
Lecture 20

Solving Dual Problems

We consider a constrained problem where, in addition to the constraint set X, there
are also inequality and linear equality constraints. Specifically the minimization problem
of interest has the following form

minimize f(x)
subject to g1(x) ≤ 0, . . . , gm(x) ≤ 0

aT
1 x = b1, . . . , a

T
r x = br

x ∈ X,

where X ⊂ Rn, gj : X → R for all j, and ai ∈ Rn and bi ∈ R for all i. We will also use a
more compact formulation of the preceding problem:

minimize f(x)
subject to g(x) ≤ 0

Ax = b
x ∈ X, (1)

where g = [g1, . . . , gm]T , A is an r × n matrix with rows aT
i , and b ∈ Rr is a vector with

components bi. Throughout this section, we use the following assumption.

Assumption 1 The set X is convex and closed. The objective f and the constraint func-
tions g1, . . . , gm are convex over the set X. The optimal value f ∗ of problem (1) is finite.

Solving the problem of the form (1) can be very complex due to the presence of (possibly
nonlinear) inequality constraints g(x) ≤ 0. Here, we consider the algorithms for solving
the problem (1) through the use dual methods. Also, we consider solving the dual on its
own right.

Consider the dual problem obtained by relaxing all the inequality and equality con-
straints (assigning prices to them). In this case, the dual problem is

maximize q(µ, λ)
subject to µ ≥ 0, (2)

where the dual function q(µ, λ) is given by

q(µ, λ) = inf
x∈X

{f(x) + µT g(x) + λT (Ax− b)} for µ ∈ Rm with µ ≥ 0 and λ ∈ Rr. (3)

Note that the constraint (µ, λ) ∈ dom q is an implicit constraint of the dual problem
(silently assumed). In the dual problem, the multiplier µ is constrained to the nonnegative
orthant, while the multiplier λ is a free variable. Furthermore, the dual function q(µ, λ)
is concave, so that the dual is a constrained concave maximization problem, which is
equivalent to a constrained convex minimization problem (through a sign change in the
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objective). Hence, if the dual function is differentiable we could apply gradient projection
methods (for maximization) and solve the dual.

In some situations, a partial dual problem is considered and is still referred to as the
dual. In particular, consider relaxing only the inequality constraints of the problem (1),
yielding a dual problem of the form

maximize q̃(µ)
subject to µ ≥ 0, (4)

where the dual function q̃(µ) is given by

q̃(µ) = inf
Ax=b, x∈X

{f(x) + µT g(x)} for µ ∈ Rm with µ ≥ 0. (5)

In this dual problem, the multiplier µ is constrained to the nonnegative orthant, while the
dual function q̃(µ) is concave. To distinguish between these two different formulations of
the dual problem, we will refer to problem (2)–(3) as the dual problem and to problem
(4)–(5) as the partial dual problem.

The main difficulty in dealing with dual problems is the evaluation of the dual function,
since it involves solving a constrained minimization problem per each value of the dual
variables. The use of dual problems is the most advantageous in the situations when the
dual function evaluation is “easy”, i.e., when a dual solution is explicitly given. Fortunately,
this is the case in many problems arising in various applications. We discuss some of them
later.

In what follows, we focus on the dual problems where the minimization problem involved
in the dual function evaluation has solutions. Under this assumption, for the dual function
q(µ, λ) of Eq. (3), we have for any µ ≥ 0 and any λ,

q(µ, λ) = f(xµλ) + µT g(xµλ) + λT (Axµλ − b),

where xµλ is an optimal solution for the following problem

minimize f(x) + µT g(x) + λT (Ax− b)
subject to x ∈ X. (6)

Similarly, under the assumption that the minimization problem defining the dual func-
tion q̃(µ) of Eq. (5) has optimal solutions, we have for any µ ≥ 0,

q̃(µ) = f(xµ) + µT g(xµ),

where xµ is an optimal solution for the following problem

minimize f(x) + µT g(x)
subject to Ax = b, x ∈ X. (7)

Let us now consider the relations that characterize the minimizers xµλ and xµ of the
problems (6) and (7) respectively, when f and all gj are convex, and X is closed and convex.
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Suppose that f and all gj are differentiable. The gradient of the Lagrangian function of
Eq. (6) is

∇f(x) +
m∑

j=1

µj∇gj(x) + λT A.

