Lecture 21
Algorithms for Monotone VIs
Projection Methods

November 17, 2008
Outline

- Projection Methods
 - Basic Fixed-Point Iteration
 - Extra-gradient Method
 - Hyperplane Projection Method
Introduction

- Projection methods are conceptually simple methods for solving monotone $VI(K, F')$ for a convex closed set K

- Their advantages are
 - Easily implementable and computationally inexpensive
 - When K has structure that makes the projection on K easy
 - Makes them suitable for large scale problems

- Also, they are often used as a sub-procedures in faster and more complex methods (enabling the moves into “promising” regions)

- Their main disadvantage is slow progress since they do not use higher order information
Basic Fixed-Point Iteration

Throughout the rest, we assume that $K \subset \mathbb{R}^n$ is **closed and convex**, and $F : K \rightarrow \mathbb{R}^n$ is **continuous mapping**.

- We consider the “skewed” natural map

$$F_{K,D}^{\text{nat}}(x) = x - \Pi_{K,D}[x - D^{-1}F(x)],$$

where D is a symmetric and positive definite matrix.

- Such a matrix, induces and inner product and a norm in \mathbb{R}^n:

$$< x, y >_D = x^T Dy, \quad \| x \| = \sqrt{x^T Dx}.$$

- The skewed projection $\Pi_{K,D}$ on K is just a projection with respect to norm $\| \cdot \|_D$,

$$\hat{x} = \Pi_{K,D}[x] \quad \iff \quad \hat{x} \text{ solves } \min_{y \in K} \| x - y \|_D^2.$$

Fact

The projection mapping $x \mapsto \Pi_{K,D}[x]$ is nonexpansive in the norm $\| \cdot \|_D$.
• **Fact** A vector x^* solves $VI(KF)$ if and only if x^* is zero of the skewed natural map, i.e.,

$$x^* = \Pi_{K,D}[x^* - D^{-1}F(x^*)].$$

• Define $\Phi(x) = \Pi_{K,D}[x - D^{-1}F(x)]$ and note that $\Phi : K \rightarrow K$.

• When $D = I$ and Φ is contraction with respect to Euclidean norm, we have seen that fixed-point method $x_{k+1} = \Phi(x_k)$ produces a sequence with accumulation points being fixed points of Φ (for any initial $x_0 \in K$).

• The idea of fixed-point here is similar: if we could ensure that $\Phi(x) = \Pi_{K,D}[x - D^{-1}F(x)]$ is a contraction in norm $\| \cdot \|_D$, then we could use “fixed-point” method to find a fixed point of $\Phi(x)$ and hence, a solution to $VI(K,F)$.
Basic Projection Method

Choose a symmetric positive definite matrix D. Select an initial vector $x_0 \in K$.

Step 0: Set $k = 0$

Step 1: Compute $x_{k+1} = \Pi_{K,D}[x_k - D^{-1}F(x_k)]$. If $x_{k+1} = x_k$, stop; we have a solution.

Step 2: Otherwise, set $k := k + 1$, and go to Step 1.

In order to ensure the convergence of the sequence $\{x_{k+1}\}$ (or its subsequence) to a fixed point of Φ, we need some conditions of the mapping F and the matrix D.

Angelia Nedić and Uday V. Shanbhag

Lecture 21

Game theory: Models, Algorithms and Applications
Convergence for Strongly Monotone Mappings

Theorem 1 Let $F : K \rightarrow \mathbb{R}^n$. Suppose F is strongly monotone and Lipschitz continuous on K,

$$(F(x) - F(y))^T(x - y) \geq \mu \|x - y\|^2, \quad \|F(x) - F(y)\| \leq L \|x - y\|^2.$$

Also, let

$$\lambda_{\text{max}} < \frac{2\mu}{L^2} \lambda_{\text{min}}^2,$$

where λ_{max} and λ_{min} are the largest and smallest eigenvalues of D. Then, the mapping $\Pi_{K,D}[x - D^{-1}F(x)]$ is contraction in $\| \cdot \|_D$ with contraction factor

$$\eta = 1 - \frac{L^2}{\lambda_{\text{max}} \lambda_{\text{min}}^2} \left(\frac{2\mu \lambda_{\text{min}}^2}{L^2} - \lambda_{\text{max}} \right).$$

