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Geometry of the Complementarity Problem

e Definition 1 The set pos(A) generated by A € R™*P represents the
convex cone obtained by taking nonnegative linear combinations of the
columns of A or pos(A) ;= {qe€ R™:q= Av,v € R }.

e Therefore if ¢ € pos(A) implies that Av = ¢ has a nonnegative solution.

e pos(A) is also called a finite cone generated by the columns of A.

e Suppose the LCP(g, M) iswrittenas 0 <z 1L w > 0;w = Mz 4+ q.

e Then, in solving the LCP problem, we are looking for

e A representation of ¢ as an element of the cone pos(I, —M)

e But not using both I.; and —M.;
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Definition 2 /CPS92] Given M € R™"™ and a C {1,
Cv(a) € R™" as

Specifically

e Cy () is a complementary matrix of M*

...,n}, we define

e pos(Chy(c)) is called the complementary cone (relative to M)

e If Cy/(«) is nonsingular, then pos(Cy(a)) is said to be full.

*It may also be called a complementary submatrix of (I, —M).
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For a given M,

e There are 2" complementary cones (not necessarily distinct)

e Union of such cones is a cone, denoted by K(M),
K(M) = {q:SOL(q, M) # 0}.
e Consider such an object, when n = 2

e Let I; and I> denote the first and second columns of I. Similarly, M;
and M5 represent the columns of M.
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Figure 1: Example 1 is to the left, while Example 2 is to the right
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Examples 1 and 2
In forthcoming Examples 1-4, the complementary cones are given by

pos(Crn({1,2})), pos(Cu({1})), pos(Cn({2})) and pos(C(0))
In all examples, we have pos(Cun(0)) = R3 and

K (M) = pos(Cn({1,2})) Upos(Cu({1})) Upos(Cu({2})) U pos(Cu(0))

e Example 1: K(M)=R? and every q lies in exactly one of the comple-
mentarity cones - uniqueness

e Example 2: K(M)=R?, but ¢ € RZ lies in three complementary cones -
loss of uniqueness
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'MZ
K(M) is a halfspace Every q belongs to an even
Q € K(M) - unique number (possibly zero) of
otherwise no solution Complementary cones

Figure 2: Example 3 is to the left, while Example 4 is to the right
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Examples 3 and 4

e Example 3:

e pos(Cy({1,2})) is a line (containing both —M; and —M>
e Resulting K(M) is a halfspace containing R
o If g€ K(M), LCP has a unique solution; no solution otherwise

e Example 4:

e —M; is along direction (2) implying that pos(Cp({1})) is a
half-line

o K(M)=pos(Cn({2}))

e Every ¢ lies in an even number of complementary cones (possibly
zero)
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Further geometrical insights
o pos(Cn(0)) = R, = pos(1)
e {pos(I) Upos(—M)} C K(M)

e K(M) C pos(I,—M), where pos(I,—M) represents the set of g for
which the LCP(q,M) is feasible

e In summary, {pos(I) Upos(—M)} C K(M) C pos(I,—M)

e In general K(M) is not convex, but its convex hull viz. pos(I,—M)
always is by definition.
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Determining feasibility
e It suffices to check if ¢ belongs to one of the complementary cones

e This in turn requires checking if the following set of systems has a
solution

Cla)v =gq
v > 0,

for some index set o.

e Not difficult in principle - however there may be 2" unique index sets -
requires doing a phase 1 procedure of an LP

e Definitely need more efficient procedures

Lecture 4 Game theory: Models, Algorithms and Applications 9



A. Nedi¢ and U.V. Shanbhag

The classes Q and Qg

e It was shown that if M > O, then LCP(q,M) had a solution for all ¢
o If M > 0 and LCP(q,M) was feasible, then LCP(q,M) had a solution

e Question: For what classes of matrices do solutions to the LCP always
exist? Such a class is denoted by Q.

e A partial answer is availablle - specifically, when is K(M) = R"? -
However, K (M) is often a subset of R™ and often nonconvex.

e A related question is as follows:

e Question: For what classes of matrices do solutions to the LCP exist,
when the underlying LCP is feasible? Such a class is denoted by Qo.

oif M > 0, then M € Q,

e We now show an equivalence between Qg and the convexity of K(M)
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Equivalence between Q¢ and convexity of K(M)

Proposition 1 Let M € R™*"™. Then the following are equivalent:
1. M € Q.

2. K(M) is convex.
3. K(M) = pos(I,-M)

Proof:

1. (1) = (2): Let ¢',¢° € K(M). Therefore LCP(q!, M) and
LCP(g?, M) are solvable. But LCP(A\g1 + (1 — X)go, M) is feasible for
all A € [0,1].

0 <A(Mz1+q1) + (1 —=XN)(Mz2+ g2)
=M(Az1 4+ (1 —N)22) + (A1 + (1 — N)g2)
=Mz 4 ¢,V € [0, 1].
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Therefore LCP(g*, M) is solvable, since M € Qq. Hence ¢* € K(M)
and K(M) is convex.

2. (2) == (3): Recall that the convex hull of K(M) is pos(l,-M). If
K(M) is convex, then K (M) = pos(I, —M) and the result follows.

