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Abstract

We study the problem of reaching a consensus in the values of a distributed
system of agents with time-varying connectivity in the presence of delays. We
consider a widely studied consensus algorithm, in which at each time step, every
agent forms a weighted average of its own value with values received from the
neighboring agents. We study an asynchronous operation of this algorithm using
delayed agent values. Our focus is on establishing convergence rate results for this
algorithm. In particular, we first show convergence to consensus under a bounded
delay condition and some connectivity and intercommunication conditions imposed
on the multi-agent system. We then provide a bound on the time required to reach
the consensus. Our bound is given as an explicit function of the system parameters
including the delay bound and the bound on agents’ intercommunication intervals.
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1 Introduction

There has been much recent interest in distributed cooperative control problems, in
which several autonomous agents try to collectively accomplish a global objective. This
is motivated mainly by the emerging large scale networks which are characterized by
the lack of centralized access to information and control. Most recent literature in this
area focused on the consensus problem, where the objective is to develop distributed
algorithms under which agents can reach an agreement or consensus on a common de-
cision (represented by a scalar or a vector). Consensus problem arises in a number of
applications including coordination of UAVs, information processing in wireless sensor
networks, and distributed multi-agent optimization.

A widely studied algorithm in the consensus literature involves, at each time step,
every agent computing a weighted average of its own value with values received from
some of the other agents. This algorithm has been proposed and analyzed in the seminal
work by Tsitsiklis [18] (see also Tsitsiklis et al. [20]). The convergence properties of
the consensus algorithm has been further studied under different assumptions on agent
connectivity and information exchange by Jadbabaie et al. [9] and Blondel et al. [4]).
Despite much work on the convergence of the consensus algorithm, there has not been
a systematic study of the convergence rate of this algorithm in the presence of delays.
The presence of delays is a good model for communication networks where there are
delays associated with transmission of agent values. Establishing the rate properties of
consensus algorithms in such systems is essential in understanding the robustness of the
system against dynamic changes.

In this paper, we study convergence and convergence rate properties of the consensus
algorithm in the presence of delays. Our analysis is based on reducing the consensus
problem with delay to a problem with no delays using state augmentation, i.e., we enlarge
the system by including a new agent for each delay element. The state augmentation
allows us to represent the evolution of agent values using linear dynamics. The conver-
gence and convergence rate analysis then translates to studying the properties of infinite
products of stochastic matrices. Under a bounded delay assumption, we provide rate
estimates for the convergence of products of stochastic matrices. Our estimates are per
iteration and highlight the dependence on the system parameters including the delay
bound.

Other than the papers cited above, our paper is also related to the literature on the
consensus problem and average consensus problem (a special case, where the goal is to
reach a consensus on the average of the initial values of the agents); see Olfati-Saber
and Murray [15], Boyd et al. [5], Xiao and Boyd [21], Moallemi and Van Roy [12], Cao
et al. [6], Olshevsky and Tsitsiklis [16], [17]). Recent work has studied the implications
of noise and quantization effects on the limiting behavior of the consensus algorithm,
see Kashyap et al. [10], Carli et al. [8], Carli et al. [7]. Consensus algorithm also plays
a key role in the development of distributed optimization methods. The convergence
properties of such methods have been investigated by Tsitsiklis and Athans [19], Li and
Basar [11], Bertsekas and Tsitsiklis [2], and more recently in our work [13, 14].

There has also been some work on the convergence of consensus algorithms in the
presence of delays. In particular, Bliman and Ferrari-Trecate [3] studied convergence of
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(average) consensus under symmetric delays for a continuous model of agent updates, i.e.,
a model that represents the evolution of agent values using partial differential equations
(which is in contrast with the slotted update rule studied in this paper). Another related
work is that of Angeli and Bliman [1], who consider consensus algorithms and the rate of
convergence in the presence of delays assuming special topologies for agent connectivity,
namely spanning-tree topologies. In contrast with this work, we establish convergence
to consensus with delays without requiring any special topologies for agent connectivity.
The main contribution of our work is the convergence rate result that quantifies the
algorithm’s progress per iteration and provides a performance bound in terms of the
system and algorithm parameters.

The rest of this paper is organized as follows: In Section 2, we introduce our notation,
formulate the consensus problem, and describe the assumptions imposed on the agent
connectivity and information exchange. In Section 3, we introduce and analyze an
equivalent consensus problem without a delay, but with an enlarged number of agents.
This section also contains our main convergence and rate of convergence results. In
Section 4, we provide concluding remarks.

2 Consensus Problem

In this section, we formulate a generic consensus problem and state our assumptions
imposed on agent connectivity and local information exchange. To do this, we start by
introducing the basic notation and notions that we use throughout the paper.

2.1 Basic Notation and Notions

A vector is viewed as a column, unless clearly stated otherwise. We denote by xi or [x]i
the i-th component of a vector x. When xi ≥ 0 for all components i of a vector x, we
write x ≥ 0. For a matrix A, we write Aj

i or [A]ji to denote the matrix entry in the i-th
row and j-th column. We write [A]i to denote the i-th row of the matrix A, and [A]j to
denote the j-th column of A.

We write x′ to denote the transpose of a vector x. The scalar product of two vectors
x, y ∈ Rm is denoted by x′y. We use ‖x‖ to denote the standard Euclidean norm,
‖x‖ =

√
x′x. We write ‖x‖∞ to denote the max norm, ‖x‖∞ = max1≤i≤m |xi|.

A vector a is said to be a stochastic vector when ai ≥ 0 for all i and
∑

i ai = 1.
A square m × m matrix A is said to be a stochastic matrix when each row of A is a
stochastic vector. A square m × m matrix A is said to be a doubly stochastic matrix
when both A and A′ are stochastic matrices.

2.2 Consensus Problem with Delay

We consider a network with m agents (or nodes). The neighbors of an agent i are the
agents j communicating directly with agent i through a directed link (j, i). Each agent
updates and sends its information to its neighbors at discrete times t0, t1, t2, . . .. We
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index agents’ information states and any other information at time tk by k. We use
xi(k) ∈ Rn to denote agent i information state (or estimates) at time tk.

Each agent i updates its estimate xi(k) by combining it with the available delayed
estimates xj(s) of its neighbors j. An agent combines the estimates by using nonnegative
weights ai

j(k). These weights capture the information inflow to agent i at time k and the
information delay. More specifically, suppose an agent j sends its estimate xj(s) to agent
i. If agent i receives the estimate xj(s) at time k, then the delay is tij(k) = k−s and agent
i assigns a weight ai

j(k) > 0 to the estimate xj(s). Otherwise, agent i uses ai
j(k) = 0.