Thus, by the first-order optimality conditions, xµλ is an optimal solution for problem (6)
if and only if(

∇f(xµλ) +
m∑

j=1

µj∇gj(xµλ) + λT A

)T

(x− xµλ) ≥ 0 for all x ∈ X.

Similarly, the gradient of the Lagrangian function of Eq. (7) is

∇f(x) +
m∑

j=1

µj∇gj(x).

By the first-order optimality conditions, xµ is an optimal solution for problem (7) if and
only if (

∇f(xµλ) +
m∑

j=1

µj∇gj(xµλ)

)T

(x− xµλ) ≥ 0 for all x ∈ X, Ax = b.

To this end, we discussed both the dual and the partial dual problem, since both have
been traditionally used, depending on which one is more suitable for a given problem at
hand. For the rest of this section, we will focus only on the dual problem (2). Analogous
results hold for the partial dual.

With respect to the existence of optimal solutions for the problem (6), we consider two
cases:

(1) The minimizer xµλ is unique for each µ ≥ 0 and λ ∈ Rr.

(2) The minimizer xµλ is not unique.

The uniqueness of the minimizers ties closely with the differentiability of the dual function
q(µ, λ), which we discuss next.

In some situations f of some of gj’s are not differentiable, but still the minimizers xµλ

may be easily computed.

Example 1 (Assignment Problem)
The problem is to assign m jobs to n processors. If a job i is assigned to processor j,
the cost is aij and it takes pij time to be completed. Each processor j has limited time tj
available for processing. The goal is to determine the minimum cost assignment of jobs to
processors. Formally, the problem is

minimize
m∑

i=1

n∑
j=1

aijxij
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subject to
n∑

j=1

xij = 1 for all i,

n∑
i=1

pijxij ≤ tj for all j,

xij ∈ {0, 1} for all i, j.

By relaxing the time constraints for the processors, we obtain the dual problem

maximize q(µ) =
m∑

i=1

qi(µ)

subject to µ ≥ 0,

where for each i,

qi(µ) = minPn
j=1

xij=1

xij∈{0,1}

n∑
j=1

(aij + µjpij)xij −
1

m

n∑
j=1

tjµj.

We can easily evaluate qi(µ) for each µ ≥ 0. In particular, it can be seen that

qi(µ) = aij∗ + µj∗pij∗ −
1

m

n∑
j=1

tjµj,

where the index j∗ is such that

aij∗ + µj∗pij∗ = min
1≤j≤n

{aij + µjpij}.

Here, however, in the evaluation of qi we do not rely on differentiability.

1 Differentiable Dual Function

In this section, we discuss the dual methods for the case when the dual function is differ-
entiable. As we will see the differentiability of the dual function is guaranteed when the
minimizer of the problem (6) is unique. We formally impose this condition, as follows.

Assumption 2 For every µ ≥ 0 and λ ∈ Rr, the minimizer xµλ in the problem (6) exists
and it is unique.

Under convexity assumption and Assumption 2, we have the following result.
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Lemma 1 Let Assumptions 1 and 2 hold. Then, for every µ ≥ 0 and λ ∈ Rr, the inequality
and equality constraints of the problem (1) evaluated at the minimizer xµλ constitute the
gradient of q at (µ, λ), i.e.,

∇q(µ, λ) =



g1(xµλ)
...

gm(xµλ)
aT

1 xµλ − b1
...

aT
r xµλ − br


.

Note that, in view of Lemma 1, the differentiability of the dual function has nothing to do
with the differentiability of the objective f or constraint functions gj. The differentiability
of q is strongly related to the uniqueness of the optimizer in the problem defining the dual
function value.

