Lecture 9

Monotone VIs/CPs

Properties of cones and some existence results

October 6, 2008
Outline

▶ Properties of cones

▶ Existence results for monotone CPs/VIs

▶ Polyhedrality of solution sets
Properties of cones

Motivation:

- Recall that in the earlier section, existence statements required that the range of x^{ref} satisfied a certain interioricity property: namely if

\[F(x^{\text{ref}}) \in \text{int}((K_\infty)^*), \]

then SOL($K.F$) is nonempty and compact.

- Essentially, this reduces to characterizing the interior of the dual cone

- Given an arbitrary closed convex cone, we provide results for a vector to be in the relative interior of C^*.
Introduction

Let C be a closed convex cone in \mathbb{R}^n

- The set $C \cap (-C)$ is a linear subspace in \mathbb{R}^n called the **lineality space** of C; This is the largest subspace contained in C and is denoted by

$$\text{lin } C = C \cap (-C).$$

- For $S_1, S_2 \subseteq \mathbb{R}^n$, we have $(S_1 + S_2)^* = S_1^* \cap S_2^*$.

- If C_1 and C_2 are closed convex cones such that the sum $C_1^* + C_2^*$ is closed then we have $(C_1 \cap C_2)^* = C_1^* + C_2^*$.

- We may then show that the linear hull of C^* denoted by $\text{lin } C^*$ satisfies

$$\text{lin } C^* = (C \cap (-C))^\perp,$$

where A^\perp is the orthogonal complement of A^*.

*The set v^\perp is a subspace containing vectors that are orthogonal to v
Relative interior

Definition 1 Let S be a subset of \mathbb{R}^n. The *relative interior* of S is the interior of S considered as a subset of the affine hull $\text{Aff}(S)$ and is denoted by $ri(S)$. The formal definition is

$$ri(S) = \{ x \in S : \exists \epsilon > 0, (N_\epsilon \cap \text{aff}(S)) \subset S \}.$$

Consider $S = \{(x, y, 0) : 0 \leq x, y \leq 1 \} \subset \mathbb{R}^3$.

- Its interior $\text{int}(S) = \emptyset$.
- Its relative interior is nonempty since $ri(S) = \{(x, y, 0) : 0 < x, y < 1 \}$. This follows from noting that $\text{aff}(S) = \{(x, y, 0) : x, y \in \mathbb{R} \}$

Consider $S = \{(x, y, z) : 0 \leq x, y, z \leq 1 \} \subset \mathbb{R}^3$.

Game theory: Models, Algorithms and Applications 4
Its interior and relative interior are the same and are given by \(\text{int}(S) = \text{ri}(S) = \{(x, y, z) : 0 < x, y, z < 1\} \).

If \(S = \text{ri}(S) \), \(S \) is said to be relatively open

The relative boundary, \(rbd(S) = \overline{S} - \text{ri}(S) \).

Prop: Let \(C \) be a closed convex cone in \(\mathbb{R}^n \). Then the following are equivalent:

(a) \(v \in \text{ri}(C^*) \)

(b) For all \(x \neq 0, x \in C \cap \text{lin} C^*, v^T x > 0 \)

(c) For every scalar \(\eta > 0 \), the set \(S(v, \eta) \equiv \{x \in C \cap \text{lin} C^* : v^T x \leq \eta\} \) is bounded

(d) \(v \in C^* \) and the intersection \(C \cap v^\perp \) is a linear subspace

If any of the above holds, then \(C \cap v^\perp \) is equal to the lineality space of \(C \).
Solid and pointed cones

Definition 2 A cone C is pointed if $C \cap (-C) = \{0\}$. A set S is solid if $\text{int}(S) \neq \emptyset$.

- \mathbb{R}^n_+ is pointed and solid
- $\text{pos}(A)$ is also pointed and solid

Lemma 1 Let C be a closed convex cone in \mathbb{R}^n. Then the following hold:

1. If C is solid, then its dual C^* is pointed.

2. If C is pointed, then its dual C^* is solid.

Thus C is solid(pointed) if and only if C^* is pointed(solid).

Proof:
1. If C is solid, then to show that C^* is pointed, we need to show that $C^* \cap (-C^*) = \{0\}$. Let $d \in (C^* \cap (-C^*))$. Therefore, we have $d^T x = 0$ for all $x \in C$. Since C is closed and convex, we have $C = C^{**}$. Moreover, from C being solid, we have $\text{int}(C) \neq \emptyset$. Let y be an interior point of $C = C^{**}$. Then, by definition $y^T d > 0$ if $d \neq 0$. But this contradicts $d^T x = 0, \forall x \in C$. Therefore, $d = 0$ and C^* is pointed.

