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Abstract

In this paper, we study methods for generating approximate primal solutions as a
by-product of subgradient methods applied to the Lagrangian dual of a primal convex
(possibly nondifferentiable) constrained optimization problem. Our work is motivated
by constrained primal problems with a favorable dual problem structure that leads
to efficient implementation of dual subgradient methods, such as the recent resource
allocation problems in large-scale networks.

For such problems, we propose and analyze dual subgradient methods that use av-
eraging schemes to generate approximate primal optimal solutions. These algorithms
use a constant stepsize in view of its simplicity and practical significance. We provide
estimates on the primal infeasibility and primal sub-optimality of the generated approx-
imate primal solutions. These estimates are given per iteration, thus providing a basis
for analyzing the trade-offs between the desired level of error and the selection of the
stepsize value. Our analysis relies on the Slater condition and the inherited boundedness
properties of the dual problem under this condition. It also relies on the boundedness
of subgradients, which is ensured by assuming the compactness of the constraint set.
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1 Introduction

Lagrangian relaxation and duality have been effective tools for solving large-scale con-
vex optimization problems and for systematically providing lower bounds on the optimal
value of nonconvex (continuous and discrete) optimization problems. Subgradient meth-
ods have played a key role in this framework providing computationally efficient means
to obtain near-optimal dual solutions and bounds on the optimal value of the original
optimization problem. Most remarkably, in networking applications, over the last few
years, subgradient methods have been used with great success in developing decentral-
ized cross-layer resource allocation mechanisms (see Low and Lapsley [18], Shakkottai
and Srikant [30], and Srikant [33] for more on this subject).

Subgradient methods for solving nondifferentiable problems have been studied ex-
tensively starting with Polyak [26] and Ermoliev [9]. Their convergence properties under
various stepsize rules have been established, for example, in Shor [32], Demyanov and
Vasilev [8], Polyak [27], Hiriart-Urruty and Lemaréchal [10], Bertsekas [4], and Bertsekas
et. al [5]. Non-asymptotic convergence rate estimates have been provided in the seminal
work of Nemirovski and Yudin [23, 24], and more recently in Ben-Tal et. al [2], Ben-Tal
and Nemirovski [3], and Nesterov [25]. Numerous extensions and implementations in-
cluding parallel and incremental versions have been proposed and analyzed (for example,
see Ben-Tal et. al [2], Ben-Tal and Nemirovski [3], Kiwiel and Lindberg [13], Zhao et. al
[35], Nedić and Bertsekas [20], [21], and Nedić et. al [22]).

Our development in this paper is motivated by problems with a favorable dual struc-
ture, so that solving the problem using dual subgradient methods leads to efficient
implementations.1 For such problems, we develop methods that exploit the subgradi-
ent information generated in the dual space directly to construct approximate primal
solutions with explicit error estimates. Our methods use an averaging scheme that con-
structs primal solutions by forming running averages of the primal iterates generated
when evaluating the subgradient of the dual function. We provide convergence rate
estimates for the infeasibility and error estimates on sub-optimality of the generated
approximate primal solutions.

Averaging schemes for generating primal solutions have been studied in a number of
earlier works. Primal-averaging was first proposed and analyzed within a primal-dual
subgradient method by Nemirovski and Yudin [23]. Subsequently, a related primal-
averaging scheme based on subgradient information generated by a dual subgradient
method have been proposed for linear (primal) optimization problems by Shor [32], and
applied to a scheduling problem by Zhurbenko et. al [36]. Shor’s ideas have been further
developed and computationally tested by Larsson and Liu [14]. Sherali and Choi [31]
have extended these results to allow for more general averaging schemes (i.e., more
general choices of the weights for convex combinations) and a wider class of stepsize
choices. More recently, Larsson et. al generalized these results in a series of papers (see
[15], [16], [17]) to convex constrained optimization problems and demonstrated promising
applications of these schemes in the context of traffic equilibrium and road pricing.