According to Lemma 1, for the partial gradients ∇µq(µ, λ) and ∇λq(µ, λ), we have

∇µq(µ, λ) =

 g1(xµλ)
...

gm(xµλ)

 = g(xµλ),

∇λq(µ, λ) =

 aT
1 xµλ − b1

...
aT

r xµλ − br

 = Axµλ − b.

To solve the dual problem, under Assumptions 1 and 2, we can now apply the projection
gradient method, which is adapted to handle maximization. The projected gradient method
for the dual problem has the form:

µk+1 = [µk + αk ∇µq(µ, λ)]+ ,

λk+1 = λk + αk ∇λq(µ, λ),

where [·]+ denotes the projection on the nonnegative orthant Rm
+ , αk > 0 is the stepsize,

and µ0 ≥ 0 and λ0 are initial multipliers. Note that, since the dual problem involves
maximization, the gradient method takes steps along the gradients of q. We refer to this
gradient method as the dual gradient projection method.

By using Lemma 1, we see that the method is equivalently given by

µk+1 = [µk + αk g(xµλ)]
+ , (8)

λk+1 = λk + αk (Axµλ − b). (9)

The dual gradient method can be used with all the stepsizes that we have discussed
for the gradient methods. including the backtracking line search. However, the Polyak’s
stepsize and its modification, and the backtracking line search have to be suitably adjusted
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to account for the maximization aspect. In particular, for the dual gradient projection
method the Polyak’s stepsize is given by:

αk =
q∗ − q(µk, λk)

‖∇q(µk, λk)‖2
,

where q∗ is the optimal value of the dual problem (of course, q∗ should be finite in order
to use this stepsize).

Denote by xk the minimizer xµλ when (µ, λ) = (µk, λk). Note that ‖∇q(µk, λk)‖2 =
‖g(xk)‖2 + ‖Axk − b‖2, or equivalently

‖∇q(µk, λk)‖2 =
m∑

j=1

g2
j (xk) +

r∑
i=1

(aT
i xk − bi)

2.

For the dual gradient projection method, the modified Polyak’s stepsize has the following
form

αk =
q̂k − q(µk, λk)

‖∇q(µk, λk)‖2
with q̂k = δ + max

0≤κ≤k
q(µκ, λκ).

Note that, when appropriately interpreted, all the results for the gradient projection
method that we know apply to the dual maximization problem.

We next provide an example demonstrating computation of the gradient of the dual
function. In particular, we revisit the Kelly’s canonical utility-based network resource
allocation problem (see Kelly98).

Example 2 Consider a network consisting of a set S = {1, . . . , S} of sources and a set
L = {1, . . . , L} of undirected links, where a link l has capacity cl. Let L(i) ⊂ L denote the
set of links used by source i. The application requirements of source i is represented by a
differentiable concave increasing utility function ui : [0,∞) → [0,∞), i.e., each source i
gains a utility ui(xi) when it sends data at a rate xi. Let S(l) = {i ∈ S | l ∈ L(i)} denote
the set of sources that use link l. The goal of the network utility maximization problem is
to allocate the source rates as the optimal solution of the problem

maximize
∑
i∈S

ui(xi)

subject to
∑

i∈S(l)

xi ≤ cl for all l ∈ L

xi ≥ 0 for all i ∈ S.

Alternatively, we may view the problem as the minimization of differentiable convex and
decreasing function f(x) = −

∑
i∈S ui(xi) subject to the above constraints. Note that the

constraint set of the problem is compact [since 0 ≤ xl ≤ cl for all links l ∈ L]. Since f is
continuous over the constraint set, the optimal value f ∗ is finite [in fact, a unique optimal
solution x∗ exists]. Assumption 1 is satisfied.

