Game theory: Models, Algorithms and Applications Lecture 4 Part II Geometry of the LCP

September 10, 2008

## **Geometry of the Complementarity Problem**

- Definition 1 The set pos(A) generated by A ∈ ℝ<sup>m×p</sup> represents the convex cone obtained by taking nonnegative linear combinations of the columns of A or pos(A) := {q ∈ ℝ<sup>m</sup> : q = Av, v ∈ ℝ<sup>p</sup><sub>+</sub>}.
- Therefore if  $q \in pos(A)$  implies that Av = q has a nonnegative solution.
- pos(A) is also called a finite cone generated by the columns of A.
- Suppose the LCP(q, M) is written as  $0 \le x \perp w \ge 0$ ; w = Mx + q.
- Then, in solving the LCP problem, we are looking for
  - A representation of q as an element of the cone pos(I, -M)
  - But not using both  $I_{\cdot,i}$  and  $-M_{\cdot,i}$

**Definition 2** [CPS92] Given  $M \in \mathbb{R}^{n \times n}$  and  $\alpha \subseteq \{1, \ldots, n\}$ , we define  $C_M(\alpha) \in \mathbb{R}^{n \times n}$  as

$$C_M(\alpha)_{\cdot,i} = egin{cases} -M_{\cdot,i} & i \in lpha, \ I_{\cdot,i} & i 
ot\in lpha. \end{cases}$$

Specifically

- $C_M(\alpha)$  is a complementary matrix of  $M^*$
- $pos(C_M(\alpha))$  is called the complementary cone (relative to M)
- If  $C_M(\alpha)$  is nonsingular, then  $pos(C_M(\alpha))$  is said to be *full*.

<sup>\*</sup>It may also be called a complementary submatrix of (I, -M).

For a given M,

- There are  $2^n$  complementary cones (not necessarily distinct)
- Union of such cones is a cone, denoted by K(M),

$$K(M) = \{q : SOL(q, M) \neq \emptyset\}.$$

- Consider such an object, when n = 2
- Let  $I_1$  and  $I_2$  denote the first and second columns of I. Similarly,  $M_1$  and  $M_2$  represent the columns of M.



Figure 1: Example 1 is to the left, while Example 2 is to the right

### Examples 1 and 2

In forthcoming Examples 1–4, the complementary cones are given by  $pos(C_M(\{1,2\})), pos(C_M(\{1\})), pos(C_M(\{2\})) \text{ and } pos(C_M(\emptyset))$ In all examples, we have  $pos(C_M(\emptyset)) = \mathbb{R}^2_+$  and

 $K(M) = pos(C_M(\lbrace 1,2\rbrace)) \cup pos(C_M(\lbrace 1\rbrace)) \cup pos(C_M(\lbrace 2\rbrace)) \cup pos(C_M(\emptyset))$ 

- Example 1:  $K(M) = \mathbb{R}^2$  and every q lies in exactly one of the complementarity cones uniqueness
- Example 2: K(M)=ℝ<sup>2</sup>, but q ∈ ℝ<sup>2</sup><sub>+</sub> lies in three complementary cones loss of uniqueness



Figure 2: Example 3 is to the left, while Example 4 is to the right

## Examples 3 and 4

- Example 3:
  - $pos(C_M(\{1,2\}))$  is a line (containing both  $-M_1$  and  $-M_2$
  - Resulting K(M) is a halfspace containing  $\mathbb{R}^2_+$
  - If  $q \in K(M)$ , LCP has a unique solution; no solution otherwise
- Example 4:
  - $-M_1$  is along direction  $\begin{pmatrix} 0\\1 \end{pmatrix}$  implying that  $pos(C_M(\{1\}))$  is a half-line
  - $K(M) = pos(C_M(\{2\}))$
  - Every q lies in an even number of complementary cones (possibly zero)

### **Further geometrical insights**

• 
$$pos(C_M(\emptyset)) = \mathbb{R}^n_+ = pos(I)$$

• 
$$\{pos(I) \cup pos(-M)\} \subseteq K(M)$$

- K(M) ⊂ pos(I, -M), where pos(I, -M) represents the set of q for which the LCP(q,M) is feasible
- In summary,  $\{pos(I) \cup pos(-M)\} \subseteq K(M) \subseteq pos(I, -M)$
- In general K(M) is not convex, but its convex hull viz. pos(I, -M) always is by definition.

## **Determining feasibility**

- $\bullet$  It suffices to check if q belongs to one of the complementary cones
- This in turn requires checking if the following set of systems has a solution

$$C(\alpha)v = q$$
$$v \ge 0,$$

for some index set  $\alpha$ .