1Section 2.2 illustrates a motivating example of a network resource allocation problem, where the
use of dual subgradient methods leads to decentralized resource allocation policies for communication
networks.
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Sen and Sherali [29] have studied a more complex scheme combining a subgradient
method and an auxiliary penalty problem to recover primal solutions. A dual subgradient
method producing primal solutions, the volume algorithm, for linear problems have
been proposed by Barahona and Anbil [1]. They have reported experimental results
for several problems including set partitioning, set covering, and max-cut, but have not
analyzed the convergence properties of the algorithm. Kiwiel et. al [12] have studied the
convergence of primal-averaging in dual subgradient methods using a target-level based
stepsize. Recently, Nesterov [25] has proposed a subgradient algorithm using averaging
and provided convergence rate estimates assuming the availability of a bound on the
Euclidean norm of an optimal solution. Nesterov’s algorithm generates a solution to a
convex minimization problem, and it is not a primal-recovery scheme. More recently,
Ruszczynski [28] has proposed a new subgradient method that uses averaging to identify
both an optimal solution of a convex minimization problem and a subgradient that
appears in the optimality condition.

Among the papers cited above, our work is most closely related to the primal-recovery
algorithms of Shor [32], Sherali and Choi [31], Larsson et. al [15], [16], [17], and Kiwiel et.
al [12]. The focus of these works is on exact recovery methods for primal solutions and the
convergence properties for diminishing stepsize rules (with divergent sum).2 In contrast,
our focus in this paper is on methods generating approximate primal solutions for general
(possibly nondifferentiable) convex constrained optimization problems and providing
convergence rate guarantees. We consider subgradient methods that use a constant
stepsize, mainly because of its practical importance and simplicity for implementations.
We provide convergence rate estimates for the approximate solutions under the Slater
constraint qualification, including estimates for the amount of feasibility violation, and
upper and lower bounds for the primal objective function. Moreover, our estimates are
per-iteration and illustrate the tradeoffs between the approximate solution error and the
stepsize value.

The paper is organized as follows: In Section 2, we define the primal and dual
problems, and provide an explicit bound on the level sets of the dual function under
Slater condition. In Section 3, we consider a subgradient method with a constant stepsize
and study its properties under Slater. In Section 4, we introduce approximate primal
solutions generated through averaging and provide bounds on their feasibility violation
and primal cost values. In Section 5, we consider an alternative to the basic subgradient
method based on the boundedness properties of the dual optimal solution set under the
Slater condition, and we provide error estimates for the generated approximate primal
solutions. We conclude in Section 6 by summarizing our work and providing some
comments.

2 Primal and Dual Problems

In this section, we formulate the primal and dual problems of interest. We provide a
motivating example for the use of dual subgradient methods and give some preliminary

2The exception is the paper [12] where a target-level based stepsize (i.e., a modification of Polyak’s
stepsize [26]) has been considered.

3



results that we use in the subsequent development. We start by introducing the notation
and the basic terminology that we use throughout the paper.

2.1 Notation and Terminology

We consider the n-dimensional vector space Rn and the m-dimensional vector space
Rm. We view a vector as a column vector, and we denote by x′y the inner product of
two vectors x and y. We use ‖y‖ to denote the standard Euclidean norm, ‖y‖ =

√
y′y.

Occasionally, we also use the standard 1-norm and ∞-norm denoted respectively by ‖y‖1

and ‖y‖∞, i.e., ‖y‖1 =
∑

i |yi| and ‖y‖∞ = maxi |yi|. We write dist(ȳ, Y ) to denote the
standard Euclidean distance of a vector ȳ from a set Y , i.e.,

dist(ȳ, Y ) = inf
y∈Y

‖ȳ − y‖.

For a vector u ∈ Rm, we write u+ to denote the projection of u on the nonnegative
orthant in Rm, i.e., u+ is the component-wise maximum of the vector u and the zero
vector:

u+ = (max{0, u1}, · · · , max{0, um})′ for u = (u1, · · · , um)′.

For a concave function q : Rm → [−∞,∞], we denote the domain of q by dom(q),
where

dom(q) = {µ ∈ Rm | q(µ) > −∞}.