By relaxing the link capacity constraints, the dual function takes the form

q(µ) = min
xi≥0, i∈S

∑
i∈S

= ui(xi) +
∑
l∈L

µl

∑
i∈S(l)

xi − cl


6



= min
xi≥0, i∈S

∑
i∈S

−ui(xi) + xi

∑
l∈L(i)

µl

−
∑
l∈L

µlcl.

Since the optimization problem on the right-hand side of the preceding relation is separable
in the variables xi, the problem decomposes into subproblems for each source i. Letting
µi =

∑
l∈L(i) µl for each i (i.e., µi is the sum of the multipliers corresponding to the links

used by source i), we can write the dual function as

q(µ) =
∑
i∈S

min
xi≥0

{xiµi − ui(xi)} −
∑
l∈L

µlcl.

Hence, to evaluate the dual function, each source i needs to solve the one-dimensional
optimization problem minxi≥0{xiµi − ui(xi)}. Note that µi = 0 is not in the domain of the
dual function [since each ui is increasing, it follows that minxi≥0{−ui(xi)} = −∞]. Thus,
we must have µi > 0 for all i ∈ S for the dual function to be well defined.

For µi > 0, by the first-order optimality conditions, the optimal solution xi(µi) for the
one-dimensional problem satisfies the following relation

u′i(xi(µi)) = µi,

where u′i(xi) denotes the derivative of ui(xi). Thus,

xi(µi) = u′i
−1

(µi),

where u′i
−1 is the inverse function of u′i, which exists since ui is differentiable and increasing.

Hence, for each dual variable µ > 0, the minimizer x(µ) = {µi, i ∈ S} in the problem of
dual function evaluation exists and it is unique.

When there is no duality gap, solving the dual problem does not yield a primal optimal
solution immediately. Suppose we solve the dual and we found a dual optimal solution
(µ∗, λ∗). Also, suppose we have the minimizer x∗ such that

q(µ∗) = inf
x∈X

{f(x) + (µ∗)T g(x) + (λ∗)T (Ax− b)} = {f(x∗) + (µ∗)T g(x∗) + (λ∗)T (Ax∗ − b)}.

Such an x∗ need not be optimal for the primal problem. For x∗ to be optimal, the KKT
conditions have to be satisfied by x∗ and (µ∗, λ∗).

The following implication of the KKT conditions is often useful when a dual optimal
solution is available.

Lemma 2 Let Assumption 1 hold, and let strong duality hold [f ∗ = q∗]. Let (µ∗, λ∗) be an
optimal multiplier pair. Then, x∗ is a solution of the primal problem 1 if and only if

• x∗ is primal feasible, i.e., g(x∗) ≤ 0, Ax∗ = 0, x∗ ∈ X.

• x∗ is a minimizer of the problem (6) with (µ, λ) = (µ∗, λ∗).

• x∗ and µ∗ satisfy the complementarity slackness, i.e., (µ∗)T g(x∗) = 0.
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2 Application of Dual Methods in Communication Net-

works

2.1 Joint Routing and Congestion Control

Here, we are interested in the network problem when the user rates are not fixed. The
congestion control adjusts the traffic rates so that the network resources are fairly shared
among the users, and the network is at a reasonable operating point balancing the through-
put with the delay. The model for joint routing and congestion control presented in this
section is based on utility maximization framework.

The utility functions have been used in economic market models to quantify prefer-
ences of users (consumers) for certain resources (commodities). A utility function u(x)
“measures” the value of a resource amount x to a user. Typically, it is assumed that a
utility function is concave, nondecreasing, and continuously differentiable (scalar) function,
defined on the interval [0, +∞). Some of the common examples include

- Log-function: u(x) = w ln x for some scalar w > 0.

- Power-function: u(x) = w x1−α

1−α
for some scalars w > 0 and α > 0.

The derivative of u is referred to as the marginal utility per unit resource, since u(x + δ) =
u(x) + δu′(x) + o(δ) for a small δ > 0. Due to the assumed concavity of u, the marginal
utility u′(x) is nonincreasing.