2. Let C be pointed. To show that C^* has a nonempty interior, let k be the maximum number of linearly independent vectors in C^* and let $\{y^1, \ldots, y^k\}$ represent a collection of such vectors:

(a) If $k = n$, then C^* contains the simplicial (pos) cone generated by these vectors and is nonempty. Since C^* contains this cone, the result follows.

(b) If $k < n$, then the system $p^T y^i = 0, i = 1, \ldots, k$ for some $0 \neq p \in \mathbb{R}^n$. But these k vectors span the space in C^* implying that
\[p^T y = 0, \forall y \in C^*. \] Consequently, \(p \in C^{**} \cap (-C^{**}) \) or \(p \in C \cap (-C') \) since \(C = C^{**} \). Therefore \(C \cap (-C') \neq \{0\} \), contradicting the pointedness of \(C \).

(c) To establish the last assertion, assume that \(C^* \) is pointed. Then by (b), we have that \(C^{**} \) is solid. But since \(C \) is closed and convex, then \(C = C^{**} \). Thus \(C \) is solid. \(C^* \) is solid implies \(C \) is pointed in a similar fashion.
Existence results

Theorem 1 Let K be a closed convex cone in \mathbb{R}^n and let F be a pseudo-monotone continuous map from K into \mathbb{R}^n. Then the following three statements are equivalent:

(a) The CP(K,F) is strictly feasible.

(b) The dual cone K^* has a nonempty interior and SOL(K,F) is a nonempty compact set.

(c) The dual cone K^* has a nonempty interior and

$$K \cap [-(F(K)^*)] = \{0\}.$$

Proof:
(a) \implies (b): If the CP(K,F) is strictly feasible, then clearly $\text{int}\ K^*$ is nonempty. From theorem 2.3.5, we have that SOL(K,F) is nonempty and compact.

Theorem 2 Suppose F is pseudo-monotone on K. If there exists an $x^{\text{ref}} \in K$ satisfying $F(x^{\text{ref}}) \in (\text{int}(K_\infty)^*)$, then SOL$(K,F)$ is nonempty, convex and compact.

(\textbf{b)} \implies (\textbf{c)}: This follows from the next result (provided without proof) and by noting that $K = K_\infty$:

Theorem 3 Let K be a closed and convex set and F be a pseudo-monotone continuous mapping. Then SOL(K,F) is nonempty and bounded if and only if

$$K_\infty \cap [-F(K)^*)] = \{0\}.$$
(c) \implies (a): By prop 2.3.17, \(\deg(\mathbf{F}_{K}^{\text{nat}}, \Omega) = 1 \) for every bounded open set \(\Omega \) containing SOL(K,F). Let \(q \) be an arbitrary vector in \(\text{int} \ K^* \). For a fixed but arbitrary scalar \(\epsilon > 0 \), we have \((\mathbf{F}_{K}^{\epsilon,\text{nat}}(x) = x - \Pi_{K}(x - F(x) + \epsilon q) \) be the natural map of the perturbed CP:

\[
K \ni x \perp F(x) - \epsilon q \in K^*.
\]

For sufficiently small \(\epsilon \) we have

\[
\deg(\mathbf{F}_{K}^{\epsilon,\text{nat}}, \Omega) = \deg(\mathbf{F}_{K}^{\text{nat}}, \Omega) = 1.
\]

Thus the perturbed CP has a solution, say \(x \) (from degree-theoretic results proved earlier). Since \(q \in \text{int} K^* \), \(x \) must belong to \(K \) and \(F(x) \) to \(K^* \). Hence, the CP(K,F) is strictly feasible.
Special case: an affine map

Corollary 4 Let K be a closed convex cone in \mathbb{R}^n and let $F(x) = q + Mx$ be an affine pseudo-monotone map from K into \mathbb{R}^n. Then the following three statements are equivalent:

1. There exists a vector $x \in K$ such that $Mx + q$ is in K^*.

2. The dual cone K^* has a nonempty interior and SOL(K,F) is a nonempty compact set.

3. The dual cone K^* has a nonempty interior and

 $$[d \in K, M^T d \in (-K)^*, q^T d \leq 0] \implies d = 0.$$
It suffices to show that

\[K \cap [-F(K)^*)] = \{0\} \]

is equivalent to the assertion in (c) above. In fact the former may be stated as

\[
[d \in K, M^T d \in (-K)^*, q^T d \leq 0] \\
= [d \in K, (q)^T d \leq 0, (Mx)^T d \leq 0 \forall x \in K] \\
= [d \in K, d^T (q + Mx) \leq 0, \forall x \in K] \\
= K \cap (-F(K))^*, F(K) = Mx + q, \\
= \{0\} \implies d = 0,
\]

giving us the required result.
Feasibility \iff Solvability? - No!!