We use the notion of a subgradient of a concave function q(µ). In particular, a sub-
gradient sµ̄ of a concave function q(µ) at a given vector µ̄ ∈ dom(q) provides a linear
overestimate of the function q(µ) for all µ ∈ dom(q). We use this as the subgradient
defining property: sµ̄ ∈ Rm is a subgradient of a concave function q(µ) at a given vector
µ̄ ∈ dom(q) if the following relation holds:

q(µ̄) + s′µ̄(µ− µ̄) ≥ q(µ) for all µ ∈ dom(q). (1)

The set of all subgradients of q at µ̄ is denoted by ∂q(µ̄).
In this paper, we focus on the following constrained optimization problem:

minimize f(x)
subject to g(x) ≤ 0

x ∈ X, (2)

where f : Rn → R is a convex function, g = (g1, . . . , gm)′ and each gj : Rn → R is a
convex function, and X ⊂ Rn is a nonempty closed convex set. We refer to this as the
primal problem. We denote the primal optimal value by f ∗, and throughout this paper,
we assume that the value f ∗ is finite.

To generate approximate solutions to the primal problem in (2), we consider solving
its dual using subgradient methods. Here, the dual problem is the one arising from the
Lagrangian relaxation of the inequality constraints g(x) ≤ 0, and it is given by

maximize q(µ)
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subject to µ ≥ 0
µ ∈ Rm, (3)

where q is the dual function defined by

q(µ) = inf
x∈X

{f(x) + µ′g(x)}. (4)

We often refer to a vector µ ∈ Rm with µ ≥ 0 as a multiplier. We denote the dual
optimal value by q∗ and the dual optimal set by M∗. We say that there is zero duality
gap if the optimal values of the primal and the dual problems are equal, i.e., f ∗ = q∗.

We assume that the minimization problem associated with the evaluation of the
dual function q(µ) has a solution for every µ ≥ 0. This is the case, for instance, when
the set X is compact (since f and g′js are continuous due to being convex over Rn).
Furthermore, we assume that the minimization problem in Eq. (4) is simple enough so
that it either has a closed form solution or it can be solved efficiently. For example,
this is the case when the functions f and gj’s are affine or affine plus norm-square term
[i.e., c‖x‖2 + a′x + b], and the set X is a nonnegative orthant or a box in Rn. Many
practical problems of interest, such as those arising in network optimization (see Section
2.2), often have this structure.

In our subsequent development, we consider subgradient methods as applied to the
dual problem given by Eqs. (3) and (4). Due to the form of the dual function q, the
subgradients of q at a vector µ are related to the primal vectors xµ attaining the minimum
in Eq. (4). Specifically, the set ∂q(µ) of subgradients of q at a given µ ≥ 0 is given by

∂q(µ) = conv ({g(xµ) | xµ ∈ Xµ}) , Xµ = {xµ ∈ X | q(µ) = f(xµ) + µ′g(xµ)}, (5)

where conv(Y ) denotes the convex hull of a set Y .
Before proceeding with our analysis, we discuss an example that motivates the sub-

sequent development of dual subgradient methods.

2.2 Motivating Example

Here, we describe the canonical utility-based network resource allocation problem and
briefly discuss how dual subgradient methods lead to decentralized policies that can be
used over a network. This approach was proposed in the seminal work of Kelly [11] and
further developed by Low and Lapsley [18], Shakkottai and Srikant [30], and Srikant
[33].

Consider a network that consists of a set S = {1, . . . , S} of sources and a set L =
{1, . . . , L} of undirected links, where a link l has capacity cl. Let L(i) ⊂ L denote the
set of links used by source i. The application requirements of source i is represented by a
concave increasing utility function ui : [0,∞) → [0,∞), i.e., each source i gains a utility
ui(xi) when it sends data at a rate xi. We further assume that rate xi is constrained to
lie in the interval Ii = [0, Mi] for all i ∈ S, where the scalar Mi denotes the maximum
allowed rate for source i. Let S(l) = {i ∈ S | l ∈ L(i)} denote the set of sources that
use link l. The goal of the network utility maximization problem is to allocate the source
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rates as the optimal solution of the problem

maximize
∑
i∈S

ui(xi) (6)

subject to
∑

i∈S(l)

xi ≤ cl for all l ∈ L

xi ∈ Ii for all i ∈ S. (7)