Congestion control is a mechanism for adjusting the user rates x = [xs, s ∈ S] fairly
with respect to user utility functions us, s ∈ S]. The network performance is quantified
in terms of the user utilities and the cost of routing the traffic. The joint routing and
congestion control problem is to determine both the user rates x = [xs, s ∈ S] and the
paths v = [vp, p ∈ P ] so as to maximize the network performance. Formally, the problem
is given by

maximize U(x) =
∑
s∈S

us(xs)−
∑
l∈L

fl

 ∑
{p | l∈p}

vp


subject to Dv = x

x ≥ 0, v ≥ 0. (10)

This is a concave maximization problem with a convex (in fact, polyhedral) constraint
set. For this problem, the first order optimality condition the feasible vectors x and v are
solution to problem (10) if and only if x and v are feasible [i.e., Dv = x, x ≥ 0, v ≥ 0] and
for each s ∈ S,

u′s(xs) ≤
∑
l∈p

f ′l

 ∑
{p | l∈p}

vp

 for all p ∈ s, (11)

with equality holding when vp > 0.

We interpret the length f ′l

(∑
{p | l∈p} vp

)
of link l as the cost of using the link l. In view

of this, the preceding relation means that, at optimal x and v, for the paths p carrying the
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flow of user s, the cost of any path p with vp > 0 is equal to the user’s marginal utility,
while the cost of any path p with vp = 0 is no less than the user marginal utility.

In some applications, there are explicit constraints on the link capacities, and the prob-
lem of joint routing and congestion control is given by

maximize U(x) =
∑
s∈S

us(xs)

subject to Dv = x, Av ≤ c
x ≥ 0, v ≥ 0, (12)

where c = [cl, l ∈ L] is the vector with entries cl representing the capacity of link l.
Consider the dual of problem (12) obtained by assigning the prices to the link constraints

Av ≤ c. The dual function is given by

q(µ) = max
Dv=x, x≥0, v≥0

{∑
s∈S

us(xs)− µT Ax

}
+ µT c for µ ≥ 0.

By the KKT conditions we have that x∗ and v∗ are primal optimal (and µ∗ dual optimal)
if and only if: x∗ and v∗ are feasible, µ∗ ≥ 0, and such that they satisfy the complemen-
tarity slackness and (x∗, v∗) attains the maximum in q(µ∗). Formally, the complementarity
slackness is given by

µ∗l = 0 only if
∑

{p | l∈p} v∗p < cl. (13)

Furthermore, (x∗, v∗) attains the maximum in q(µ∗) if and only if for each s,

u′s(x
∗
s) ≤

∑
l∈p

µ∗l for all p ∈ s. (14)

with equality only when v∗p > 0. This relation is similar to the relation in Eq. (11), where
the cost f ′l “plays the role of” the multiplier µ∗l .

Note that when v∗p > 0, the values
∑

l∈p µ∗l for p ∈ s are the same. Denote this value
by µ∗s. By interpreting µ∗s as the price per unit rate for user s, from (14), we have

u′s(x
∗
s) = µ∗s when µ∗s > 0 and u′s(x

∗
s) ≤ µ∗s when µ∗s = 0.

The preceding is the optimality condition for the following problem for user s,

maximize u(xs)− µ∗s xs

subject to xs ≥ 0.

By introducing a new variable ws = µ∗s xs, we can rewrite the preceding problem as follows:

maximize u

(
ws

µ∗s

)
− ws

subject to ws ≥ 0. (15)

The relation ws = µ∗s xs implies that ws/xs = µ∗s can be interpreted as optimality
condition at x∗, as follows

w∗
s

x∗s
= µ∗s when µ∗s > 0,
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which corresponds to maximizing w∗
s ln xs − µ∗x xs over xs ≥ 0. This together with the

feasibility of x∗ and v∗, and the complementarity slackness of Eq. (13), imply by KKT
conditions that w∗, x∗ and v∗ constitute an optimal solution to the problem

maximize
∑
s∈S

ws ln xs

subject to Dv = x, Av ≤ c
x ≥ 0, v ≥ 0, (16)

Thus, by introducing a new variable ws = µ∗s xs and through the use of KKT conditions, we
have found that the original joint routing and congestion control problem (12) is equivalent
to the set of users problems of Eq. (15) and a network problem of Eq. (16).

