Lecture 12
Newton-type Methods

October 15, 2008
Outline

• Inexact nonsmooth Newton methods

• Piecewise-smooth Newton methods

• Josephy-Newton methods for VIs
Inexact Newton’s Method

Step 0
Select vector x^0, $\epsilon > 0$, and a sequence $\{\eta^k\}$ of nonnegative scalars.
Set $k = 0$.

Step 1
If $G(x^k) = 0$, then stop.

Step 2
Select an approximation $A(x^k, \cdot)$ in $A(x^k)$ and
find a vector $d^k \in B(0, \epsilon)$ such that

$$G(x^k) + A(x^k, d^k) = r^k$$

inexact Newton equation

where r^k is such that

$$\|r^k\| \leq \eta^k \|G(x^k)\|$$

Step 3
Set $x^{k+1} = x^k + d^k$ and $k := k + 1$, and go to Step 2.
• The inexactness of computing d^k is proportional to the residual $\|G(x^k)\|$

• Such a direction exists when G has a nonsingular Newton approximation at x^* (see Lemma 7.2.7 FP II)

Lemma 1 Let $G : \Omega \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^n$ with Ω open, be a locally Lipschitz function in a nbhd of $x^* \in \Omega$, satisfying $G(x^*) = 0$. Assume that G admits a nonsingular Newton approximation A at x^*. Then:

For every $\epsilon \in (0, \epsilon_A]$ and for every $\bar{\eta} > 0$, a neighborhood $B(x^*, \delta)$ of x^* exists such that for every $x^k \in B(x^*, \delta)$, every scalar $\eta_k \in (0, \bar{\eta}]$ and for every vector r^k satisfying $\|r^k\| \leq \eta_k \|G(x^k)\|$, the equation

$$G(x^k) + A(x^k, d^k) = r^k$$

has a unique solution d^k.

Proof: omitted

• Lemma guarantees existence of direction d^k at each iteration k
Inexact Method Convergence

Theorem 7.2.5. Let Ω be an open set containing x^*. Let $G : \Omega \to \mathbb{R}^n$ be locally Lipschitz on a neighborhood U of x^* satisfying $G(x^*) = 0$. Assume that G has a nonsingular Newton approximation A at x^*. Then, there exists η such that when $\eta^k \leq \eta$ for all k, we have

- For every ϵ with $0 < \epsilon \leq \epsilon_A$, there exists $\delta > 0$ such that
 - When $x^0 \in B(0, \delta)$, the method generates a sequence $\{x^k\}$ converging Q-linearly to x^*
 - If $\eta^k \to 0$, then the sequence $\{x^k\}$ converges Q-superlinearly
 - If the Newton approximation A is strong and

$$
\eta^k \leq \bar{\eta} \|G(x^k)\| \quad \text{for some } \bar{\eta} \text{ and all } k
$$

then the sequence $\{x^k\}$ converges Q-quadratically
Proof:

- Since $A(x, .) \in A(x)$, there exists a function Δ with $\lim_{t \to 0} \Delta(t) = 0$ such that for x sufficiently near x^* and $A(x, .) \in A(x)$, we have

$$\frac{\|G(x) + A(x, x^* - x) - G(x^*)\|}{\|x - x^*\|} \leq \Delta(\|x - x^*\|).$$

$$\|G(x) + A(x, x^* - x) - G(x^*)\| = \|G(x) + A(x, x^* - x)\|$$

$$\leq \Delta(\|x - x^*\|)\|(x - x^*)\|$$

Let $\epsilon \in (0, \epsilon_A]$ be given and suppose that $\eta_k \leq \tilde{\eta}$ for every k. We can
pick a $\delta > 0$ such that for every $x^k \in B(x^*, \delta)$, the following holds:

$$\| - G(x^k) + r_k \| \leq \| G(x_k) \| + \| r_k \| \leq \| G(x_k) \| + \eta_k \| G(x^k) \| \leq (1 + \overline{\eta}) \| G(x^k) \| \leq (1 + \overline{\eta}) \| x^k - x^* \| \leq (1 + \overline{\eta}) \delta \leq \epsilon,$$

where L is the Lipschitz constant and the final result follows by choice of δ.