Example 1 Consider the NCP(F):

\[
F(x) \equiv \begin{pmatrix} 2x_1x_2 - 2x_2 + 1 \\ -x_1^2 + 2x_1 - 1 \end{pmatrix}, \quad (x_1, x_2) \in \mathbb{R}^2.
\]

We have

\[
\nabla F = \begin{pmatrix} 2x_2 & 2x_1 - 2 \\ -2 - 2x_1 & 0 \end{pmatrix} \preceq 0
\]

implying that F is monotone on \mathbb{R}^2_+. The feasible region

\[
FEA(F) = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 = 1, x_2 \geq 0\}.
\]

However, this NCP has no solution.
However it does have ϵ-exact solutions. For a scalar $\epsilon \in (0, 1)$, the vector $x^\epsilon = (1 - \epsilon, 1/(2\epsilon))$. It may be verified that

$$\lim_{\epsilon \to 0} \min(x^\epsilon, F(x^\epsilon)) = 0$$

and there exists an \bar{x} satisfying

$$\|\min(\bar{x}, F(\bar{x}))\| \leq \epsilon$$

for every $\epsilon > 0$. Such an \bar{x} is called an ϵ-approximate solution of $\text{NCP}(F)$.

This leads to two important questions:

- When does feasibility of $\text{CP}(K,F)$ imply its solvability?

 - K is polyhedral and F is affine
• F is strictly monotone on K and K is pointed but non-polyhedral

▶ Does every feasible monotone CP have $\varepsilon-$solutions? - yes!

Theorem 5 Let K be \mathbb{R}^n_+ and F be a monotone affine map from \mathbb{R}^n onto itself. Then the $CP(K,F)$ is solvable if and only if it is feasible.

Proof: Since K is a polyhedral cone, we have that $K = K^{**}$. Moreover, let $F(x) = q + Mx$, where $M \succeq 0$. Consider the gap program given by

$$\min x^T(Mx + q)$$

subject to $x \in K$

$$Mx + q \in K^*.$$

This is a convex QP with an objective that is bounded below by zero on K. We then use the Frank-Wolfe theorem - which states that a quadratic
function, bounded below on a polyhedral set, attains its minimum on that set. Therefore the dual gap program attains a minimum at x^*. By the necessary conditions of optimality, there exists a $\lambda \in \mathbb{R}^n$ such that

$$K \ni x^* \perp v \equiv q + (M + M^T)x^* - M^T\lambda \in K^*$$

$$K^* \ni q + Mx^* \perp \lambda \in K^{**} = K.$$

Since $(x^*)^Tv = 0$ and $\lambda^Tv \geq 0$, we have

$$0 \geq (x^* - \lambda)^Tv$$

$$= (x^* - \lambda)^T(q + (M + M^T)x^* - M^T\lambda)$$

$$= (x^* - \lambda)^T(q + Mx^*) + (x^* - \lambda)^TM^T(x^* - \lambda)$$

$$\geq (x^* - \lambda)^T(q + Mx^*)$$

$$= (x^*)^T(Mx^* + q).$$
But \((x^*)^T(Mx^* + q) \geq 0\) implying that \((x^*)^T(Mx^* + q) = 0\) and \(x^*\) lies in SOL(K,F).
General strictly monotone F

Theorem 6 (Th. 2.4.8) Let K be a pointed closed and convex cone in \mathbb{R}^n and $F : K \to \mathbb{R}^n$ be a continuous map. Consider the following statements

(a) F is strictly monotone on K and $\text{FEA}(K,F)$ is nonempty;

(b) F is strictly monotone on K and $\text{CP}(K,F)$ is strictly feasible;

(c) the $\text{CP}(K,F)$ has a unique solution.

It holds that $(a) \iff (b) \implies (c)$.

Proof:

- Clearly $(b) \implies (a)$

- $(a) \implies (b)$ (omitted) - see Theorem 2.4.8 in FP-I

- Converse is proved in Th. 2.4.8

- $(b) \implies (c)$ follows from Th 2.3.5
F is affine monotone

Under the assumptions of affineness and monotonicity of F, we obtain the following:

Lemma 2 Let K be a convex cone in \mathbb{R}^n and $F(x) = q + Mx$ where $M \succeq 0$. For any $y \in SOL(K, q, M)$ it holds that

$$SOL(K, q, M) = \{ x \in K : q + Mx \in K^*, (M^T + M)(x-y) = 0, q^T(x-y) = 0 \}$$

Proof:

- By proposition 2.3.6, we have from monotonicity that $x, y \in SOL(K, q, M)$:

 $$ (x - y)^T M (x - y) = 0. $$
For $x \neq y$, we have that $(M + M^T)(x - y) = 0$ which may be further simplified as

$$x^T(M + M^T)(x - y) = 0$$
$$x^T(M + M^T)x = x^T(M + M^T)y$$
$$x^TMx = \frac{1}{2}x^T(M + M^T)y$$
similarly $y^TMy = \frac{1}{2}x^T(M + M^T)y$

Since $x \in SOL(K, F)$, we have that $x^T(q + Mx) = 0 \iff x^Tq = -x^TMx$.