Solving problem (6) directly by applying existing subgradient methods (such as,
for example, the method of centres of gravity of Nemirovsky and Yudin [24]3) requires
coordination among sources and therefore may be impractical for real networks. This is
because in real networks, such as the Internet, there is no central entity that has access
to both the source utility functions and the capacity of all the links in the network. The
utility function ui(xi) is known only by source i, while the link capacities may be known
only by “network providers”. At the same time, in view of the separable structure of
the objective and constraint functions, the dual problem can be evaluated exactly while
using decentralized information. In particular, the dual problem of (6) is given by (3),
where the dual function takes the form

q(µ) = max
xi∈Ii, i∈S

∑
i∈S

ui(xi)−
∑
l∈L

µl

( ∑
i∈S(l)

xi − cl

)
= max

xi∈Ii, i∈S

∑
i∈S

(
ui(xi)− xi

∑
l∈L(i)

µl

)
+
∑
l∈L

µlcl.

Since the optimization problem on the right-hand side of the preceding relation is sep-
arable in the variables xi, the problem decomposes into subproblems for each source i.
Letting µi =

∑
l∈L(i) µl for each i (i.e., µi is the sum of the multipliers corresponding to

the links used by source i), we can write the dual function as

q(µ) =
∑
i∈S

max
xi∈Ii

{ui(xi)− xiµi}+
∑
l∈L

µlcl.

Hence, to evaluate the dual function, each source i needs to solve the one-dimensional
optimization problem maxxi∈Ii

{ui(xi)−xiµi}. This involves only its own utility function
ui and the value µi, which is available to source i in practical networks (through a direct
feedback mechanism from its destination).

This favorable structure of the dual problem has motivated much interest in using
dual subgradient methods to solve the network utility maximization problem in an it-
erative decentralized manner (see Chiang et. al [6]). Other problems where the dual
problem has a structure that allows exact evaluation of the dual function using local
information include the problem of processor speed control considered by Mutapcic et.
al [19], and the traffic equilibrium and road pricing problems considered by Larsson et.
al [15], [16], [17].

3See also Lecture Notes by Nemirovski at http://www2.isye.gatech.edu/ nemirovs/Lect EMCO.pdf.
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2.3 Slater Condition and Boundedness of the Multiplier Sets

In this section, we consider sets of the form {µ ≥ 0 | q(µ) ≥ q(µ̄)} for a fixed µ̄ ≥ 0,
which are obtained by intersecting the nonnegative orthant in Rm and (upper) level
sets of the concave dual function q. We show that these sets are bounded when the
primal problem satisfies the standard Slater constraint qualification, formally given in
the following.

Assumption 1 (Slater Condition) There exists a vector x̄ ∈ X such that

gj(x̄) < 0 for all j = 1, . . . ,m.

We refer to a vector x̄ satisfying the Slater condition as a Slater vector.
Under the assumption that f ∗ is finite, it is well-known that the Slater condition is

sufficient for a zero duality gap as well as for the existence of a dual optimal solution (see
for example Bertsekas [4] or Bertsekas et. al [5]). Furthermore, the dual optimal set is
bounded (see Hiriart-Urruty and Lemaréchal [10]). This property of the dual optimal set
under the Slater condition, has been observed and used as early as in Uzawa’s analysis
of Arrow-Hurwicz gradient method in [34]. This property will be key in our subsequent
development and analysis.

The following proposition extends the result on the optimal dual set boundedness un-
der the Slater condition. In particular, it shows that the Slater condition also guarantees
the boundedness of the (level) sets {µ ≥ 0 | q(µ) ≥ q(µ̄)}.

Lemma 1 Let the Slater condition hold [cf. Assumption 1]. Then, the set Qµ̄ is
bounded and, in particular, we have

max
µ∈Qµ̄

‖µ‖ ≤ 1

γ
(f(x̄)− q(µ̄)) ,

where γ = min1≤j≤m{−gj(x̄)} and x̄ is a Slater vector.

Proof. We have for any µ ∈ Qµ̄,

q(µ̄) ≤ q(µ) = inf
x∈X

{f(x) + µ′g(x)} ≤ f(x̄) + µ′g(x̄) = f(x̄) +
m∑

j=1

µjgj(x̄),

implying that

−
m∑

j=1

µjgj(x̄) ≤ f(x̄)− q(µ̄).