- By the uniform Lipschitz homeomorphism property of $A^{-1}(x^k)$ with
constant L_A, we have

$$
\|x^{k+1} - x^*\| = \|x^k - x^* + A^{-1}(x^k, -G(x^k) + r^k)\| \\
= \|A^{-1}(x^k, -G(x^k) + r^k) - A^{-1}(x^k, A(x^k, x^* - x^k))\| \\
\leq L_A\| - G(x^k) + r^k + A(x^k, x^* - x^k) \\
\leq L_A\| - G(x^k) + A(x^k, x^* - x^k)\| + L_A\|r^k\| \\
\leq L_A\|x^k - x^*\| \Delta(\|x^k - x^*\|) + L_A\|r^k\| \\
\leq L_A\|x^k - x^*\| \Delta(\|x^k - x^*\|) + L_A\eta_k\|G(x^k)\| \\
\leq L_A\|x^k - x^*\| \Delta(\|x^k - x^*\|) + L_A\eta_k L\|x^k - x^*\| \\
\leq L_A\|x^k - x^*\| \Delta(\|x^k - x^*\|) + L_A\bar{\eta} L\|x^k - x^*\|
$$

- If $\bar{\eta}$ and δ are chosen to be sufficiently small, we have $\|x^{k+1} - x^*\| \leq \frac{1}{2}\|x^k - x^*\|$, implying that $\{x^k\}$ converges at least Q-linearly to x^*.
• If \(\{\eta_k\} \to 0 \), superlinear convergence is implied by

\[
\| x^{k+1} - x^* \| \leq L_A \| x^k - x^* \| \Delta (\| x^k - x^* \|) + L_A L \eta_k \| x^k - x^* \| \\
\lim_{k \to \infty} \frac{\| x^{k+1} - x^* \|}{\| x^k - x^* \|} = \lim_{k \to \infty} \left(L_A \Delta (\| x^k - x^* \|) + L_A L \eta_k \right) = 0.
\]
Finally suppose that the approximation A is strong and η_k satisfies the condition $\eta_k \leq \tilde{\eta} \|G(x^k)\|$ for some positive $\tilde{\eta}$. Then as above we have

$$
\|x^{k+1} - x^*\| = \|x^k - x^* + A^{-1}(x^k, -G(x^k) + r^k)\|
$$

$$
= \|A^{-1}(x^k, -G(x^k) + r^k) - A^{-1}(x^k, A(x^k, x^* - x^k))\|
$$

$$
\leq L_A \| - G(x^k) + r^k + A(x^k, x^* - x^k)\|
$$

$$
\leq L_A \| - G(x^k) + A(x^k, x^* - x^k)\| + L_A \|r^k\|
$$

$$
\leq L_A L' \|x^k - x^*\|^2 + L_A \|r^k\|
$$

$$
\leq L_A L' \|x^k - x^*\|^2 + L_A \eta_k \|G(x^k)\|
$$

$$
\leq L_A L' \|x^k - x^*\|^2 + L_A \eta_k L \|x^k - x^*\|
$$

$$
\leq L_A L' \|x^k - x^*\|^2 + L_A \tilde{\eta} L^2 \|x^k - x^*\|^2
$$
Therefore, we have that

$$\lim_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|^2} \leq (L_A L' + L_A L^2 \tilde{\eta}) < \infty,$$

implying quadratic convergence.
Newton methods for piecewise smooth functions

Definition 1 A continuous mapping $G : \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is said to be PC^1 near the vector $x \in \mathcal{D}$ if there exists an open neighborhood $\mathcal{N} \subseteq \mathcal{D}$ of x and a finite family $\{G^1, \ldots, G^p\}$ of C^1 functions defined on \mathcal{N} such that $G(y)$ is an element of $\{G^1(y), \ldots, G^p(y)\}$ for all $y \in \mathcal{N}$. Each function G^i is called a C^1 piece of G at x.