A similar transformation can be considered for joint routing and congestion control
problem without the link capacity constraints [cf. problem (12)]. This is discussed in detail
in lecture notes by Hajek for Communication Network course.

The approach discussed above is precisely the approach proposed by Kelly et. al. The
key idea in the approach is to introduce a price ws that user s is willing to pay for his rate
xs. The price per unit rate is ws/xs for user s. The network receives xs and ws from each
user s ∈ S, and interprets the ratio ws/xs as “marginal utility” per unit of flow for user s.
Thus, the network generates “surrogate utility functions”

ũs(xs) = ws ln xs for each s ∈ S.

With these utility functions, the network problem of Eq.̃(12) becomes

maximize
∑
s∈S

ws ln xs

subject to Dv = x, Av ≤ c
x ≥ 0, v ≥ 0. (17)

The network chooses the link prices µl as as optimal multipliers (link prices) for this prob-
lem. For each user s, the resulting price µs per unit of flow is given to user s, where
µs =

∑
l∈p µp for any p ∈ s (these are the same for any p ∈ s with xp > 0). The user

problem is to maximize us(xs) minus the pay wr = s, subject to ws ≥ 0. Since xs = ws/µs,
a user problem is

maximize u

(
ws

µs

)
− ws

subject to ws ≥ 0. (18)

The importance of the preceding formulations is the decomposition of the problem. The
original problem of joint routing and congestion control formulated in Eq. (12) is a large
optimization problem involving both user and network information. Through the use of
“willingness to pay” variable and the KKT conditions, the problem is suitably decomposed
into: a network problem (17) that does not require the information about user utility
functions, and a set of user problems (18) that does not require any knowledge about
the network (topology). Evidently, the users and the network have to exchange some
information.
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2.2 Rate Allocation in Communication Network

The rate allocation problem is a special case of problem (12), where the routing is fixed
(i.e., v is now given, and Dv = x is satisfied) and the problem is to allocate rates xs for
users s ∈ S optimally. The resulting rate allocation problem is

maximize
∑
s∈S

us(xs)

subject to
∑

s∈S(l)

xs ≤ cl for all l ∈ L

x ≥ 0,

where for each s, the set S(l) is the set of all users s whose traffic uses link l. We consider
this problem with additional constraints, namely, the rate of user s is constrained within
an interval xs ∈ [ms, Ms], where ms ≥ 0 is the minimum and Ms < ∞ is the maximum
rate for user s.

With these additional rate constraints, the rate allocation problem is given by

maximize
∑
s∈S

us(xs)

subject to
∑

s∈S(l)

xs ≤ cl for all l ∈ L

xs ∈ Is, Is = [ms, Ms] for all s ∈ S. (19)

In what follows, we discussed a dual algorithm given by Low and Lapsley 1999 for solving
problem (19). It is assumed that each utility us is strictly concave and increasing. Under
this assumption, the problem has an optimal solution [the constraint set is compact], and
the optimal solution is unique by strict concavity of the utility functions.

The objective function of problem (19) is separable in the variables xs, and these vari-
ables are coupled only through the link capacity constraints. Thus, by assigning prices to
the link capacities, we obtain a dual problem of the form

minimize q(µ)
subject to µ ≥ 0, (20)

where the dual function is

q(µ) = max
xs∈Is

∑
s∈S

us(xs)−
∑
l∈L

µl

∑
s∈S(l)

xs − cl


= max

xs∈Is

∑
s∈S

us(xs)− xs

∑
l∈L(s)

µl

+
∑
l∈L

µlcl,

where L(s) is the set of all links l carrying the flow of user s. Defining the variables
ps =