Formally, each agent i updates its estimate according to the following relation:

xi(k + 1) =
m∑

j=1

ai
j(k)xj(k − tij(k)) for k = 0, 1, 2, . . . , (1)

where the vector xi(0) ∈ Rn is initial state of agent i, the scalar tij(k) is nonnegative
and it represents the delay of a message from agent j to agent i, while the scalar ai

j(k)
is a nonnegative weight that agent i assigns to a delayed estimate xj(s) arriving from
agent j at time k. We use the vector ai(k) = (ai

1(k), . . . , ai
m(k))′ to denote the set of

nonnegative weights that agent i uses at time k.
The consensus problem involves determining conditions on the agents’ connectivity

and interactions (including conditions on the weights ai(k)) that guarantee the con-
vergence of the estimates xi(k), as k → ∞, to a common vector i.e., a limit vector
independent of i.

In the absence of a delay, we have tik(k) = 0 and the update relation (1) reduces to an
algorithm for the consensus problem without a delay. This algorithm has been proposed
by Tsitsiklis [18]. Variations of this algorithm for various specialized choices of weights
and including quantization effects have been recently studied (see [1], [4], [5], [9], [16],
[17]), [10], [8], [7].

2.3 Assumptions

Here, we describe some rules that govern the information evolution of the agent system
in time. Motivated by the model of Tsitsiklis [18] and the “consensus” setting of Blondel
et al. [4], these rules include:

- A rule on the weights that an agent uses when combining its information with the
information received from its neighbors.

- A connectivity rule ensuring that the information of each agent influences the
information of any other agent infinitely often in time.

- A rule on the frequency at which an agent sends his information to the neighbors.

Specifically, we use the following assumption on the weights ai
j(k).

Assumption 1 (Weights Rule) We have:

(a) There exists a scalar η with 0 < η < 1 such that for all i ∈ {1, . . . , m},
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(i) ai
i(k) ≥ η for all k ≥ 0.

(ii) ai
j(k) ≥ η for all k ≥ 0, and all agents j whose (potentially delayed) informa-

tion xj(s) reaches agent i in the time interval (tk, tk+1).

(iii) ai
j(k) = 0 for all k ≥ 0 and j otherwise.

(b) The vectors ai(k) are stochastic, i.e.,
∑m

j=1 ai
j(k) = 1 for all i and k.

Assumption 1(a) states that each agent gives significant weights to its own estimate xi(k)
and the estimate xj(k) available from her neighboring agents j at the update time tk.
Note that, under Assumption 1, for the matrix A(k) whose columns are a1(k), . . . , am(k),
the transpose A′(k) is a stochastic matrix for all k ≥ 0.

We now discuss the rules we impose on the information exchange among agents.
Here, it is convenient to view the agents as a set of nodes V = {1, . . . , m}. At each
update time tk, the information exchange among the agents may be represented by a
directed graph (V, Ek) with the set Ek of directed edges given by

Ek = {(j, i) | ai
j(k) > 0}.

Note that, by Assumption 1(a), we have (i, i) ∈ Ek for each agent i and all k. Also, we
have (j, i) ∈ Ek if and only if agent i receives information xj from agent j in the time
interval (tk, tk+1).

We impose a connectivity assumption on the agent system, which can be stated as:
following any time tk, the information of an agent j reaches each and every agent i
directly or indirectly (through a sequence of communications between the other agents).
In other words, the information state of any agent i influences the information state of
any other agent infinitely often in time. In formulating this, we use the set E∞ consisting
of edges (j, i) such that j is a neighbor of i who communicates with i infinitely often in
time. The connectivity requirement is formally stated in the following assumption.

Assumption 2 (Connectivity) The graph (V, E∞) is connected, where E∞ is the set of
edges (j, i) representing agent pairs communicating directly infinitely many times, i.e.,

E∞ = {(j, i) | (j, i) ∈ Ek for infinitely many indices k}.

To re-phrase, the assumption says that for any k and any two agents u, v ∈ V , there
is a directed path from agent u to agent v with edges (j, i) in the set ∪l≥kEl. Thus,
Assumption 2 is equivalent to having the composite directed graph (V,∪l≥kEl) connected
for all k.

When analyzing the system state behavior, we use an additional assumption that the
intercommunication intervals are bounded for those agents that communicate directly.
In particular, we use the following.
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Assumption 3 (Bounded Intercommunication Interval) There exists an integer B ≥ 1
such that for every (j, i) ∈ E∞, agent j sends information to its neighbor i at least once
every B consecutive time slots, i.e., at time tk or at time tk+1 or . . . or (at latest) at
time tk+B−1 for any k ≥ 0.

When there is no delay in the system, this assumption is equivalent to the requirement
that there is B ≥ 1 such that

(j, i) ∈ Ek ∪ Ek+1 ∪ · · · ∪ Ek+B−1 for all (j, i) ∈ E∞ and k ≥ 0.

Thus, when there is no delay in the system, our Assumptions 1–3 coincide with those of
Tsitsiklis [18] (see also the “consensus” setting of Blondel et al. [4] and our optimization
model in [13]).

Finally, we assume that the delays tij(k) in delivering a message from an agent j to
any neighboring agent i is uniformly bounded at all times.1 Formally, this is imposed in
the following assumption.

Assumption 4 (Bounded Delays) Let the following hold:

(a) We have tii(k) = 0 for all agents i and all k ≥ 0.

(b) We have tij(k) = 0 for all agents j communicating with agent i directly and whose
estimates xj are not available to agent i at time tk+1.

(c) There is an integer B1 such that 0 ≤ tij(k) ≤ B1 − 1 for all agents i, j, and all k.

Part (a) of the assumption states that each agent i has its own estimate xi(k) available
(naturally) without any delay. Part (b) states that the delay is zero for those agents j
whose (delayed) estimates xj(s) are not available to agent i at an update time. Under
Weights Rule (a) [cf. Assumption 1 (a)], agent i assigns zero weight for the estimate xj

of such an agent j, i.e., ai
j(k) = 0. Thus, under Weights Rule (a), the part (b) of the

preceding assumption reduces to the following relation:

tij(k) = 0 for all agents i and j such that ai
j(k) = 0.

Finally, part (c) of Assumption 4 states that the delays are uniformly bounded at all
times and for all neighboring agents i and j.

3 Convergence Analysis

In this section, we show that the agents updating their information according to Eq. (1)
reach a consensus under the assumptions of Section 2.3. In particular, we establish the
convergence of agent estimates to a consensus and provide a convergence rate estimate.
Our analysis is based on reducing the consensus problem with a delay to a problem
without a delay.