Let $P(y)$ denote the set of indices $i \in \{1, \ldots, p\}$ such that $G(y) = G^i(y)$.

- Let $G : \mathbb{R}^n \to \mathbb{R}^n$ be a PC^1 mapping with x^* being a zero of the map. Moreover let $\{G^1, \ldots, G^p\}$ be the set of C^1 pieces of G at x^*

- The set $\mathcal{P}(x)$ of active “pieces” at x is given by

$$\mathcal{P}(x) = \{i : G(x) = G^i(x)\}.$$
A Newton approximation scheme \mathcal{A} at x^* consists of family $\mathcal{A}(x)$ (with x in some neighborhood of x^*) and $\mathcal{A}(x)$ given by

$$\mathcal{A}(x) = \{\nabla G^i(x) : i \in \mathcal{P}(x)\}.$$

Thus:

- The family $\mathcal{A}(x)$ is finite and each $A(x, \cdot) \in \mathcal{A}(x)$ is linear.
- The Newton system of equations reduces to finding a vector $d^k \in B(0, \epsilon)$ such that

$$G(x^k) + \nabla G^j(x^k) d^k = 0 \quad \text{where } j \in \mathcal{P}(x^k).$$

- Note that the equations are linear so that the Newton systems are easy to solve.
Piecewise smooth Newton method (PCNM)

1. Given x^0, tol, and $\epsilon > 0$

2. Set $k = 0$

3. If $\|G(x^k)\| \leq \text{tol}$, stop.

4. Select an i_k in $\mathcal{P}(x^k)$ and find a direction d^k such that

 $G(x^k) + \nabla G^{i_k}(x^k)d^k = 0.$

5. Set $x^{k+1} = x^k + d^k$ and $k := k + 1$; go to step 2.
Convergence result

Theorem 1 *(Th. 7.2.15 in FP II)*

Let $G : \Omega \rightarrow \mathbb{R}^n$ with be a PC^1 mapping with C^1 pieces given by $\{G^i, i = 1, \ldots, p\}$ over an open set $\Omega \subseteq \mathbb{R}^n$. Let $x^* \in \Omega$ be a zero of G. Suppose that $\nabla G^i(x^*)$ are nonsingular for all $i \in \mathcal{P}(x^*)$. Then:

- There exists a neighborhood $B(x^*, \delta)$ of x^* such that if x^0 belongs to this neighborhood, the PCNM method produces a sequence $\{x^k\}$ that converges Q-superlinearly to x^*.

- If the Jacobians $\nabla G^i(x)$ of the active pieces near x^* are locally Lipschitz, then the convergence rate is Q-quadratic.
Proof:

- For x sufficiently close to x^*, we have $\mathcal{P}(x) \subseteq \mathcal{P}(x^*)$.
- We now show that the family $\{\nabla G^i(x) : i \in \mathcal{P}(x)\}$ is a Newton approximation family, i.e.,
 - $A(x, 0) = 0$ for every $A(x, .) \in A(x)$: This follows from linearity of approximation.
 - For any $x' \in \Omega$, $x \neq x'$ and for any $A(x, .) \in A(x)$,
 \[\frac{\|G(x) + A(x, x' - x) - G(x')\|}{\|x - x'\|} \leq \Delta(\|x - x'\|). \]