Therefore, the sequence $\{x_k\}$ converges to the unique solution of $VI(K, F)$.
Proof: For any two vectors x, y in K, we have
\[
\|\Pi_{K,D}[x - D^{-1}F(x)] - \Pi_{K,D}[y - D^{-1}F(y)]\|_D^2 \leq \|x - D^{-1}F(x) - (y - D^{-1}F(y))\|_D^2.
\]
Why? By expanding the last term, we have
\[
\|\Pi_{K,D}[x - D^{-1}F(x)] - \Pi_{K,D}[y - D^{-1}F(y)]\|_D^2 \leq \|x - y\|_D^2 \\
- 2(F(x) - F(y))^T(x - y) + \|F(x) - F(y)\|_{D^{-1}}^2.
\]
Using the strong convexity, we have
\[
(F(x) - F(y))^T(x - y) \geq \mu \|x - y\|^2 \geq \frac{\mu}{\lambda_{\text{max}}} \|x - y\|_D^2. \tag{1}
\]
From
\[
\|F(x) - F(y)\|_{D^{-1}}^2 \leq \frac{1}{\lambda_{\text{min}}} \|F(x) - F(y)\|^2
\]
and Lipschitz continuity of F, we obtain
\[
\|F(x) - F(y)\|_{D^{-1}}^2 \leq \frac{L^2}{\lambda_{\text{min}}^2} \|x - y\|_D^2 \tag{2}
\]
By combining the estimates in (1) and (2), we obtain
\[\| \Pi_{K,D} [x - D^{-1}F(x)] - \Pi_{K,D} [y - D^{-1}F(y)] \|_D^2 \leq \left(1 - \frac{2\mu}{\lambda_{\text{max}}} + \frac{L^2}{\lambda_{\text{min}}^2} \right) \| x - y \|_D^2. \]

Hence, under the given relation for the eigenvalues of D, the mapping $x \mapsto \Pi_{K,D} [x - D^{-1}F(x)]$ is contraction in $\| \cdot \|_D$ and the results follow.

- When $D = \frac{1}{\alpha} I$, the eigenvalue condition reduces to $L^2 < \frac{2\mu}{\alpha}$.
 Thus, if we let $\alpha < \frac{2\mu}{L^2}$, the condition is satisfied.

- The corresponding algorithm becomes
 \[x_{k+1} = \Pi_K [x_k - \alpha F(x_k)]. \]

- Problem is: we do not always have access to L and μ.
 Hence, we do not know how small α should be to ensure convergence
Co-coercive Mapping

The projection method can be used to solve $VI(K, F')$ with co-coercive mapping. The reason why this work is that the (Euclidean) projection is co-coercive, and when F is co-coercive, then the τ-natural mapping $x \mapsto \Pi_K[x - \tau F(x)]$ is also co-coercive for some range of values of τ. In particular, we have the following results

Lemma 1 Let $F : K \rightarrow \mathbb{R}^n$ be co-coercive with constant c. If $0 < \tau < 4c$, then $F_{K,\tau}^{\text{nat}}(x) = \Pi_K[x - \tau F(x)]$ is co-coercive with constant $1 - \frac{\tau}{4c}$.

Proof: See Lemma 12.1.7 of FP-II.
Convergence for Co-coercive Mapping

Theorem 2 Assume that $VI(K, F)$ has a solution. Let $F : K \rightarrow \mathbb{R}^n$ be co-coercive with constant c. Consider the projection method

$$x_{k+1} = \Pi[x_k - \tau F(x_k)],$$

where $\tau < 2c$. Then, the sequence $\{x_k\}$ converges to a solution of $VI(K, F)$.

Proof We have for a fixed point x^* of F_{nat}^n (also a fixed point of $F_{K,\tau}^n$ for any $\tau > 0$),

$$\|x_{k+1} - x^*\|^2 \leq \|\Pi[x_k - \tau F(x_k)] - \Pi[x^* - \tau F(x^*)]\|^2$$

$$\leq \|x_k - x^* - \tau (F(x_k) - F(x^*))\|^2$$

$$= \|x_k - x^*\|^2 - 2\tau (F(x_k) - F(x^*))^T (x - x^*)$$

$$+ \tau^2 \|F(x_k) - F(x^*)\|^2.$$
Since F is co-coercive, we obtain

\[\|x_{k+1} - x^*\|^2 \leq \|x_k - x^*\|^2 - \tau(2c - \tau) \|F(x_k) - F(x^*)\|^2 \] (3)

Since $2c - \tau > 0$, it follows that

\[\text{dist}(x_{k+1}, SOL(K, F)) \leq \text{dist}(x_k, SOL(K, F)) \text{ for all } K. \]

(Recall, that $SOL(K, F)$ is convex and closed here - why?)