1The delay bound is used in our analysis. In the implementation of the algorithm, the bound need
not be available to any agent.
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3.1 Reduction to a Consensus Problem without Delay

Here, we reduce the original agent system with delays to a system without delays, under
the Bounded Delays assumption [cf. Assumption 4]. In particular, we define an enlarged
agent system that is obtained by adding “new” agents into the original system in order
to deal with delays. With each agent i of the original system, we associate a new agent
for each of the possible values of the delay that a message originating from agent i may
experience. In view of the Bounded Delays assumption, it suffices to add (m−1)B1 new
agents handling the delays.2

To differentiate between the original agents in the system and the new agents, we
introduce the notions of computing and noncomputing agents (or nodes). We refer to
the original agents as computing agents since these agents maintain and update their
information state (estimates). We refer to the new agents as noncomputing agents
since these agents do not compute or update any information, but only pass the received
information to their neighbors.

In the enlarged system, we enumerate the computing agents first and then the non-
computing agents. In particular, the computing agents are indexed by 1, . . . , m and
noncomputing agents are indexed by m + 1, . . . , (B1 − 1)m. Furthermore, the noncom-
puting agents are indexed so that the first m of them model the delay of 1 for the
computing agents, the next m of them model the delay of 2 for the computing agents,
and so on. Formally, we have that for a computing agent i, the noncomputing agents
i+m, . . . , i+(B1−1)m model the nonzero delay values t = 1, . . . , (B1−1)m, respectively.

We now describe how the agents communicate in the enlarged system, i.e., we identify
the neighbors of each agent. The computing agents are connected and communicate in
the same way as in the original system. The noncomputing agents corresponding to the
delays of different computing agents do not communicate among themselves. Specifically,
for t with 1 ≤ t < B1 − 1, a noncomputing agent j + tm receives the information only
from agent j + (t− 1)m, and sends the same information to either agent j + (t + 1)m or
to a computing agent i only if agent j communicates with agent i in the original system.
A noncomputing agent j +(B1 − 1)m communicates only with computing agents and in
particular, agent j +(B1−1)m communicates with agent i if and only if j communicates
with i in the original system. The communication connections among the agents in the
original system and the corresponding enlarged system is illustrated in Figure 1 for a
system with 3 agents and a maximum delay of 3.

We let x̃i(k) denote the estimate of agent i of the enlarged system at time tk. Then,
the relation in Eq. (1) for the evolution of estimates of computing agents is given by: for
all i ∈ {1, . . . , m},

x̃i(k + 1) =
mB1∑

h=1

ãi
h(k)x̃h(k) for all k ≥ 0, (2)

2This idea has also been used in the distributed computation model of Tsitsiklis [18], and it motivates
our development here.
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Figure 1 (a)

Figure 1 (b)

Figure 1: Figure 1 (a) illustrates an agent network with 3 agents, where agents 1 and 2, and
agents 2 and 3 communicate directly. Figure 1(b) illustrates the enlarged network associated
with the original network of part (a), when the delay bound is B1 = 3. The noncomputing
agents introduced in the system are 4, . . . , 9. Agents 4, 5, and 6 model the delay of 1 while
agents 7, 8, and 9 model the delay of 2 for the computing nodes 1, 2 and 3, respectively.

where for all h ∈ {1, . . . , mB1},

ãi
h(k) =

{
ai

j(k) if h = j + tm, t = k − tij(k)
0 otherwise

for all k ≥ 0, (3)

and ai
j(k) are the weights used by the agents in the original network. The evolution of

states for noncomputing agents is given by: for all i = m + 1, . . . , mB1,

x̃i(k + 1) = x̃i−m(k) for all k ≥ 0,

where the initial values are x̃i(0) = 0. Therefore, for noncomputing agents i we have

ãi
h(k) =

{
1 for h = i − m
0 otherwise

for all k ≥ 0. (4)

Using these definitions of weights, we can compactly write the evolution of estimates
x̃i(k) for all agents i in the enlarged system as follows:

x̃i(k + 1) =
mB1∑

h=1

ãi
h(k)x̃h(k) for all i ∈ {1, . . . , mB1} and k ≥ 0, (5)

where the initial vectors are given by

x̃i(0) = xi(0) for i ∈ {1, . . . , m},

x̃i(0) = 0 for i ∈ {m + 1, . . . , mB1},
(6)
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and the weights ãi
h(k) for computing agents i ∈ {1, . . . , m} are given by Eq. (3), while

the weights ãi
h(k) for noncomputing agents i ∈ {m + 1, . . . , mB1} are given by Eq.

(4). For a noncomputing agent i, the sum of weights
∑mB1

h=1 ãi
h(k) is evidently equal to

1 for any k. For a computing agent i ∈ {1, . . . , m}, the sum of weights
∑mB1

h=1 ãi
h(k) is

equal to 1 for any k if and only if the weights ai
j(k) of agent i in the original network

sum to 1, i.e.,
∑m

j=1 ai
j(k) = 1 for all k.

In order to have a more compact representation of the evolution of the estimates
xi(k) of Eq. (5), we rewrite this model using the matrices that govern the (linear)
evolution. The resulting representation is also more suitable for our convergence analysis.
In particular, we introduce matrices Ã(s) whose i-th column is the vector ãi(s). Using
these matrices, we can relate estimate x̃i(k+1) to the estimates x̃1(s), . . . , x̃m(s) for any
s ≤ k. Specifically, it is straightforward to verify that for the iterates generated by Eq.
(5), we have for any i, and any s and k with k ≥ s,

x̃i(k + 1) =
mB1∑

h=1

[Ã(s)Ã(s + 1) · · · Ã(k − 1)ãi(k)]hx̃
h(s). (7)

As indicated by the preceding relation, to analyze the convergence of the iterates x̃i(k),
we need to understand the behavior of the matrix product Ã(s) · · · Ã(k). Actually, this
matrix product is the transition matrix for the agent system from time s to time k. We
formally introduce these transition matrices as follows:

Φ̃(k, s) = Ã(s)Ã(s + 1) · · · Ã(k − 1)Ã(k) for all s and k with k ≥ s, (8)

where
Φ̃(k, k) = Ã(k) for all k. (9)

Note that the i-th column of Φ̃(k, s) is given by

[Φ̃(k, s)]i = Ã(s)Ã(s + 1) · · · Ã(k − 1)ãi(k) for all i, s and k with k ≥ s,

while the entry in i-th column and h-th row of Φ̃(k, s) is given by

[Φ̃(k, s)]ih = [Ã(s)Ã(s + 1) · · · Ã(k − 1)ãi(k)]h for all i, h, s and k with k ≥ s.

We can now rewrite relation (7) compactly in terms of the transition matrices Φ̃(k, s),
as follows: for any i ∈ {1, . . . , mB1},

x̃i(k + 1) =
mB1∑

j=1

[Φ̃(k, s)]ijx
j(s) for all s and k with k ≥ s ≥ 0. (10)

Under the Weights Rule [Assumption 1], from the definition of the weights ãi
h(k) in

Eqs. (3) and (4), it follows that each matrix Ã(k)′ is stochastic. Since the product
of stochastic matrices is a stochastic matrix, it follows that the transition matrices
Φ̃(k, s)′ are stochastic for all k ≥ s ≥ 0. In what follows, we establish some additional
properties of these matrices that will be important in our convergence analysis of the
iterates generated by Eq. (10).
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3.2 Properties of the Transition Matrices

Here, we explore some properties of the matrices Φ̃(k, s) under the assumptions imposed
on agent interactions in Section 2.3. As defined in Section 2.3, we use E∞ to denote
the agent pairs communicating (directly) infinitely often in the original network (with
delays). In particular, (j, i) ∈ E∞ means that agent j communicates its estimates to a
neighbor i infinitely often in the presence of delays.

