Homework 8: Cone Properties and Conical Problems

Exercise 1 This exercise establishes linear convergence rate for subgradient method. Consider the projected subgradient method with Polyak stepsize:

$$x_{k+1} = P_X[x_k - \alpha_k s_k] \qquad k = 0, 1, \dots,$$

where X is a closed convex set, $x_0 \in X$ is an initial iterate, $s_k \in \partial f(x_k)$, and $\alpha_k = \frac{f(x_k) - f^*}{\|s_k\|^2}$.

Assume that f has a sharp set of minima, i.e., the optimal set X^* is nonempty and there exists $\eta > 0$ such that

$$f(x) - f^* \ge \eta \operatorname{dist}(x, X^*)$$
 for all $x \in X$,

where dist(y, Y) denotes the distance from the vector y to the set Y, i.e., $dist(y, Y) = \inf_{z \in Y} ||y - z||$.

(a) Show that the iterates $\{x_k\}$ generated by the method satisfy for any $x^* \in X^*$ and any $k \ge 0$,

$$||x_{k+1} - x^*||^2 \le ||x_k - x^*||^2 - \frac{(f(x_k) - f^*)^2}{||s_k||^2}.$$

- (b) Show that the subgradients $\{s_k\}$ of the iterates are bounded by some scalar C, i.e., for some C > 0 we have $||s_k|| \leq C$ for all k.
- (c) Using (a) and (b), and the sharp minima property of f, show that

$$dist(x_k, X^*) \le q^k dist(x_0, X^*)$$
 for all k,

where $q = \sqrt{1 - \frac{\eta^2}{C^2}}$.

Exercise 2 Let $C \subseteq \mathbb{R}^n$ be a set with nonempty interior. Consider its dual cone C^* .

(a) Show that for any $\hat{x} \in \text{int}C$ and any $\lambda \in C^*$, we have

$$\lambda^T \hat{x} > 0.$$

- (b) Show that the cone C^* is pointed.
- (c) If C is a cone, and if for some nonzero $\lambda \in \mathbb{R}^n$, we have

$$\inf_{x \in \text{int}C} \lambda^T x \ge c \qquad \text{for some scalar } c,$$

then

$$\inf_{x \in C} \lambda^T x = 0.$$

[Note that the preceding relation implies that $\lambda \in C^*$.]

Exercise 3 Let K be a (nonempty) closed convex cone, and let K^* be its dual cone. Show that if K is pointed, then K^* has a nonempty interior. [You may consider using the fact $(K^*)^* = K$ when K is nonempty closed convex cone.]