Similarly, $y^T(q + My) = 0 \iff y^Tq = -y^TMy$. But

$$y^TMy = x^TMx \implies x^Tq = -x^TMx = -y^TMy = y^Tq.$$
Therefore x lies in the set on the right hand side of the specified set equation.

To prove the reverse inclusion, we need to show that if x lies in

$$\{x \in K : q + Mx \in K^*, (M^T + M)(x - y) = 0, q^T(x - y) = 0\}$$

then $x^T(Mx + q) = 0$. Since $q^T(x - y) = 0$, $(M + M^T)(x - y) = 0$, we have

$$q^Tx = q^Ty, (M + M^T)x = (M + M^T)y.$$

The latter expression implies that $x^TMx = y^TMy$ implying that

$$x(Mx + q) = y^T(My + y) = 0.$$

The result follows.
Implication: The aforementioned lemma implies that $q^T x$ is a constant scalar and $(M + M^T)x$ is a constant vector for all $x \in SOL(K, q, M)$. Therefore if K is polyhedral, then the set given by SOL(K,F) is also polyhedral.
Polyhedrality of Monotone AVI

Consider the **affine variational inequality** denoted by $AVI(K,q,M)$ which requires a vector x such that

$$(y - x)^T(Mx + q) \geq 0, \quad \forall y \in K,$$

where K is a polyhedral set. Note that if F is non necessarily affine, we have a **linearly constrained VI**.

Before proving a result pertaining to the polyhedrality of the $SOL(K,q,M)$, we provide a result that gives a KKT characterization of the VI.

Proposition 1 *Let K be given by*

$$K \equiv \{ x \in \mathbb{R}^n : Ax \leq b, Cx = d \}$$
for some matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{l \times n}$. A vector x solves the VI(K,F) if and only if there exists $\lambda \in \mathbb{R}^m$ and $\mu \in \mathbb{R}^l$ such that

$$F(x) + C^T \mu + A^T \lambda = 0$$
$$Cx - d = 0$$
$$0 \leq b - Ax \perp \lambda \geq 0.$$

Proof:

- For a fixed x and K polyhedral, we may formulate the following LP:

$$\min \quad y^T F(x)$$
subject to $y \in K$,

by noting that the VI is equivalent to finding an x such that

$$y^T F(x) \geq x^T F(x) \quad \forall y \in K.$$

Therefore if $x \in SOL(K, F)$, then x is a solution to this LP. But by LP duality, we have the existence of (λ, μ) such that the following holds:

$$F(x) + C^T \mu + A^T \lambda = 0$$
$$Cx - d = 0$$
$$0 \leq b - Ax \perp \lambda \geq 0.$$

Reverse holds in a similar fashion.

We may now prove the polyhedrality of the solution set of $AVI(K,q,M)$.

Clearly, when K is a cone, this follows from the result for monotone $\text{CP}(K,q,M)$.

Theorem 7 Let K be polyhedral and $F(x) \equiv Mx + q$. The solution set of $\text{AVI}(K,q,M)$ is polyhedral.

Proof: Let K be given as

$$K \equiv \{ x \in \mathbb{R}^n : Ax \leq b, Cx = d \}$$

for some matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{l \times n}$. However, x is a solution to $\text{AVI}(K,q,m)$ if and only if (x, μ, λ) is a solution to

$$Mx + q + C^T\mu + A^T\lambda = 0$$

$$Cx - d = 0$$

$$0 \leq b - Ax \perp \lambda \geq 0.$$
But this is an mixed LCP (a special case of a monotone affine CP) and has a polyhedral solution set. However, the solution set of AVI(K,q,M) is a projection of this solution set given by the mapping:

\[
\begin{pmatrix}
 x \\
 \mu \\
 \lambda
\end{pmatrix}
\in \mathbb{R}^{n+\ell+m} \rightarrow x \in \mathbb{R}^n.
\]

Therefore the solution set of AVI(K,q,M) is also polyhedral.
\[\blacksquare\]