We start by considering the implications for the matrices Φ̃(k, s) under Weights Rule
and Bounded Delays assumption.

Lemma 1 Let Weights Rule (a) hold for the weights ai
j(k) for i, j ∈ {1, . . . , m} and

k ≥ 0 [cf. Assumption 1(a)]. Let also Bounded Delay assumption hold [cf. Assumption 4].
Then:

(a) For a computing node j that sends its information at time s and the information
has a nonzero delay t, we have

[Φ̃(s + t − 1, s)]j+tm
j = 1.

(b) For any computing node i ∈ {1, . . . , m}, we have

[Φ̃(k, s)]ii ≥ ηk−s+1 for all k and s with k ≥ s ≥ 0.

(c) Under Bounded Intercommunication Intervals [cf. Assumption 3], for any two com-
puting nodes i, j ∈ {1, . . . , m} such that (j, i) ∈ E∞, we have

[Φ̃(s + B + B1 − 1, s)]ij ≥ ηB+B1 , for all s ≥ 0,

where η is the lower bound on the nonzero weights of Assumption 1 (a), B is the bound
on the intercommunication intervals of Assumption 3, and B1 is the delay bound of
Assumption 4(c).

Proof. (a) We prove that [Φ̃(s + t − 1, s)]j+tm
j = 1 by induction on the delay value t.

When the delay is t = 1, we have Φ̃(s, s) = Ã(s). Since ãh
h−m(s) = 1 for all noncomputing

nodes h [see Eq. (4)], it follows that [Φ̃(s, s)]j+m
j = 1. Suppose now that

[Φ̃(s + t − 1, s)]j+tm
j = 1 for a delay t > 1. (11)

Consider the case when the delay value is t+1. In this case, the path of the information
sent from node j at time s is given by j → j+m → j+2m → · · · → j+tm → j+(t+1)m.
Therefore,

[Φ̃(s + t, s)]j+(t+1)m
j = [Φ̃(s + t − 1, s)]j+tm

j ã(s + t)j+(t+1)m
j+tm .

By using the inductive hypothesis and the relation ãh
h−m(s) = 1 for any noncomputing

node [cf. Eqs. (11) and (4), respectively], it follows that

[Φ̃(s + t, s)]j+(t+1)m
j = 1.
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(b) We let s ≥ 0 be arbitrary and i ∈ {1, . . . , m} be an arbitrary computing node. We
prove the relation

[Φ̃(k, s)]ii ≥ ηk−s+1 for all k, s with k ≥ s ≥ 0 (12)

by induction on k. For k = s, from the definition of Φ̃(s, s) in Eq. (9) we see that

[Φ̃(s, s)]ii = ãi
i(s) for all s ≥ 0.

In view of Bounded Delays (a) [cf. Assumption 4 (a)], we have tii(s) = 0 for all s. Thus,
by the definition of ãi

i(k) [cf. Eq. (3)], it follows that ãi
i(s) = ai

i(s). Furthermore, by
Weights Rule (a) [cf. Assumption 1(a)], we have ai

i(s) ≥ η for all s, and therefore,

ãi
i(s) = ai

i(s) ≥ η for all s ≥ 0. (13)

Hence, [Φ̃(s, s)]ii ≥ η for s ≥ 0, showing that the relation in Eq. (12) holds for k = s.
Now, assume that the relation in Eq. (12) holds for some k with k > s, and consider

[Φ̃(k + 1, s)]ii. By the definition of the matrix Φ̃(k, s) [cf. Eq. (8)], we have

[Φ̃(k + 1, s)]ii =
mB1∑

h=1

[Φ̃(k, s)]hi ãi
h(k + 1) ≥ [Φ̃(k, s)]ii ãi

i(k + 1),

where the inequality in the preceding relation follows from the nonnegativity of the
entries of Φ̃(k, s) for all k and s. By using the inductive hypothesis and the relation
ãi

i(k + 1) = ai
i(k + 1) ≥ η [cf. Eq. (13)], we obtain

[Φ̃(k + 1, s)]ii ≥ ηk−s+2.

Hence, the relation in Eq. (12) holds for all k ≥ s.

(c) Let s ≥ 0 be arbitrary. Let i and j be two computing nodes with (j, i) ∈ E∞.
Under Bounded Intercommunication Intervals [cf. Assumption 3], for any such nodes,
node j sends its information to node i at time s or s + 1 or ... or at time s + B − 1 at
latest. Let the information be sent at time s + τ with 0 ≤ τ ≤ B − 1.

Suppose that there was no delay. Then

[Φ̃(s + B − 1, s)]ij =
mB1∑

h=1

[Φ̃(s + τ, s)]hj [Φ̃(s + B − 1, s + τ + 1)]ih

≥ [Φ̃(s + τ, s)]ij [Φ̃(s + B − 1, s + τ + 1)]ii
≥ [Φ̃(s + τ, s)]ij η

B−τ−1, (14)

where the first inequality follows from the nonnegativity of the entries Φ̃(k, s) and the
last inequality follows from [Φ̃(k, s)]ii ≥ ηk−s+1 for all i, and all k and s with k ≥ s [cf.
part (b)]. Similarly, by using the result in part (b), we have

[Φ̃(s+ τ, s)]ij =
mB1∑

h=1

[Φ̃(s+ τ−1, s)]hj ã(s+ τ)i
h ≥ [Φ̃(s+ τ −1, s)]jj ã(s+ τ)i

j ≥ ητ ã(s+ τ)i
j.
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Since the information from j to i is sent at time s + τ and it arrives without a delay, we
have ã(s + τ)i

j = a(s + τ)i
j . By the Weights Rule (a), we also have a(s + τ)i

j ≥ η, and
therefore,

[Φ̃(s + τ, s)]ij ≥ ητ+1.

Using the preceding relation and Eq. (14), we obtain [Φ̃(s + B − 1, s)]ij ≥ ηB, which

together with the relation [Φ̃(s + B + B1 − 1, s + B)]ii ≥ ηB1 [cf. part (b)], implies that

[Φ̃(s + B + B1 − 1, s)]ij =
mB1∑

h=1

[Φ̃(s + B − 1, s)]hj [Φ̃(s + B + B1 − 1, s + B)]ih

≥ [Φ̃(s + B − 1, s)]ij [Φ̃(s + B + B1 − 1, s + B)]ii

≥ ηB+B1 .