∑
l∈L(s) µl and the functions

Qs(ps) = max
xs∈Is

{us(xs)− xsps}, (21)
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the dual function can be expressed as

q(µ) =
∑
s∈S

Qs(ps) +
∑
l∈L

µlcl. (22)

Given the link prices µl, l ∈ L and the resulting prices ps =
∑

l∈L(s) µl as seeing by

the users s ∈ S, for each s, the rate attaining the dual function value Qs(ps) is denoted by
xs(ps). Note that the maximizer xs(ps) in the problem of (21) is unique and given by

xs(ps) = PIs [u
′
s(ps)

−1
], (23)

where u′s
−1 is the inverse function of the derivative u′s, and PIs [z] denotes the projection on

the (closed convex) interval Is, which is in particular given by PIs [z] = min{max{ms, z}, Ms}.
We now consider a dual algorithm for rate allocation problem (19). In what follows, we

assume that the problem is feasible and that each utility function us is strictly concave,
twice differentiable and increasing on the interval Is. Furthermore, for each s, the curvature
of us is bounded away from zero on the interval Is, i.e.,

−u′′s(z) ≥ 1

as

> 0 for all z ∈ Is and some as > 0.

Under this condition, the rate problem has a unique optimal solution. Furthermore, note
that the strong duality holds for the primal problem (19) and the dual problem (20)–(22).
(recall the strong duality result for convex objective and linear constraints).

As noted earlier, under the preceding assumptions, the maximizer xs(ps) in problem
(21) exists and it is unique, implying that the dual function q(µ) is differentiable with the
partial derivatives given by

∂q(µ)

∂µl

= cl −
∑

s∈S(l)

xs(ps).

Let µl(k) be the link prices at a given time k, and µ(k) be the vector of these prices.
Let xs(k) be the maximizer given by Eq. (23) for ps =

∑
l∈L(s) µl(k). Consider the following

gradient projection method for minimizing q(µ):

µl(k + 1) =

[
µl(k)− αk

∂q(µ(k))

∂µl

]+

for all l ∈ L,

where αk > 0 is a stepsize. Equivalently, the method is given by

µl(k + 1) =

µl(k) + αk

∑
s∈S(l)

xs(k)− cl

+

for all l ∈ L. (24)

Note that, given the aggregate rate
∑

s∈S(l) xs(k) of the traffic through link l, the iterations

of algorithm (24) are completely distributed over the links, and can be implemented by
individual links using local information only.

By interpreting the set L of links and the set S of users as processors in a distributed
system, the dual problem can be solved. In particular, given the link prices µl(k), the
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aggregate link price
∑

l∈L(s) µl(k) is communicated to user s. Each user s evaluates its

corresponding dual function Qs(ps) of Eq. (21) [i.e., user s computes the maximizer xs(ps)].
Each user s communicates its rate xs(ps) to links l ∈ L(s) [the links carrying the flow of
user s]. Every link l updates its price µl(k) according to the gradient projection algorithm
[cf. Eq. (24)]. The updated aggregate link prices

∑
l∈L(s) µl(k + 1) are communicated to

users, and the process is repeated. We formally summarize these steps in the following
algorithm.
Dual Gradient Projection Algorithm. At times k = 1, . . ., each link l ∈ L performs
the following steps:

1. Receives the rates xs(k) from users s ∈ S(l) using the link.

2. Updates its price

µl(k + 1) =

µl(k) + αk

∑
s∈S(l)

xs(k)− cl

+

.

3. Communicates the new price µl(k + 1) to all users s ∈ S(l) using the link l.

At times k = 1, . . ., each user s ∈ S performs the following steps:

1. Receives the aggregate price ps(k) =
∑

l∈L(s) µl(k) [sum of link prices over the links

carrying its flow].

