation,
the color histogram is the most useful for event annotation
while the time feature obtains the best scene annotation re-
sults. This shows that the scene labels are more coherent in
time than events. In both cases, the fusion of all feature is
better than or as good as the best single feature.

To show the benefit of our propagation algorithm, we com-
pare our method with the linear propagation algorithm em-
ployed in [13] [14] [15]. Because the previous non-probabilistic
models cannot directly handle multiple similarity metrics,
we use our Bayesian model in Eq.(6) to generate a com-
bined similarity matrix and feed it into the two propagation
algorithms. We compare our propagation method in Eqs.
(7) and (8) with the linear propagation method using dif-
ferent parameters, and the results are shown in Table 3,
where E-Prec. and E-Recall stand for the precision and re-
call for event annotation, and S-Prec. and S-Recall stand
for the precision and recall for scene annotation. We can
see that our probabilistic propagation method outperforms
linear propagation method no matter what parameters are
selected. This shows that our model is more effective than
the linear propagation and does not bear the burden of tun-
ing the parameters.

Fig. 6 compares the annotation results by the baseline SVM
algorithm and our propagation method. We select three
different collections and show the annotation of 10 photos
(subsampled for display purpose only) in each collection. It
can be seen that our propagation method outperforms the
baseline method for all these three collections and provides
better descriptions of both scenes and events.

7. CONCLUSION
In this work, we consider the image annotation problem
within the context of personal photo collections. Rather
than using trained classifiers to label each of the photos di-
rectly, we propose to use a reject-and-propagate approach
where only the photos with high confidence scores are as-
signed labels initially and label propagation is used to as-
sign labels to the photos rejected for their low classification



Figure 3: Our propagation model significantly improves the event annotation. The blue bars show the
precision or recall rates using the baseline SVM classifiers. The red bars show the precision or recall rates
using our label propagation framework.

Figure 4: Left: Confusion matrix when considering null events. Right: Confusion matrix without considering
null events.

Figure 5: Our propagation model significantly improves the scene annotation. The blue bars show the
precision or recall rates using the baseline SVM classifiers. The red bars show the precision or recall rates
using our label propagation framework.



Table 2: Comparing propagation based on individual similarity features and fusion of multiple features.
Feature Name Event prec. Event recall Scene prec. Scene recall

Baseline (SVM) 0.381 0.331 0.097 0.206
SIFT 0.404 0.482 0.098 0.285

Color Histogram 0.405 0.518 0.102 0.321
Time 0.404 0.477 0.106 0.350

GPS 0.447 0.372 0.103 0.233
Fusion of 4 features 0.411 0.506 0.106 0.358

scores. This is a way to address the well-known limitations
of current visual recognition algorithms, by exploiting the
correlation between the photos to enhance the overall an-
notation performance. The label propagation is guided by
similarity metrics in terms of time, location, and visual ap-
pearance. A novel probabilistic model is employed, which
outperforms the linear propagation scheme. This label prop-
agation framework also lends itself to semi-automatic anno-
tation where an operator only needs to provide the initial
high-confidence labels on a subset of the photos and the al-
gorithm propagates the manual labels to the remainder of
the photo collection.

Table 3: Comparing propagation methods
E-Prec. E-Recall S-Prec. S-Recall

Bayes propagation 0.411 0.506 0.106 0.358
Linear (α = 0.7) 0.387 0.516 0.104 0.274
Linear (α = 0.5) 0.377 0.506 0.100 0.305
Linear (α = 0.3) 0.377 0.504 0.100 0.306
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Figure 6: Comparison of annotations using the baseline SVM classifier and our propagation approach. We
show examples from three photo collections, each of which are bounded by a color rectangle. For each photo
collection, rows 1 and 3 display photos, rows 2 and 4 show the annotation results by the baseline SVM, and
rows 3 and 5 show the annotation by our propagation model. The images shown for each collection are in
chronological order but not necessarily consecutive because of temporal subsampling (for display only). The
”seed” images automatically selected by the rejection criteria are indicated by a red bounding box. The
correct annotations are indicated by bold letters.