We show that for every sequence $\{y^k\}$ converging to x^* (with $y^k \neq x^*$ for all k) and for every $i_k \in \mathcal{P}(y^k)$,
\[\lim_{k \to \infty} \frac{\|G(y^k) + \nabla G^{i_k}(y^k)(x^* - y^k) - G(x^*)\|}{\|y^k - x^*\|} = 0. \]
Since $\mathcal{P}(y_k) \subseteq \mathcal{P}(x^*)$, we have $G(x^*) = G_{ik}^i(x^*)$ for all k sufficiently large. Moreover, $G(y_k) = G_{ik}^i(y_k)$. Therefore,

$$\lim_{k \to \infty} \frac{\|G(y_k) + \nabla G_{ik}^i(y_k)(x^* - y_k) - G(x^*)\|}{\|y_k - x^*\|} = \lim_{k \to \infty} \frac{\|G_{ik}^i(y_k) + \nabla G_{ik}^i(y_k)(x^* - y_k) - G_{ik}^i(x^*)\|}{\|y_k - x^*\|}.$$

But there are finitely many pieces and each G_{ik}^i is a C^1 function, implying that the above limit is zero.

- We next show that \mathcal{A} is a family of uniformly Lipschitz homeomorphisms
 - Each $\nabla G^i(x^*)$ for $i \in \mathcal{P}(x^*)$ is nonsingular
 - Every $\nabla G^i(x^*)$ is a Lipschitz homomorphism with some constants L_i, L'_i (on a neighborhood V_x of x^*).
• For x near x^*, we have $\mathcal{P}(x) \subset \mathcal{P}(x^*)$, implying that every $A(x, \cdot) = \nabla G^i(x)$ for some $i \in \mathcal{P}(x^*)$.

• Hence, every $A(x, \cdot)$ is nonsingular, and it is a Lipschitz homeomorphism with constants L_i and L'_i when $A(x, \cdot) = \nabla G^i(x)$.

• Therefore, $A(x)$ is a family of uniformly Lipschitz homeomorphisms (with constants $\max_{L_i, i \in \mathcal{P}(x^*)} L'_i = \max_{L'_i, i \in \mathcal{P}(x^*)}$ on a neighborhood V_X of x^*).

Therefore we may employ Theorem 7.2.5 which provides a convergence result for locally Lipschitz mappings which admit nonsingular Newton approximations – we have just shown that our mapping does indeed admit one.
• If the Jacobians $\nabla G(x)$ of the active pieces for x near x^* are locally Lipschitz, then similar to the preceding we can show that there is a scalar \bar{L} such that

$$\lim_{k \to \infty} \frac{\|G(y_k) + \nabla A(y_k, x^* - y_k) - G(x^*)\|}{\|y_k - x^*\|^2} = 0$$

for any $\{y_k\}$ of points distinct from x^* and converging to x^*.

• Hence the approximation $A(x)$ is strong, and by Theorem 7.2.5 the quadratic convergence follows.
Example

- Consider the nonsmooth equation \(H(x) = 0 \), where

\[
H(x) = \min(F(x), G(x)) \quad \forall x \in \mathbb{R}^n,
\]

with \(F \) and \(G \) being continuously differentiable maps from \(\mathbb{R}^n \) to \(\mathbb{R}^n \).

- For an arbitrary vector \(x \), the matrix \(A(x) \) is defined row-wise as

\[
A_i,(x) = \begin{cases}
\nabla F_i(x)^T & F_i(x) < G_i(x) \\
\text{either } \nabla F_i(x)^T \text{ or } \nabla G_i(x)^T & F_i(x) = G_i(x) \\
\nabla G_i(x)^T & G_i(x) < F_i(x).
\end{cases}
\]

- If \(\beta(x) = \{i : F_i(x) = G_i(x)\} \), then there are \(2^{|eta(x)|} \) matrices of this form for every \(x \).
• Note that if $\beta_x = \emptyset$, then $A(x)$ is a singleton (why???).

• These matrices are the Jacobian matrices of the C^1 parts of the mapping H at x

• The PCNM algorithm generates a sequence $\{x^k\}$ in the following fashion:

$$H(x^k) + \hat{A}(x^k)d^k = 0$$

where $\hat{A}(x^k)$ is one of the $2^{\lvert \beta(x^k) \rvert}$ matrices defined above.