3. (3) == (1): The cone pos(I,—M) contains all vectors g for which
LCP(q, M) is feasible. Therefore if (3) holds, then g can be generated
from one of the complementary cones. In this case, the solution to
LCP(q, M) exists; hence, the LCP(q, M) is solvable.
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S-Matrices

e Consider S={M : 3z >0, Mz > 0} (S stands for Stiemke)

e It can be seen that S = {M : 3z > 0, Mz > 0}. By continuity of
M at z > 0O, we have M (z 4+ Ae) > O for small enough X\ > O; at the
same time, z + Ae > 0O

Proposition 2 A matrix M € R™ x R" is an S-matrixz if and only if
LCP(q, M) 1s feasible for all ¢ € R"

Proof: Let M be an S-matrix, so that there is a vector z > O such that
Mz > 0. Then, given any g, we can find A > O large enough so that
AMz > —q. Thus, Az is feasible for LCP(q, M).

Suppose LC'P(q, M) is feasible for any g. Choose ¢ < 0. Any feasible 2
for LCP(q, M) satisfies Mz > —g > 0 and of course z > 0. Hence, M is

an S-matrix.
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Class @
In view of Proposition 2, we have
Q=QoNS

e Checking for M € S: Check for feasibility of {z : Mz > 0,z > 0} by
linear programming (a test with finite termination)

e If we had a finite test for M € Qo, then by checking (in a finite time)
for M € S, we would have a finite test for M € Q

e Unfortunately, no finite test exists for M € Qg
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Bimatrix games and Copositive Matrices

e The bimatrix game is equivalent to the LCP:

o) (2 () ()20

e Existence and uniqueness of such a solution was left open: Is M € Q7

e Note that M is not positive semidefinite or positive definite
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Copositive matrices

Definition 3 A matrix M € R™"™ is said to be
o copositive if ' Mxz > 0 for all x € RY..
o strictly copositive if x' Mx > O for all nonzero x € R% .
e copositive-plus if M s copositive and the following holds:

[2"Mz=0,2>0] = [(M+ M")z=0].
e copositive-star if M 1is copositive and the following holds:
[2"Mz=0,Mz>0,2>0] = [M'2<0].

e Relationship:
Strictly copositive C copositive-plus C copositive-star C copositive
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O A

Lemma 1l Let M =
BT 0

) , where A, B > 0. Then M 1s a copositive-

plus matriz.

Proof:

e M is copositive (i.e., zI Mz > 0 for z > 0): Let =,y > 0. Then
T
x 0 A\ (zx T T T
=z A B
(o) (o 0) (3) = =rav-rvrers
=z (A 4+ B)y.

Since x,y > 0 and A, B > 0, it follows

' (A+ B)y > 0.

Hence, M is copositive.
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o M satisfies [zTMz2=0,2>0] = [(M + M")z =0].

Let =,y > O.
:BT 0 A\ [x
T =0
Yy B* 0/ \y

— I (A+B)y=0
T
x 0 A+ B\ (z\ _
= () ia 5700

The last relation and

T O A+ B (=
MM _<BT+AT 0 ) Z_<y>

mean that 2z/'(M + M*)z = 0. But 2 > 0 and (M + M*)z > 0 yield
(M 4+ M*")z = 0. Hence, M is copositive-plus.

Lecture 4 Game theory: Models, Algorithms and Applications 18



A. Nedi¢ and U.V. Shanbhag

0O A
BT 0
plus matrixz, and g € R™. Then M € S and therefore M € Q.

Proposition 3 Consider an LCP(q,M) with M = >, a copositive

Proof: Homework.
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Generalizations

e Last two lectures have focused on games which had a specific structure
that would allow reformulation as an LCP

e Not always possible since agent problems may have equality constraints
(though these can sometimes be transformed - how?)

e Question: Can we develop a theory that is less reliant on the precise
structure of the agent’s problems

e Our basic framework was:

e State optimality conditions as an LCP
e Combine the LCPs obtaining the equilibrium system

e Use matrix theoretic properties to obtain existence/uniqueness state-
ments
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e Instead of using complementarity formulations, we may obtain VI for-
mulations of the optimality conditions:

e Specifically, player i's optimization problem is given by

Player i (z7%) minimize 60;(x;,x")

subject to x; € X,

where 6;(.) is in C! on an open superset of X;, which is a closed convex
set of R™.

o (z%,...,x%) is a solution of the Nash game if and only if =* is a solution
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to the set of variational inequalities given by

(yl — CCl)T V@l(ibl; X_l) > 0, \v4 Y1 € X1
(y2 — 22)T VO2(22;%x72%) >0, Vyse Xo

(yN — CEN)T V@N(rm\/; X_N) > 0, \v4 YN € XN,

or more compactly, x* solves the following problem (in z € X)

(y—2) F(z) >0, Vye X=X x---xXn.

e From a geometric standpoint, we have x € SOL(X, F') if and only if
F'(x) forms a non-obtuse angle with every vector y — x for y € X.
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e This can be related to the normal cone to X at x, given by
Nx(@)={deR": (y—x)'d<0, Vye X}
(called the set of normal vectors to X at x)
e From the statement of the VI, we have to find an £ € X such that
(y —x)' (-=F(2)) <0, VyeX
or —F(x) is a normal vector to X at x; equivalently

—F(x) € Nx(x) 0 € F(z) +Nx(x).
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