Thus, the relation [Φ̃(s + B + B1 − 1, s)]ij ≥ ηB+B1 holds when the message from j to i
is not delayed.

Consider now the case when the information from node j to i is delayed by t with
t ∈ {1, . . . , B1 − 1}. Thus, the information is sent from node j to the noncomputing
node j + m at time s + τ and reaches the computing node i at time s + τ + t. In view of
the information communication in the enlarged model, from time s + τ to s + τ + t, the
message path is j → j + m → j + 2m → · · · → j + tm → i. In terms of the transition
matrices, we formally have

[Φ̃(s + τ + t, s)]ij =
mB1∑

h=1

[Φ̃(s + τ − 1, s)]hj [Φ̃(s + τ + t, s + τ)]ih

≥ [Φ̃(s + τ − 1, s)]jj [Φ̃(s + τ + t, s + τ)]ij
≥ ητ [Φ̃(s + τ + t, s + τ)]ij , (15)

where the first inequality follows from the nonnegativity of the entries in Φ̃(k, s) and the
last inequality follows from [Φ̃(s + τ − 1, s)]jj ≥ ητ [cf. part (b)]. We now consider the

term [Φ̃(s + τ + t, s + τ)], for which we have

[Φ̃(s + τ + t, s + τ)]ij =
mB1∑

h=1

[Φ̃(s + τ + t − 1, s + τ)]hj ã(s + τ + t)i
h

≥ [Φ̃(s + τ + t − 1, s + τ)]j+tm
j ã(s + τ + t)i

j+tm

≥ [Φ̃(s + τ + t − 1, s + τ)]j+tm
j η,

where the last inequality follows from ãi
h(k) = ai

j(k) for h = j + tm and all k [cf. Eq.
(3)], the assumption that ai

j(k) ≥ η for all k [cf. Assumption 1(a)], and the fact that the
information arrives to node i from node j + tm at time k = s + τ + t. By part (a), we
have [Φ̃(s + t − 1, s)]j+tm

j = 1 for any computing node j that sends its information at
time s and the information has a delay t > 0. Therefore, we obtain

[Φ̃(s + τ + t, s + τ)]ij ≥ η,

12



and in view of Eq. (15), it follows that

[Φ̃(s + τ + t, s)]ij ≥ ητ+1.

By part (b), for computing node i, we have

[Φ̃(s + B + B1 − 1, s + τ + t + 1)]ii ≥ ηB+B1−τ−t−1.

By using the preceding two relations, we have

[Φ̃(s + B + B1 − 1, s)]ij =
mB1∑

h=1

[Φ̃(s + τ + t, s)]hj [Φ̃(s + B + B1 − 1, s + τ + t + 1)]ih

≥ [Φ̃(s + τ + t, s)]ij [Φ̃(s + B + B1 − 1, s + τ + t + 1)]ii

≥ ητ+1 ηB+B1−τ−t−1

= ηB+B1−t.

Since 0 < η < 1 [cf. Assumption 1] and B +B1 − t < B +B1 for all nonzero delay values
t, we have ηB+B1−t > ηB+B1 , implying that

[Φ̃(s + B + B1 − 1, s)]ij ≥ ηB+B1 .

Using Lemma 1, we next establish some additional properties of the transition ma-
trices Φ̃(k, s). These properties hold when the agents are connected in the sense of
Assumption 2. More specifically, we show that the entries of the row [Φ̃(s+ (m− 1)B +
mB1−1, s)]j are uniformly bounded away from zero for all s and for all computing nodes
j ∈ {1, . . . , m}.

Lemma 2 Let Weights Rule (a), Connectivity, Bounded Intercommunication Interval,
and Bounded Delay assumptions hold for the agents in the original network [cf. Assump-
tions 1(a), 2, 3, and 4]. Then, the following holds:

(a) For any computing nodes i, j ∈ {1, . . . , m}, we have

[Φ̃(k, s)]ij ≥ ηk−s+1 for all s ≥ 0, and k ≥ s + (m − 1)(B + B1).

(b) For any computing node j ∈ {1, . . . , m}, we have

[Φ̃(s + (m − 1)B + mB1 − 1, s)]ij ≥ η(m−1)B+mB1 for all nodes i and all s ≥ 0.

Proof. For parts (a)-(b), we let s ≥ 0 be arbitrary, but fixed.

(a) Let i and j be any two computing nodes. When i = j, by Lemma 1 (b), we have

[Φ̃(k, s)]ii ≥ ηk−s+1 for all k ≥ s.

13



Thus, assume that the nodes i and j are distinct.
Under the Connectivity [cf. Assumption 2], there is a directed path from node j

to node i passing through some other computing nodes i1, . . . , iκ such that the nodes
j, i1, . . . , iκ, i are distinct and the path edges (j, i1), (i1, i2), . . . , (iκ−1, iκ), (iκ, i) belong to
the set E∞. Let us re-label node i by iκ+1, and let B2 = B + B1. By the definition of
the transition matrix Φ̃ [cf. Eq. (8)], we have

[Φ̃(s + (κ+ 1)B2 − 1, s)]iκ+1

j

=
mB1∑

h=1

[Φ̃(s + κB2 − 1, s)]hj [Φ̃(s + (κ+ 1)B2 − 1, s + κB2)]
iκ+1

h

≥ [Φ̃(s + κB2 − 1, s)]iκj [Φ̃(s + (κ + 1)B2 − 1, s + κB2)]
ik+1
iκ

≥ [Φ̃(s + κB2 − 1, s)]iκj η
B2 ,

where the first inequality follows from the nonnegativity of the entries of Φ̃ and the last
inequality follows from [Φ̃(s + (κ + 1)B2 − 1, s + κB2)]

ik+1

ik
≥ ηB2 [cf. Lemma 1 part (c)

and B2 = B + B1]. Hence, it follows that

[Φ̃(s + (κ+ 1)B2 − 1, s)]iκ+1

j ≥ [Φ̃(s + κB2 − 1, s)]iκj η
B2 ≥ · · · ≥ [Φ̃(s + B2 − 1, s)]i1j η

κB2.

By Lemma 1 (c) and B2 = B + B1, we have [Φ̃(s + B2 − 1, s)]i1j ≥ ηB2 , and therefore,

[Φ̃(s + (κ+ 1)B2 − 1, s)]iκ+1

j ≥ η(κ+1)B2 . Since iκ+1 = i, we have

[Φ̃(s + (κ+ 1)B2 − 1, s)]ij ≥ η(κ+1)B2 .