- Not difficult in principle however there may be 2<sup>n</sup> unique index sets requires doing a phase 1 procedure of an LP
- Definitely need more efficient procedures

# The classes Q and $Q_0$

- It was shown that if  $M \succ 0$ , then LCP(q,M) had a solution for all q
- If  $M \succeq 0$  and LCP(q,M) was feasible, then LCP(q,M) had a solution
- Question: For what classes of matrices do solutions to the LCP always exist? Such a class is denoted by **Q**.
- A partial answer is available specifically, when is  $K(M) \equiv \mathbb{R}^n$ ? -However, K(M) is often a subset of  $\mathbb{R}^n$  and often nonconvex.
- A related question is as follows:
- Question: For what classes of matrices do solutions to the LCP exist, when the underlying LCP is feasible? Such a class is denoted by **Q**<sub>0</sub>.
- if  $M \succeq 0$ , then  $M \in \mathbf{Q}_0$
- We now show an equivalence between  $\mathbf{Q}_0$  and the convexity of K(M)

## Equivalence between Q<sub>0</sub> and convexity of K(M)

**Proposition 1** Let  $M \in \mathbb{R}^{n \times n}$ . Then the following are equivalent: **1.**  $M \in \mathbf{Q}_0$ .

- **2.** K(M) is convex.
- **3.** K(M) = pos(I, -M)

## **Proof:**

**1.** (1)  $\implies$  (2): Let  $q^1, q^2 \in K(M)$ . Therefore LCP $(q^1, M)$  and LCP $(q^2, M)$  are solvable. But LCP $(\lambda q_1 + (1 - \lambda)q_2, M)$  is feasible for all  $\lambda \in [0, 1]$ .

$$0 \leq \lambda (Mz_1 + q_1) + (1 - \lambda)(Mz_2 + q_2)$$
  
=  $M(\lambda z_1 + (1 - \lambda)z_2) + (\lambda q_1 + (1 - \lambda)q_2)$   
=  $Mz^{\lambda} + q^{\lambda}, \forall \lambda \in [0, 1].$ 

Therefore LCP $(q^{\lambda}, M)$  is solvable, since  $M \in \mathbf{Q}_0$ . Hence  $q^{\lambda} \in K(M)$  and K(M) is convex.

- **2.** (2)  $\implies$  (3): Recall that the convex hull of K(M) is pos(I,-M). If K(M) is convex, then  $K(M) \equiv pos(I, -M)$  and the result follows.
- 3. (3) ⇒ (1): The cone pos(I, -M) contains all vectors q for which LCP(q, M) is feasible. Therefore if (3) holds, then q can be generated from one of the complementary cones. In this case, the solution to LCP(q, M) exists; hence, the LCP(q, M) is solvable.

#### S-Matrices

- Consider  $S = \{M : \exists z > 0, Mz > 0\}$  (S stands for Stiemke)
- It can be seen that  $S = \{M : \exists z \ge 0, Mz > 0\}$ . By continuity of M at  $z \ge 0$ , we have  $M(z + \lambda e) > 0$  for small enough  $\lambda > 0$ ; at the same time,  $z + \lambda e > 0$

**Proposition 2** A matrix  $M \in \mathbb{R}^n \times \mathbb{R}^n$  is an S-matrix if and only if LCP(q, M) is feasible for all  $q \in \mathbb{R}^n$ 

**Proof:** Let M be an S-matrix, so that there is a vector  $z \ge 0$  such that Mz > 0. Then, given any q, we can find  $\lambda > 0$  large enough so that  $\lambda Mz \ge -q$ . Thus,  $\lambda z$  is feasible for LCP(q, M).

Suppose LCP(q, M) is feasible for any q. Choose  $\tilde{q} < 0$ . Any feasible z for  $LCP(\tilde{q}, M)$  satisfies  $Mz \ge -\tilde{q} > 0$  and of course  $z \ge 0$ . Hence, M is an S-matrix.

Lecture 4

#### Class Q

In view of Proposition 2, we have

 $\mathbf{Q}=\mathbf{Q}_0\cap\mathbf{S}$ 

- Checking for  $M \in \mathbf{S}$ : Check for feasibility of  $\{z : Mz > 0, z > 0\}$  by linear programming (a test with finite termination)
- If we had a finite test for M ∈ Q<sub>0</sub>, then by checking (in a finite time) for M ∈ S, we would have a finite test for M ∈ Q
- Unfortunately, no finite test exists for  $M \in \mathbf{Q}_0$

## **Bimatrix games and Copositive Matrices**

• The bimatrix game is equivalent to the LCP:

$$\mathsf{Bim} \qquad \qquad \mathsf{0} \leq \begin{pmatrix} x \\ y \end{pmatrix} \perp \begin{pmatrix} \mathsf{0} & A \\ B^T & \mathsf{0} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -e_m \\ -e_n \end{pmatrix} \geq \mathsf{0}.$$

- Existence and uniqueness of such a solution was left open: Is  $M \in \mathbf{Q}$ ?
- Note that M is not positive semidefinite or positive definite

#### **Copositive matrices**

#### **Definition 3** A matrix $M \in \mathbb{R}^{n \times n}$ is said to be

• copositive if  $x^T M x \ge 0$  for all  $x \in \mathbb{R}^n_+$ .

