Homework 8: Cone Properties and Conical Problems

Exercise 1 This exercise establishes linear convergence rate for subgradient method. Consider the projected subgradient method with Polyak stepsize:

\[x_{k+1} = P_X[x_k - \alpha_k s_k] \quad k = 0, 1, \ldots, \]

where \(X \) is a closed convex set, \(x_0 \in X \) is an initial iterate, \(s_k \in \partial f(x_k) \), and \(\alpha_k = \frac{f(x_k) - f^*}{\|s_k\|^2} \).

Assume that \(f \) has a sharp set of minima, i.e., the optimal set \(X^* \) is nonempty and there exists \(\eta > 0 \) such that

\[f(x) - f^* \geq \eta \text{dist}(x, X^*) \quad \text{for all} \quad x \in X, \]

where \(\text{dist}(y, Y) \) denotes the distance from the vector \(y \) to the set \(Y \), i.e., \(\text{dist}(y, Y) = \inf_{z \in Y} \|y - z\| \).

(a) Show that the iterates \(\{x_k\} \) generated by the method satisfy for any \(x^* \in X^* \) and any \(k \geq 0 \),

\[\|x_{k+1} - x^*\|^2 \leq \|x_k - x^*\|^2 - \frac{(f(x_k) - f^*)^2}{\|s_k\|^2}. \]

(b) Show that the subgradients \(\{s_k\} \) of the iterates are bounded by some scalar \(C \), i.e., for some \(C > 0 \) we have \(\|s_k\| \leq C \) for all \(k \).

(c) Using (a) and (b), and the sharp minima property of \(f \), show that

\[\text{dist}(x_k, X^*) \leq q^k \text{dist}(x_0, X^*) \quad \text{for all} \quad k, \]

where \(q = \sqrt{1 - \eta^2 C^2} \).

Exercise 2 Let \(C \subseteq \mathbb{R}^n \) be a set with nonempty interior. Consider its dual cone \(C^* \).

(a) Show that for any \(\hat{x} \in \text{int} C \) and any \(\lambda \in C^* \), we have

\[\lambda^T \hat{x} > 0. \]

(b) Show that the cone \(C^* \) is pointed.

(c) If \(C \) is a cone, and if for some nonzero \(\lambda \in \mathbb{R}^n \), we have

\[\inf_{x \in \text{int} C} \lambda^T x \geq c \quad \text{for some scalar} \quad c, \]

then

\[\inf_{x \in C} \lambda^T x = 0. \]

[Note that the preceding relation implies that \(\lambda \in C^* \).]

Exercise 3 Let \(K \) be a (nonempty) closed convex cone, and let \(K^* \) be its dual cone. Show that if \(K \) is pointed, then \(K^* \) has a nonempty interior.

[You may consider using the fact \((K^*)^* = K \) when \(K \) is nonempty closed convex cone.]