Since there are m agents, and the nodes j, i1, . . . , iκ, i are distinct, it follows that κ+2 ≤
m. By using the preceding relation and the definition of the transition matrix Φ̃ [cf. Eq.
(8)], we obtain for all k ≥ s + (m − 1)B2,

[Φ̃(k, s)] =
mB1∑

h=1

[Φ̃(s + (κ + 1)B2 − 1, s)]hj [Φ̃(k, s + (κ+ 1)B2)]
i
h

≥ [Φ̃(s + (κ+ 1)B2 − 1, s)]ij [Φ̃(k, s + (κ + 1)B2)]
i
i

≥ η(κ+1)B2 ηk−s−(κ+1)B2+1

= ηk−s+1,

where in the last inequality we also use [Φ̃(k, s)]ii ≥ ηk−s+1 for all k, s with k ≥ s ≥ 0
[cf. Lemma 1 part (b)].

(b) For any computing nodes i, j ∈ {1, . . . , m}, by part (a), we have

[Φ̃(k, s)]ij ≥ ηk−s+1 for all s ≥ 0 and k ≥ s + (m − 1)(B + B1).

Since s + (m − 1)B + mB1 − 1 > s + (m − 1)(B + B1) − 1, it follows that

[Φ̃(s + (m − 1)B + mB1 − 1, s)]ij ≥ η(m−1)B+mB1 .
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Thus, the desired relation holds for any computing nodes j and i.
Assume now that j is a computing agent and i is an arbitrary noncomputing agent,

i.e., i ∈ {m + 1, . . . , mB1}. We can express i as

i = l + mt for some l ∈ {1, . . . , m} and t ∈ {1, . . . , B1 − 1}. (16)

By the definition of the matrix Φ̃, we have

[Φ̃(s + (m − 1)B + mB1 − 1, s)]l+mt
j ≥

[Φ̃(s + (m − 1)B + mB1 − 2, s)]l+m(t−1)
j ãl+mt

l+m(t−1)(s + (m − 1)B + mB1 − 1).

Since al+mt
l+m(t−1) = 1 for a noncomputing agent l + mt [cf. Eq. (4)], the preceding relation

implies

Φ̃(s + (m − 1)B + mB1 − 1, s)]l+mt
j ≥ [Φ̃(s + (m − 1)B + mB1 − 2, s)]l+m(t−1)

j .

If t = 1, we are done. Otherwise, repeating the same procedure recursively yields

[Φ̃(s + (m − 1)B + mB1 − 1, s)]ij ≥ [Φ̃(s + (m − 1)B + mB1 − 1 − t, s)]lj . (17)

Since l ∈ {1, . . . , m} and s +(m− 1)B + mB1 − 1− t > s + (m− 1)(B + B1)− 1 [cf. Eq.
(16)], it follows by part (a) that

[Φ̃(s + (m − 1)B + mB1 − 1 − t, s)]lj ≥ η(m−1)B+mB1−t ≥ η(m−1)B+mB1 ,

where the last inequality follows since t ≥ 0 and η ∈ (0, 1).

We next present a result for stochastic matrices which will be used in establishing
the convergence properties of the transition matrices Φ̃.

Lemma 3 Let D be a stochastic matrix. Assume that D has a column with all entries
bounded away from zero i.e., for some index j and some scalar ν > 0, there holds
[D]ji ≥ ν all i. Let z be a nonnegative vector. Then, for any i∗, the following relation
holds:

([D]i − [D]i∗)
′z ≤ (1 − ν)‖z‖∞ for all i.

Proof. We assume without loss of generality that the entries in the first column of D
are bounded away from zero by ν. For an arbitrary h, we define the index sets:

I+ = {i | [D]ih − [D]ij∗ > 0}, I− = {i | [D]ih − [D]ij∗ < 0}.

Assume first that 1 ∈ I+. Using the index sets I+ and I−, we can write

([D]h − [D]j∗)
′z =

∑

i

([D]ih − [D]ij∗)zi =
∑

i∈I+

([D]ih − [D]ij∗)zi +
∑

i∈I−

([D]ih − [D]ij∗)zi

≤
∑

i∈I+

([D]ih − [D]ij∗)zi,

15



where the inequality follows from the nonnegativity of zi. Since [D]ih − [D]ij∗ > 0 for all
i ∈ I+, we have

∑

i∈I+

([D]ih − [D]ij∗)zi ≤
∑

i∈I+

([D]ih − [D]ij∗)‖z‖∞ =

(
∑

i∈I+

[D]ih −
∑

i∈I+

[D]ij∗

)

‖z‖∞.

By the stochasticity of the vector [D]h, we have that
∑

i∈I+ [D]ih ≤ 1. By the nonnega-
tivity of the entries Di

j∗ and the fact i ∈ I+, we obtain
∑

i∈I+ [D]ij∗ ≥ D1
j∗. Therefore,

∑

i∈I+

([D]ih − [D]ij∗)zi ≤ (1 − D1
j∗)‖z‖∞ ≤ (1 − ν)‖z‖∞,

where the last inequality follows from the assumption D1
j∗ > ν.

Assume now that 1 /∈ I+. Using the nonnegativity of the vectors [D]h, [D]j∗ , and z,
we can write

([D]h − [D]j∗)
′z ≤

∑

i∈I+

([D]ih − [D]ij∗)zi ≤
∑

i∈I+

[D]ihzi ≤
∑

i∈I+

[D]ih‖z‖∞.

Since D is stochastic and 1 /∈ I+, we have

∑

i∈I+

[D]ih ≤
∑

i(=1

[D]ih ≤ 1 − ν.

Combining the preceding two relations, we obtain

([D]h − [D]j∗)
′z ≤ (1 − ν)‖z‖∞.

We now give a lemma that plays a key role in establishing the convergence properties
and assessing the convergence rate of the matrices Φ̃(k, s). In the lemma, we consider
the products D̃k(s) · · · D̃1(s) of the matrices

D̃k(s) = Φ̃′ (s + kB2 − 1, s + (k − 1)B2) ,

where B2 = (m− 1)B + mB1, and we show that these products converge as k increases
to infinity. We use this later to establish the convergence of the composite weights
[Φ̃(k, s)]i, as k → ∞, for each computing agent i.

Lemma 4 Let Weights Rule, Connectivity, Bounded Intercommunication Interval, and
Bounded Delay assumptions hold for the agents in the original network [cf. Assumptions
1, 2, 3, and 4].

D̃k(s) = Φ̃′ (s + kB2 − 1, s + (k − 1)B2) for all k ≥ 1, (18)

where B2 = (m − 1)B + mB1. We then have:

(a) The limit D̃(s) = limk→∞ D̃k(s) · · · D̃1(s) exists.
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(b) The limit D̃(s) is an mB1×mB1 matrix whose rows are identical stochastic vectors
(function of s) i.e.,

D̃(s) = eφ̃′(s)

where φ̃(s) ∈ RmB1 is a stochastic vector.