Because gj(x̄) < 0 and µj ≥ 0 for all j, it follows that

min
1≤j≤m

{−gj(x̄)}
m∑

j=1

µj ≤ −
m∑

j=1

µjgj(x̄) ≤ f(x̄)− q(µ̄).
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Therefore,
m∑

j=1

µj ≤
f(x̄)− q(µ̄)

min1≤j≤m {−gj(x̄)}
.

Since µ ≥ 0, we have ‖µ‖ ≤
∑m

j=1 µj and the estimate follows.

It follows from the preceding Lemma that under the Slater condition, the dual opti-
mal set M∗ is nonempty. In particular, by noting that M∗ = {µ ≥ 0 | q(µ) ≥ q∗} and
by using Lemma 1, we see that

max
µ∗∈M∗

‖µ∗‖ ≤ 1

γ
(f(x̄)− q∗) , (8)

with γ = min1≤j≤m{−gj(x̄)}.
In practice, the dual optimal value q∗ is not readily available. However, having a

dual function value q(µ̃) for some µ̃ ≥ 0, we can still provide a bound on the norm of
the dual optimal solutions. In particular, since q∗ ≥ q(µ̃), from relation (8) we obtain
the following bound:

max
µ∗∈M∗

‖µ∗‖ ≤ 1

γ
(f(x̄)− q(µ̃)) .

Furthermore, having any multiplier sequence {µk}, we can use the dual function values
q(µk) to generate a sequence of (possibly improving) upper bounds on the dual optimal
solution norms ‖µ∗‖. Formally, since q∗ ≥ max0≤i≤k q(µi), from relation (8) we have

max
µ∗∈M∗

‖µ∗‖ ≤ 1

γ

(
f(x̄)− max

0≤i≤k
q(µi)

)
for all k ≥ 0.

Note that these bounds are nonincreasing in k. These bounds have important impli-
cations in the development and analysis of subgradient methods since they allow us to
“locate dual optimal solutions” by using only a Slater vector x̄ and a multiplier sequence
{µk} generated by a subgradient method.

Such bounds play a key role in our subsequent development. In particular, we use
these bounds to provide error estimates of our approximate solutions as well as to design
a dual algorithm that projects on a set containing the dual optimal solution.

3 Subgradient Method

To solve the dual problem, we consider the classical subgradient algorithm with a con-
stant stepsize:

µk+1 = [µk + αgk]
+ for k = 0, 1, . . . , (9)

where the vector µ0 ≥ 0 is an initial iterate and the scalar α > 0 is a stepsize. The
vector gk is a subgradient of q at µk given by

gk = g(xk), xk ∈ argmin
x∈X

{f(x) + µ′kg(x)} for all k ≥ 0 (10)

[see Eq. (5)].
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Our choice of the constant stepsize is primarily motivated by its practical importance
and in particular, because in practice the stepsize typically stays bounded away from
zero. Furthermore, the error estimates for this stepsize can be explicitly written in
terms of the problem parameters that are often available. Also, when implementing
a subgradient method with a constant stepsize rule, the stepsize length α is the only
parameter that a user has to select, which is often preferred to more complex stepsize
choices involving several stepsize parameters without a good guidance on their selection.

3.1 Basic Relations

In this section, we establish some basic relations that hold for a sequence {µk} obtained
by the subgradient algorithm of Eq. (9). These properties are important in our con-
struction of approximate primal solutions, and in particular, in our analysis of the error
estimates of these solutions.

We start with a lemma providing some basic relations that hold under minimal as-
sumptions. The relations given in this lemma have been known and used in various ways
to analyze subgradient approaches (for example, see Shor [32], Polyak [27], Demyanov
and Vasilyev [8], Correa and Lemaréchal [7], Nedić and Bertsekas [20], [21]). The proofs
are provided here for completeness.

Lemma 2 (Basic Iterate Relation) Let the sequence {µk} be generated by the subgra-
dient algorithm (9). We then have:

(a) For any µ ≥ 0,

‖µk+1 − µ‖2 ≤ ‖µk − µ‖2 − 2α (q(µ)− q(µk)) + α2‖gk‖2 for all k ≥ 0.