Furthermore, by summing the relations in (3) over $k = 0, \ldots, N$ for arbitrary N, and letting $N \to \infty$, we obtain

\[\sum_k \|F(x_k) - F(x^*)\|^2 < \infty, \]
implying $F(x_k) \to F(x^*)$.

(This also implies that $\{F(x^*) \mid x^* \in SOL(K, F)\}$ is a singleton - why would this be expected). In view of the preceding two relations, it follows that

$$\text{dist}(x_k, SOL(K, F)) \to 0.$$

Note, also that (3) implies that the scalar sequence $\{\|x_k - x^*\|\}$ is non-increasing for any fixed point x^*. Therefore, the scalar sequence $\{\|x_k - x^*\|\}$ is convergent for any fixed point x^*. This, and $\text{dist}(x_k, SOL(K, F)) \to 0$ imply that $\{x_k\}$ is convergent and its limit point is in $SOL(K, F)$.

The proof in the FP-II is given in Lemma 12.1.15 for the case when

- τ is varying and $\tau_k F(x_k)$ is replaced with $F^k(x_k)$, where all $VI(K, F_k)$ have the same solution set.
- $K = \mathbb{R}^n$
- Assuming that each mapping $F^k : \mathbb{R}^n \to \mathbb{R}^n$ is co-coercive with c_k, and the following condition is satisfied: $\inf_k c_k > 1/2$.
Extra-Gradient Method

The name of method comes from its equivalent version in optimization ($F = \nabla f(x)$).

It has two projection steps

$$z_{k+1} = \Pi_K [x - \tau F(x_k)], \quad x_{k+1} = \Pi_K [x_k - \tau F(z_{k+1})]$$

The main iterate is x_{k+1}. The extra-iterate z_{k+1} is used to construct the direction for moving away from x_k.

- The advantage of taking an extra step is that the algorithm performs better than the projection method
- The convergence analysis still requires F to be Lipschitz
- It can be used to solve $VI(K, F)$ with a pseudo-monotone map F
- We will study it as applied to a monotone $VI(K, F)$
Basic Iterate Relation

Theorem 3 Let F be monotone and Lipschitz continuous on K with constant L. Let x^* be a solution of $VI(K,F)$. Then, for all k we have

$$
\|x_{k+1} - x^*\|^2 \leq \|x_k - x^*\|^2 - (1 - \tau^2 L^2) \|z_{k+1} - x_{k+1}\|^2.
$$

Proof For a projection on convex closed set K, we have for any $x \in \mathbb{R}^n$,

$$
\|\Pi_K[x] - z\|^2 \leq \|x - z\|^2 - \|\Pi_K[x] - x\|^2 \quad \text{for all } z \in K.
$$
(can be seen by a more careful analysis in Projection Theorem).

Using this relation with $x = x_{k+1}$ and $z = x^*$, we obtain

$$
\|x_{k+1} - x^*\|^2 \leq \|x_k - \tau F(z_{k+1}) - x^*\|^2 - \|x_{k+1} - (x_k - \tau F(z_{k+1}))\|^2.
$$

By expanding the terms on the right hand side, we have

$$
\|x_{k+1} - x^*\|^2 \leq \|x_k - x^*\|^2 - \|x_{k+1} - x_k\|^2 + 2\tau F(z_{k+1})^T(x^* - x_{k+1}). \quad (4)
$$
By the monotonicity of F and $x^* \in SOL(K, F)$, it follows

$$(F(z_{k+1}) - F(x^*))^T(z_{k+1} - x^*) \geq 0 \quad \implies \quad F(z_{k+1})^T(z_{k+1} - x^*) \geq 0.$$