2. Computes its new rate by xs(k + 1) = xs(ps(k) [i.e., determines the maximizer in
Qs(ps(k))].

3. Communicates the new rate xs(k + 1) to all links l ∈ L(s) [the links in its flow path].

In the preceding, we have not specified the stepsize αk. Under the assumption that the
second derivative of each utility us is bounded away from zero by 1/as, it can be seen that
the gradient of the dual function is Lipschitz continuous, i.e.,

‖∇q(µ)−∇q(µ̃)‖ ≤ L ‖µ− µ̃‖ for all µ, µ̃ ≥ 0.

with constant L given by

L = max
s∈S

as max
s∈S

|L(s)| max
l∈L

|S(l)|. (25)

We next discuss a convergence result for the method. We use x to denote the vector
of user rates [xs, s ∈ S] and µ to denote the vector of link prices [µl, l ∈ L]. We assume
that the method is started with initial rates xs(0) ∈ Is for all s and initial prices µl(0) ≥ 0
for all l. The constant stepsize can be used, as seen from the following theorem, which is
established in a paper by Low and Lapsley 1999.
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Theorem 1 Assume that each utility function us is strictly concave, twice differentiable
and increasing on the interval Is. Furthermore, assume that for each s, the curvature of us

is bounded away from zero on the interval Is [i.e., −u′′s(z) ≥ 1/as > 0 for all z ∈ Is]. Also,
assume that the constant stepsize αk = α is used in the dual gradient projection method,
where 0 < α < 2

L
and L as given in Eq. (25). Then, every accumulation point (x∗, µ∗) of the

sequence {(x(k), µ(k))} generated by the dual gradient projection algorithm is primal-dual
optimal.

3 Non-Differentiable Dual Function

We focus now on the dual problems where the minimization problem involved in the dual
function evaluation has multiple solutions. Under this assumption, for the dual function
q(µ, λ) of Eq. (3), we have for any µ ≥ 0 and any λ,

q(µ, λ) = f(xµλ) + µT g(xµλ) + λT (Axµλ − b),

where xµλ is an optimal solution for the following problem

minimize f(x) + µT g(x) + λT (Ax− b)
subject to x ∈ X. (26)

In the presence of multiple solutions xµλ, the dual function is non-differentiable.

At a given (µ̂, λ̂), let xµ̂λ̂ be a solution to (26) with (µ, λ) = (µ̂, l̂). Let (µ, λ) ∈ dom q
be arbitrary. We have

q(µ, λ) = inf
x∈X

{f(x) + µT g(x) + λT (Ax− b)}

≤ f(xµ̂λ̂) + µT g(xµ̂λ̂) + λT (Axµ̂λ̂ − b)

= f(xµ̂λ̂) + µ̂T g(xµ̂λ̂) + λ̂T (Axµ̂λ̂ − b) + (µ− µ̂)T g(xµ̂λ̂) + (λT − λ̂)(Axµ̂λ̂ − b).

Since xµ̂λ̂ is the minimizer at which q(µ̂, λ̂) is attained, it follows for any (µ, λ) ∈ dom q,

q(µ, λ) ≤ q(µ̂, λ̂) + (µ− µ̂)T g(xµ̂λ̂) + (λT − λ̂)(Axµ̂λ̂ − b).

If we multiply the preceding relation with (−1), we would have

−q(µ̂, λ̂)− (µ− µ̂)T g(xµ̂λ̂)− (λT − λ̂)(Axµ̂λ̂ − b) ≤ −q(µ, λ) for all (µ, λ) ∈ dom(−q),

showing that −
(
g(xµ̂λ̂), Axµ̂λ̂ − b

)
is a subgradient of convex function −q at (µ̂, λ̂). Equiv-

alently,
(
g(xµ̂λ̂), Axµ̂λ̂ − b

)
is a subgradient of the concave function q at (µ̂, λ̂).

Thus, we can solve the dual problem by using subgradient method (adapted to maxi-
mization). The method has the form

µk+1 = [µk + αk g(xk)]
+ ,

λk+1 = λk + αk (Axk − b),

where xk is any minimizer of the problem in (26) with (µ, λ) = (µk, λk). Hence, we can
apply any of the stepsize rules discussed for the subgradient methods.
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