(c) The convergence of D̃k(s) · · · D̃1(s) to D̃(s) is geometric:
∥∥∥D̃k(s) · · · D̃1(s)x − D̃(s)x

∥∥∥
∞

≤ 2
(
1 + η−B2

) (
1 − ηB2

)k ‖x‖∞,

for every x ∈ RmB1 and for all k ≥ 1. In particular, for each j ∈ {1, . . . , mB1}, the
entries [D̃k(s) · · · D̃1(s)]

j
i for i ∈ {1, . . . , mB1}, converge to the same limit φ̃j(s) as

k → ∞ with a geometric rate: for each j ∈ {1, . . . , mB1},
∣∣∣[D̃k(s) · · · D̃1(s)]

j
i − φ̃j(s)

∣∣∣ ≤ 2
(
1 + η−B2

) (
1 − ηB2

)k
,

for all i ∈ {1, . . . , mB1}, and all k ≥ 1 and s ≥ 0.

Proof. To simplify our notation in the proof, we suppress the explicit dependence of
the matrices D̃k(s) on s.

(a) We prove that the limit of D̃k · · · D̃1 exists by showing that the sequence {D̃k · · · D̃1x}
converges for every x ∈ RmB1 . For this, we let x ∈ RmB1 be arbitrary, and we consider
the vector sequence {xk} ⊆ RmB1 defined by

xk = D̃k · · · D̃1x for k ≥ 1.

We recursively decompose each vector xk in the following form:

xk = zk + cke with zk ≥ 0 for all k ≥ 0, (19)

where e ∈ RmB1 is the vector with all entries equal to 1 and x0 = x. The recursion is
initialized with

z0 = x − min
1≤i≤mB1

[x]i and c0 = min
1≤i≤mB1

[x]i. (20)

Having the decomposition for xk, we consider the vector xk+1 = D̃k+1xk. In view of
relation (19) and the stochasticity of D̃k+1, we have

xk+1 = D̃k+1zk + cke.

We define
zk+1 = D̃k+1zk −

(
[D̃k+1]

′
i∗zk

)
e, (21)

ck+1 = [D̃k+1]
′
i∗zk + ck. (22)

where i∗ is the index of the row vector [D̃k+1]i achieving the minimum of inner products
[D̃k+1]′izk over all i ∈ {1, . . . , mB1}. Clearly, we have xk+1 = zk+1 + ck+1e and zk+1 ≥ 0.
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By the definition of zk+1 in Eq. (21) it follows that for the components [zk+1]i we
have

[zk+1]i = [D̃k+1]
′
izk − [D̃k+1]

′
i∗zk for all i ∈ {1, . . . , mB1}, (23)

where [D̃k+1]i is the i-th row vector of the matrix D̃k+1. By Lemma 2 and the definition
of the matrices D̃k [cf. Eq. (18)], we have that the first m columns of each matrix D̃k

are bounded away from zero, i.e., for all j ∈ {1, . . . , m} and i ∈ {1, . . . , mB1},

[D̃k+1]
j
i ≥ ηB2 for all k ≥ 0.

Then, from relation (23) and Lemma 3, we have for all i ∈ {1, . . . , mB1},

[zk+1]i =
(
[D̃k+1]i − [D̃k+1]i∗

)′
zk ≤ (1 − ηB2) ‖zk‖∞.

Because zk+1 ≥ 0, it follows

‖zk+1‖∞ ≤
(
1 − ηB2

)
‖zk‖∞ for all k ≥ 0,

implying that

‖zk‖∞ ≤
(
1 − ηB2

)k ‖z0‖∞ for all k ≥ 0. (24)

Hence zk → 0 with a geometric rate.
Consider now the sequence {ck} satisfying Eq. (22), for which by the nonnegativity

of the vector zk and the stochasticity of D̃k+1, we have

0 ≤ ck+1 − ck ≤ [D̃k+1]
′
i∗zk ≤

mB1∑

j=1

[D̃k+1]
j
i∗ ‖zk‖∞ = ‖zk‖∞ ≤

(
1 − ηB2

)k ‖z0‖∞,

where the last inequality in the preceding relation follows from the relation in Eq. (24).
Therefore, for any k ≥ 1 and r ≥ 1,

ck+r − ck ≤ ck+r − ck+r−1 + · · ·+ ck+1 − ck ≤ (qk+r−1 + · · ·+ qk)‖z0‖∞ =
1 − qr

1 − q
qk‖z0‖∞,

where q = 1−ηB2. Hence, {ck} is a Cauchy sequence and therefore, it converges to some
c̃ ∈ R. By letting r → ∞ in the preceding relation, we obtain

c̃ − ck ≤ qk

1 − q
‖z0‖∞ for all k ≥ 0. (25)

From the decomposition of xk [cf. Eq. (19)], and the relations zk → 0 and ck → c̃, it
follows that (D̃k · · · D̃1)x → c̃e for any x ∈ RmB1 , with c̃ being a function of x. Therefore,
the limit of D̃k · · · D̃1 as k → ∞ exists. We denote this limit by D̃, for which we have

D̃x = c̃(x)e for all x ∈ RmB1 . (26)

(b) Since each D̃k is stochastic, each finite product matrix D̃k · · · D̃1 is stochastic, and
therefore the limit matrix D̃ is also stochastic, i.e., D̃e = e. Furthermore, the limit
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matrix D̃ has rank one [cf. Eq. (26)]. Thus, all its rows are collinear, and because each
of its rows sum to 1, it follows that all rows of D̃ are identical. Therefore, for some
stochastic vector φ̃ ∈ RmB1 , we have D̃ = eφ̃′.

(c) Let x ∈ RmB1 be arbitrary and let xk = (D̃k · · · D̃1)x. By using the decomposition
of xk given in Eq. (19), we have

(D̃k · · · D̃1)x − D̃x = zk + (ck − c̃)e for all k ≥ 1,

[cf. Eq. (26) where the explicit dependence on x in c̃(x) is suppressed]. Using the
estimates in Eqs. (24) and (25), we obtain for all k ≥ 1,

∥∥∥(D̃k · · · D̃1)x − D̃x
∥∥∥
∞

≤ ‖zk‖∞ + |ck − c̄| ≤
(

1 +
1

1 − q

)
qk ‖z0‖∞.

Since ‖z0‖∞ ≤ 2‖x‖∞ [cf. Eq. (20)] and q = 1 − ηB2 , it follows
∥∥∥(D̃k · · · D̃1)x − D̃x

∥∥∥
∞

≤ 2
(
1 + η−B2

) (
1 − ηB2

)k ‖x‖∞ for all k ≥ 1, (27)

establishing the first relation of part (c).
To show the second relation of part (c) of the lemma, let j ∈ {1, . . . , mB1} be

arbitrary. By letting x = ej in Eq. (27), and by using D̃ = eφ̃′ and ‖ej‖∞ = 1, we obtain
∥∥∥[Dk · · ·D1]

j − φ̃je
∥∥∥
∞

≤ 2
(
1 + η−B2

) (
1 − ηB2

)k
for all k ≥ 1,

implying that for all i ∈ {1, . . . , mB1},∣∣∣[Dk · · ·D1]
j
i − φ̃j

∣∣∣ ≤ 2
(
1 + η−B2

) (
1 − ηB2

)k
for all k ≥ 1.