Hence, $F(z_{k+1})^T(z_{k+1} - x_{k+1}) + F(z_{k+1})^T(x_{k+1} - x^*) \geq 0$ implying that

$$F(z_{k+1})^T(z_{k+1} - x_{k+1}) \geq F(z_{k+1})^T(x^* - x_{k+1})$$

Using this relation in (4), we see

$$\|x_{k+1} - x^*\|^2 \leq \|x_k - x^*\|^2 - \|x_{k+1} - x_k\|^2 + 2\tau F(z_{k+1})^T(z_{k+1} - x_{k+1}).$$

By writing $x_{k+1} - x_k = (x_{k+1} - z_{k+1}) + (z_{k+1} - x_k)$ and expanding the squared-norm of this term, and then combining the terms that are in the
inner product with $z_{k+1} - x_{k+1}$, we obtain
\[
\|x_{k+1} - x^*\|^2 \leq \|x_k - x^*\|^2 - \|x_{k+1} - z_{k+1}\|^2 - \|z_{k+1} - x_k\|^2 \\
+ 2(x_{k+1} - z_{k+1})^T(x_k - \tau F(z_{k+1}) - z_{k+1}).
\]

We can further write [by adding and subtracting $\tau F(x_k)$]
\[
(x_{k+1} - z_{k+1})^T (x_k - \tau F(z_{k+1}) - z_{k+1}) = (x_{k+1} - z_{k+1})^T(x_k - \tau F(z_k) - z_{k+1}) \\
+ \tau(x_{k+1} - z_{k+1})^T(F(x_k) - F(z_{k+1}))
\]

Since $x_{k+1} \in K$ and $z_{k+1} = \Pi_K[x_k - \tau F(x_k)]$, the first term on the right hand side is nonnegative (by projection property). Thus, by using this and Lipschitz continuity of F, we have
\[
(x_{k+1} - z_{k+1})^T (x_k - \tau F(z_{k+1}) - z_{k+1}) \\
\leq \tau(x_{k+1} - z_{k+1})^T(F(x_k) - F(z_{k+1})) \\
\leq \tau L \|x_{k+1} - z_{k+1}\| \cdot \|x_k - z_{k+1}\| \\
\leq \frac{1}{2} \left(\|x_{k+1} - z_{k+1}\|^2 + \tau^2 L^2 \|x_k - z_{k+1}\|^2\right)
\]
By substituting the preceding estimate in (5), we obtain

\[
\begin{align*}
\|x_{k+1} - x^*\|^2 & \leq \|x_k - x^*\|^2 - \|x_{k+1} - z_{k+1}\|^2 - \|z_{k+1} - x_k\|^2 \\
& \quad + \|x_{k+1} - z_{k+1}\|^2 + \tau^2 L^2 \|x_k - z_{k+1}\| \\
& = \|x_k - x^*\|^2 - (1 - \tau^2 L^2) \|z_{k+1} - x_k\|^2.
\end{align*}
\]
Convergence of Extra-Gradient Method

Theorem 4 Let F be monotone and Lipschitz continuous over K with constant L. Let $SOL(K, F)$ be nonempty. Then, with $\tau < \frac{1}{L}$, the sequence $\{x_k\}$ generated by the extra-gradient method converges to a solution of $VI(K, F)$.

Proof The line of proof relies on the basic iterate relation, and follows a line of analysis similar to that of Theorem for co-coercive map and projection method. See FP-II Theorem 12.1.11.

For the estimate in basic relation to result in convergence, we need $\tau < \frac{1}{L}$.

- In practice, often L is not available
- We can use diminishing step τ_k at iteration k, with $\sum_k \tau_k = +\infty$
- But the convergence will slow down
- We next consider a modification of the method not relying on the Lipschitz continuity
Hyperplane Projection Method