• Convergence of such a sequence is guaranteed based on earlier result.
Finite termination

Theorem 2 Let $F, G : \Omega \rightarrow \mathbb{R}^n$ be continuously differentiable mappings defined on an open set $\Omega \subseteq \mathbb{R}^n$. Let x^* be a solution of the $CP(F, G)$ such that every row-representative matrix M of the pair $(\nabla F(x^*), \nabla G(x^*))$ satisfying

$$M_i = \begin{cases}
\nabla F_i(x^*) & \forall i, F_i(x^*) = 0, G_i(x^*) > 0 \\
\nabla G_i(x^*) & \forall i, F_i(x^*) > 0, G_i(x^*) = 0,
\end{cases}$$

is nonsingular. Then, if F and G are affine functions, the PC Newton method terminates in a finite number of iterations, i.e., there exists a \bar{k} such that $x^{\bar{k}} = x^*$.

Proof:
• Let \bar{k} be such that for all $k \geq \bar{k},$

\[
0 = F_i(x^*) < G_i(x^*) \implies F_i(x^k) < G_i(x^k)
\]

\[
0 = G_i(x^*) < F_i(x^*) \implies G_i(x^k) < F_i(x^k).
\]

• For such an index k, and for all i such that $0 = F_i(x^*) < G_i(x^*)$, we have

\[
0 = F_i(x^k) + \nabla F_i(x^k)^T d^k = F_i(x^k + d^k) = F_i(x^{k+1})
\]

• For such an index k, and for all i such that $0 = G_i(x^*) < F_i(x^*)$, we similarly have

\[
0 = G_i(x^k) + \nabla G_i(x^k)^T d^k = G_i(x^k + d^k) = G_i(x^{k+1}).
\]
Moreover for an index i such that $F_i(x^*) = G_i(x^*) = 0$, we have either $F_i(x^{k+1}) = 0$ or $G_i(x^{k+1}) = 0$. Thus $H(x^{k+1}) = 0$.

- By the nonsingularity of the row-representative matrix, it follows that x^{k+1} is unique.

- Furthermore, by the fact that x^* satisfies all these equations, it follows that $x^{k+1} = x^*$.

- Therefore, in a finite number of iterations, one achieves convergence.
Composite maps

• Consider a mapping G that is a composition of a smooth and Lipschitz continuous map

• Specifically $G(x) \equiv S \circ N(x)$ where $N : \mathbb{R}^n \to \Omega$ and $S : \Omega \to \mathbb{R}^n$, with $\Omega \subseteq \mathbb{R}^m$.

• Example: The normal map F_K^{nor} of the $VI(K, F)$, given by

$$F_K^{\text{nor}}(x) = F(\Pi_K(x)) + v - \Pi_K(x)$$

• A single-valued approximation for G:

$$A(x, d) = JS(N(x))[N(x + d) - N(x)] \quad \forall d \in \mathbb{R}^n.$$

• Property (a): $A(x, 0) = 0$
Property (b):

\[
\limsup_{x \to \bar{x}} \frac{\|G(x) + A(x, \bar{x} - x) - G(\bar{x})\|}{\|x - \bar{x}\|} = \limsup_{x \to \bar{x}} \frac{\|S(N(x)) + JS(N(x))[N(\bar{x}) - N(x)] - S(N(\bar{x}))\|}{\|x - \bar{x}\|} \leq \limsup_{x \to \bar{x}} \frac{\|S(N(\bar{x})) + o(\|N(x) - N(\bar{x})\|) - S(N(\bar{x}))\|}{\|x - \bar{x}\|} \leq \limsup_{x \to \bar{x}} L \frac{\|o(\|x - \bar{x}\|)\|}{\|x - \bar{x}\|} = 0.
\]

Finally, when \(JS(N(\bar{x}))[N(\bar{x} + d) - N(\bar{x})] \) is a locally Lipschitz homeomorphism near \(d = 0 \), nonsingularity of the approximation \(A(x, \cdot) \) may be established (see Ch. 7.2.2 of FP II).