We next use Lemma 4 to establish the convergence properties of the matrices Φ̃(k, s)
for arbitrary s, as k goes to infinity. In particular, the following lemma states that the
matrices Φ̃(k, s) have the same limit as the matrices [D̃k(s) · · ·Dk(s)]′, when k increases
to infinity. The proof is omitted since it is identical to the proof of a similar result for
the case of no delay in Lemma 4 of our work [13].

Lemma 5 Let Weights Rule, Connectivity, Bounded Intercommunication Interval, and
Bounded Delay assumptions hold [cf. Assumptions 1, 2, 3, and 4]. We then have:

(a) The limit Φ̃(s) = limk→∞ Φ̃(k, s) exists for each s.

(b) The limit matrix Φ̃(s) has identical columns and the columns are stochastic, i.e.,

Φ̃(s) = φ̃(s)e′,

where φ̃(s) ∈ RmB1 is a stochastic vector for each s.

(c) For each j ∈ {1, . . . , mB1}, the entries [Φ̃(k, s)]ij, i = 1, ..., mB1, converge to the

same limit φ̃j(s) as k → ∞ with a geometric rate, i.e., for each j ∈ {1, . . . , mB1}
and all s ≥ 0,
∣∣∣[Φ̃(k, s)]ij − φ̃j(s)

∣∣∣ ≤ 2
1 + η−B2

1 − ηB2

(
1 − ηB2

)k−s
B2 for all k ≥ s and i ∈ {1, . . . , mB1},

where B2 = (m − 1)B + mB1.
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3.3 Convergence Result

In this section, we prove the convergence of the iterates of Eq. (1) to a consensus and
we provide a convergence rate estimate. Lemma 5 plays a key role in establishing these
results.

Proposition 1 Let Weights Rule, Connectivity, Bounded Intercommunication Interval,
and Bounded Delay assumptions hold [cf. Assumptions 1, 2, 3, and 4]. We then have:

(a) The sequences {xi(k)}, i = 1, . . . , m generated by Eq. (1) converge to a consensus,
i.e., there holds

lim
k→∞

xi(k) = x̄ for all i.

(b) The consensus vector x̄ ∈ Rm is a nonnegative combination of the agent initial
vectors xj(0), j = 1, . . . , m, i.e.,

x̄ =
m∑

j=1

wjx
j(0),

with scalars wj ≥ 0 for all j = 1, . . . , m, and such that
∑m

j=1 wj ≤ 1.

(c) The convergence rate to the consensus is geometric: for all agents i ∈ {1, . . . , m},

‖xi(k + 1) − x̄‖ ≤ 2
1 + η−B2

1 − ηB2

(
1 − ηB2

) k
B2

m∑

j=1

‖xj(0)‖ for all k ≥ 0,

where B2 = (m − 1)B + mB1.

Proof. In view of the equivalence between the evolution equations (1) for the original
system and the evolution equations (5) for enlarged system, it suffices to show that the
limit limk→∞ x̃i(k) exists for all computing nodes i ∈ {1, . . . , m}, and that these limits
are the same for all i ∈ {1, . . . , m}.

To show this, we consider the compact representation of Eq. (5), which is given in
Eq. (10). Letting s = 0 in relation (10), we obtain for any agent i = {1, . . . , mB1} in
the enlarged system,

x̃i(k + 1) =
mB1∑

j=1

[Φ̃(k, 0)]ijx
j(0) for all k ≥ 0.

Recall that the initial vectors x̃i(0) for computing agents i ∈ {1, . . . , m} in the enlarged
system are the same as the initial vectors xi(0) of agents i in the original system, and
that the initial vectors x̃i(0) are zero for noncomputing agents i ∈ {m+1, . . . , mB1} [cf.
Eq. (6)]. Thus, we have

x̃i(k + 1) =
m∑

j=1

[Φ̃(k, 0)]ijx
j(0) for all k ≥ 0. (28)
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By Lemma 5, we have for all j,
∣∣∣[Φ̃(k, 0)]ij − φ̃j(0)

∣∣∣ ≤ 2
1 + η−B2

1 − ηB2

(
1 − ηB2

) k
B2 for all k ≥ 0 and i ∈ {1, . . . , mB1},

where φ̃(0) ∈ RmB1 is a stochastic vector with components φ̃j(0). Therefore,

lim
k→∞

x̃i(k + 1) =
m∑

j=1

φ̃j(0)xj(0) for all i = 1, . . . , m,

showing that

x̄ =
m∑

j=1

φ̃j(0)xj(0). (29)

This establishes the results in parts (a) and (b), where wj = φ̃j(0) and the properties of
the weights wj follow from the stochasticity of the vector φ̃(0).

From relations (28) and (29), we obtain for any i ∈ {1, . . . , m} and any k ≥ 0,

‖x̃i(k+1)−x̄‖ ≤
m∑

j=1

∣∣∣[Φ̃(k, 0)]ij − φ̃j(0)
∣∣∣ ‖xj(0)‖ ≤ max

1≤h≤m

∣∣∣[Φ̃(k, 0)]ih − φ̃h(0)
∣∣∣

m∑

j=1

‖xj(0)‖.

The rate estimate in part (c) follows immediately from the preceding relation and part
(c) of Lemma 5.

As indicated in the proof of the preceding proposition [cf. Eqs. (28) and (29)], the
consensus value x̄ is a function of the vector φ̃(0) defining the limit of the transition
matrices Φ̃(k, 0) as k → ∞, i.e., the vector φ̃(0) for which

lim
k→∞

Φ̃(k, 0) = φ̃(0)e′.

The transition matrices depend on the maximum delay B1 in the system, and therefore
the vector φ̃(0) is also a function of B1. Hence, the consensus value x̄ implicitly depends
on the delay bound B1 through the vector φ̃(0). This dependence can be made more
explicit by focusing on more structured weight choices ai

j(k) and topologies for the agent
communication network.

4 Conclusions

We considered an algorithm for the consensus problem in the presence of delay in the
agent values. Our analysis relies on reducing the problem to a consensus problem in
an enlarged agent system without delays. We studied properties of the reduced model
and through these properties, we established the convergence and rate of convergence
properties for the consensus problem with delays. Our convergence rate estimate is
explicitly given in terms of the system parameters. Furthermore, our rate result shows a
geometric convergence to consensus. Future work includes incorporating the delayed
consensus algorithm in the distributed optimization framework developed in [13] to
account for delays in agent values.
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