Like the extra-gradient method, this method generates an extra-iterate
\[y_k = \Pi_K [x_k - \tau F(x_k)] \]. However, the use of this point in constructing the
new iterate is different.
In particular, Armijo search rule is used to determine a point \(z_k \) defining a
hyperplane
\[H_k = \{ x \in \mathbb{R}^n \mid F(z_k)^T(x - z) = 0 \} \],
which separates \(x^k \) strongly from the solution set \(SOL(K, F) \) [for contin-
uous monotone map, this set is closed and convex - possibly empty].
In particular, \(z_k \) is such that, for some positive scalars \(t, \sigma, \tau \),
\[F(z_k)^T(x_k - z_k) \geq \frac{t_k \sigma}{\tau} \|y_k - x_k\|^2 \],
which strongly separates \(x_k \) from \(SOL(K, F) \) whenever \(y_k \neq x_k \) in view of
\[0 \geq F(x^*)^T(x^* - z_k) \geq F(z_k)^T(x^* - z_k) \quad \text{ for all } x^* \in SOL(K, F). \]
The algorithm is initialized with the following parameters:

\(k = 0, \ x_0 \in K, \ \tau > 0, \ \text{and} \ \sigma \in (0, 1) \). The algorithm proceeds as follows.

Step 1: Compute

\[y_k = \Pi_{K,D}[x_k - D^{-1}F(x_k)] \]

If \(y_k = x_k \), stop; we have a solution. Else, set \(t = 1 \) and go to Step 2.

Step 2: (Separation Test) If

\[F(ty_k + (1 - t)x_k)^T(x_k - y_k) \geq \sigma \tau \|x_k - y_k\|^2, \]

set \(t_k = t \) and go to Step 3; otherwise set \(t = \frac{t}{2} \) and repeat the test.

Step 3: Set

\[z_k = t_ky_k + (1 - t_k)x_k, \]

and compute

\[w_k = \Pi_{H_k}[x_k] = x_k - \frac{F(z_k)^T(x_k - z_k)}{\|F(z_k)\|^2} F(z_k). \]

Step 4: Set \(x_{k+1} = \Pi_K[w_k] \) and set \(k := k + 1 \), and go to Step 1.
Preliminary Results

Convergence proof uses three preliminary results.

Projection properties (Lemma 12.1.13)

(a) For any \(x, y \in \mathbb{R}^n \), we have

\[
\|\Pi_K [x] - \Pi_K [y]\|^2 \leq \|x - y\|^2 - \|\Pi_K [x] - x + y - \Pi_K [y]\|^2.
\]

(b) For any \(x \in K \) and \(y \in \mathbb{R}^n \), we have

\[
(x - y)^T (x - \Pi_K [y]) \geq \|x - \Pi_K [y]\|^2.
\]
Finite Termination of Loop in Step 2
To have the algorithm well defined, we need to verify that the Step 2 is exited after finitely many trials (test evaluations). The following lemma provides the guarantee.

Lemma 2 (Based on Lemma 12.1.14) Let F be continuous over K, and let x_k be such that $x_k \notin SOL(K, F)$. We then have

1. Step 2 is exited after finitely many trials.
2. For z_k defined at Step 3, we have

$$F(z_k)^T(x_k - z_k) > \frac{t_k \sigma}{\tau} \|x_k - y_k\|^2 > 0,$$

Proof Suppose that Step 2 is never exited. Then, it follows that for all i,

$$F(2^{-i}y_k + (1 - 2^{-i})x_k)^T(x_k - y_k) < \frac{\sigma}{\tau} \|x_k - y_k\|^2.$$

Letting $i \to \infty$, by continuity of F we obtain

$$F(x_k)^T(x_k - y_k) < \frac{\sigma}{\tau} \|x_k - y_k\|^2.$$
Therefore, since $\tau > 0$,

$$\sigma \|x_k - y_k\|^2 \geq \tau F(x_k)^T(x_k - y_k) = (x_k - (x_k - \tau F(x_k)))^T(x_k - y_k) \geq \|x_k - y_k\|^2,$$

where the last inequality follows from $y_k = \prod_K [x_k - \tau F(x_k)]$, $x_k \in K$, and the projection property (second bullet).