- strictly copositive if  $x^T M x > 0$  for all nonzero  $x \in \mathbb{R}^n_+$ .
- copositive-plus if M is copositive and the following holds:

$$[z^T M z = 0, z \ge 0] \implies [(M + M^T) z = 0].$$

• copositive-star if M is copositive and the following holds:

$$[z^T M z = 0, M z \ge 0, z \ge 0] \implies [M^T z \le 0].$$

#### • Relationship:

Strictly copositive  $\subseteq$  copositive-plus  $\subseteq$  copositive-star  $\subseteq$  copositive

**Lemma 1** Let 
$$M = \begin{pmatrix} 0 & A \\ B^T & 0 \end{pmatrix}$$
, where  $A, B > 0$ . Then  $M$  is a copositive-  
plus matrix.

#### **Proof:**

• M is copositive (i.e.,  $z^TMz \ge 0$  for  $z \ge 0$ ): Let  $x, y \ge 0$ . Then

$$\begin{pmatrix} x \\ y \end{pmatrix}^T \begin{pmatrix} 0 & A \\ B^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = x^T A y + y^T B^T x$$
$$= x^T (A + B) y.$$

Since  $x, y \ge 0$  and A, B > 0, it follows

$$x^T(A+B)y \ge 0.$$

Hence, M is copositive.

• M satisfies  $[z^T M z = 0, z \ge 0] \implies [(M + M^T)z = 0].$ Let  $x, y \ge 0$ .

$$\begin{pmatrix} x \\ y \end{pmatrix}^T \begin{pmatrix} 0 & A \\ B^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$
$$\implies x^T (A+B)y = 0$$
$$\implies \begin{pmatrix} x \\ y \end{pmatrix}^T \begin{pmatrix} 0 & A+B \\ B^T + A^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0.$$

The last relation and

$$M + M^T = \begin{pmatrix} 0 & A + B \\ B^T + A^T & 0 \end{pmatrix}, \qquad z = \begin{pmatrix} x \\ y \end{pmatrix},$$

mean that  $z^T(M + M^T)z = 0$ . But  $z \ge 0$  and  $(M + M^T)z \ge 0$  yield  $(M + M^T)z = 0$ . Hence, M is copositive-plus.

**Proposition 3** Consider an LCP(q, M) with  $M = \begin{pmatrix} 0 & A \\ B^T & 0 \end{pmatrix}$ , a copositive plus matrix, and  $q \in \mathbb{R}^n$ . Then  $M \in \mathbf{S}$  and therefore  $M \in \mathbf{Q}$ .

Proof: Homework.

# Generalizations

- Last two lectures have focused on games which had a specific structure that would allow reformulation as an LCP
- Not always possible since agent problems may have equality constraints (though these can sometimes be transformed how?)
- Question: Can we develop a theory that is less reliant on the precise structure of the agent's problems
- Our basic framework was:
  - State optimality conditions as an LCP
  - Combine the LCPs obtaining the equilibrium system
  - Use matrix theoretic properties to obtain existence/uniqueness statements

- Instead of using complementarity formulations, we may obtain VI formulations of the optimality conditions:
- Specifically, player i's optimization problem is given by

Player  $i(x^{-i})$ minimize $\theta_i(x_i, \mathbf{x}^{-i})$ subject to $x_i \in X_i,$ 

where  $\theta_i(.)$  is in C<sup>1</sup> on an open superset of  $X_i$ , which is a closed convex set of  $\mathbb{R}^n$ .

•  $(x_1^*, \ldots, x_N^*)$  is a solution of the Nash game if and only if  $x^*$  is a solution

to the set of variational inequalities given by

$$egin{aligned} &(y_1-x_1)^T \quad 
abla heta_1(x_1;\mathbf{x}^{-1}) \geq 0, &orall \, y_1 \in X_1 \ &(y_2-x_2)^T \quad 
abla heta_2(x_2;\mathbf{x}^{-2}) \geq 0, &orall \, y_2 \in X_2 \ &dots \ &dots$$

or more compactly,  $x^*$  solves the following problem (in  $x \in X$ )

$$(y-x)^T F(x) \ge 0, \quad \forall \ y \in X = X_1 \times \cdots \times X_N.$$

• From a geometric standpoint, we have  $x \in SOL(X, F)$  if and only if F(x) forms a non-obtuse angle with every vector y - x for  $y \in X$ .

• This can be related to the normal cone to X at x, given by

$$\mathcal{N}_X(x) \equiv \{ d \in \mathbb{R}^n : (y - x)^T d \leq 0, \quad \forall y \in X \}.$$

(called the set of normal vectors to X at x)

• From the statement of the VI, we have to find an  $x \in X$  such that

$$(y-x)^T(-F(x)) \le 0, \quad \forall y \in X$$

or -F(x) is a normal vector to X at x; equivalently

$$-F(x) \in \mathcal{N}_X(x) \equiv 0 \in F(x) + \mathcal{N}_X(x).$$

## References

[CPS92] R. W. Cottle, J-S. Pang, and R. E. Stone. *The Linear Complementarity Problem*. Academic Press, Inc., Boston, MA, 1992.