Since $z_k = t_k y_k + (1 - t_k) x_k$, we have $x_k - z_k = t_k (x_k - y_k)$. Hence,

$$F(z_k)^T(x_k - z_k) = t_k F(z_k)^T(x_k - y_k).$$

By the construction of z_k at Step 3 and from Step 2, we have

$$F(z_k)^T(x_k - y_k) > \sigma \tau \|x_k - y_k\|^2.$$

Combining the preceding two relations, we obtain

$$F(z_k)^T(x_k - z_k) > \frac{t_k \sigma}{\tau} \|x_k - y_k\|^2 > 0,$$
Auxiliary Lemma

Lemma 3 Let F be continuous and monotone on K. Let $\{x_k\}$ be generated by the Hyperplane Projection Method. We then have

(a) The sequence $\{|x_k - x^*|\}$ is nonincreasing (hence, convergent) for every $x^* \in \text{SOL}(K, F)$.
(b) The sequence $\{x_k\}$ is bounded.
(c) If $\{x_k\}$ has an accumulation point in $\text{SOL}(K, F)$, then the whole sequence converges to this solution.
(d) $\lim_{k \to \infty} F(z_k)^T(x_k - z_k) = 0$.

Proof Note that (a) implies (b). Also, note that (a) and (b) together imply (c). Thus, only (a) and (d) need a proof.

Define the half-space

$$H_k^- = \{x \in \mathbb{R}^n \mid F(z_k)^T(x - z_k) \leq 0\}. $$
As noted earlier, by monotonicity of F, it can be seen that

$$\text{SOL}(K, F) \subseteq H_k^-.$$

Note that $x_k \notin H_k^-$ in view of preceding lemma [part (b)]. Therefore,

$$x^* = \Pi_K[x^*], \quad x^* = \Pi_{H_k^-}[x^*] \quad \text{for all } x^* \in \text{SOL}(K, F).$$

Furthermore, note that by definition of w_k, we have $w_k = \Pi_{H_k^-}[x_k]$.

We now consider $x_{k+1} - x^*$ for arbitrary $x^* \in \text{SOL}(K, F)$. By projection property (first bullet), and the preceding relations, we have

$$\|x_{k+1} - x^*\|^2 = \|\Pi_K[w_k] - \Pi_K[x^*]\|^2$$

$$\leq \|w_k - x^*\|^2 - \|\Pi_K[w_k] - w_k\|^2$$

$$= \|\Pi_{H_k^-}[x_k] - \Pi_{H_k^-}[x^*]\|^2 - \|\Pi_K[w_k] - w_k\|^2$$

$$\leq \|x_k - x^*\|^2 - \|w_k - x^*\|^2 - \|\Pi_K[w_k] - w_k\|^2 \tag{7}$$
Thus, we have \(\|x_{k+1} - x^*\| \leq \|x_k - x^*\| \), showing that the scalar sequence \(\{\|x_k - x^*\|\} \) is nonincreasing, and hence convergent. This proves part (a). From (7), it also follows
\[
\|w_k - x_k\|^2 \leq \|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2.
\]
Since the scalar sequence \(\{\|x_k - x^*\|\} \) is convergent, we have
\[
\lim_{k \to \infty} \|w_k - x_k\| = 0.
\]
By the definition of \(w_k \), from the preceding relation we see that
\[
\lim_{k \to \infty} \frac{F(z_k)^T(x_k - z_k)}{\|F(z_k)\|} = 0.
\] (8)
Since \(\{x_k\} \) is bounded, \(\{F(x_k)\} \) is also bounded by continuity of \(F \). By \(y_k = \Pi_K [x_k - \tau F(x_k)] \), we obtain that \(\{y_k\} \) is also bounded. Since \(z_k \) is a convex combination of \(y_k \) and \(x_k \), we see that \(\{z_k\} \) is bounded, which by continuity of \(F \) implies that \(\{F(z_k)\} \) is bounded. Therefore, in view of (8),
\[
\lim_{k \to \infty} F(z_k)^T(x_k - z_k) = 0,
\]
showing part (d).
Theorem 5 Let F be a continuous monotone mapping on K, and assume that $SOL(K, F)$ is nonempty. Then, the sequence $\{x_k\}$ generated by Hyperplane Projection Method converges to a solution $x^* \in SOL(K, F)$.

Proof Idea
The key is to show that a subsequence of $\{x_k\}$ converges to some point in $SOL(K, F)$, and then use the preceding lemma to conclude that the entire sequence converges to that point.

Showing that a subsequence of $\{x_k\}$ converges to a point in $SOL(K, F)$ is done by examining the following two possibilities for the stepsize sequence:

1. $\limsup_{k \to \infty} t_k > 0$

2. $\limsup_{k \to \infty} t_k = 0$, which implies $\lim_{k \to \infty} t_k = 0$.