(b) When the optimal solution set M∗ is nonempty, there holds

dist2(µk+1, M
∗) ≤ dist2(µk, M

∗)− 2α (q∗ − q(µk)) + α2‖gk‖2 for all k ≥ 0,

where dist(y, Y ) denotes the Euclidean distance from a vector y to a set Y .

Proof. (a) By using the nonexpansive property of the projection operation, from
relation (9) we obtain for any µ ≥ 0 and all k,

‖µk+1 − µ‖2 =
∥∥[µk + αgk]

+ − µ
∥∥2 ≤ ‖µk + αgk − µ‖2 .

Therefore,

‖µk+1 − µ‖2 ≤ ‖µk − µ‖2 + 2αg′k(µk − µ) + α2‖gk‖2 for all k.

Since gk is a subgradient of q at µk [cf. Eq. (1)], we have

g′k(µ− µk) ≥ q(µ)− q(µk),
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implying that
g′k(µk − µ) ≤ − (q(µ)− q(µk)) .

Hence, for any µ ≥ 0,

‖µk+1 − µ‖2 ≤ ‖µk − µ‖2 − 2α (q(µ)− q(µk)) + α2‖gk‖2 for all k.

(b) By using the preceding relation with µ = µ∗ for any optimal solution µ∗, we obtain

‖µk+1 − µ∗‖2 ≤ ‖µk − µ∗‖2 − 2α (q∗ − q(µk)) + α2‖gk‖2 for all k ≥ 0.

The desired relation follows by taking the infimum over all µ∗ ∈ M∗ in both sides of the
preceding relation.

3.2 Bounded Multipliers

Here, we show that the multiplier sequence {µk} produced by the subgradient algorithm
is bounded under the Slater condition and the bounded subgradient assumption. We
formally state the latter requirement in the following.

Assumption 2 (Bounded Set X) The constraint set X in problem (2) is bounded.
Under this assumption, due to the convexity of the constraint functions gj over Rn,

each gj is continuous over Rn. Thus, maxx∈X ‖g(x)‖ is finite and provides an upper
bound on the norms of the subgradients gk, i.e.,

‖gk‖ ≤ L for all k ≥ 0, with L = max
x∈X

‖g(x)‖.

In the following lemma, we establish the boundedness of the multiplier sequence. In
this, we use the boundedness of the dual sets {µ ≥ 0 | q(µ) ≥ q(µ̄)} [cf. Lemma 1] and
the basic relation for the sequence {µk} of Lemma 2(a).

Lemma 3 (Bounded Multipliers) Let the multiplier sequence {µk} be generated by the
subgradient algorithm of Eq. (9). Also, let the Slater condition and the bounded set
assumption hold [cf. Assumptions 1 and 2]. Then, the sequence {µk} is bounded and,
in particular, we have

‖µk‖ ≤
2

γ
(f(x̄)− q∗) + max

{
‖µ0‖,

1

γ
(f(x̄)− q∗) +

αL2

2γ
+ αL

}
,

where γ = min1≤j≤m{−gj(x̄)}, x̄ is a Slater vector, L is the subgradient norm bound,
and α > 0 is the stepsize.
Proof. Under the Slater condition the optimal dual set M∗ is nonempty. Consider the
set Qα defined by

Qα =

{
µ ≥ 0 | q(µ) ≥ q∗ − αL2

2

}
,
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which is nonempty in view of M∗ ⊂ Qα. We fix an arbitrary µ∗ ∈ M∗ and we first prove
that for all k ≥ 0,

‖µk − µ∗‖ ≤ max

{
‖µ0 − µ∗‖, 1

γ
(f(x̄)− q∗) +

αL2

2γ
+ ‖µ∗‖+ αL

}
, (11)

where γ = min1≤j≤m{−gj(x̄)} and L is the bound on the subgradient norms ‖gk‖. Then,
we use Lemma 1 to prove the desired estimate.

We show that relation (11) holds by induction on k. Note that the relation holds for
k = 0. Assume now that it holds for some k > 0, i.e.,

‖µk − µ∗‖ ≤ max

{
‖µ0 − µ∗‖, 1

γ
(f(x̄)− q∗) +

αL2

2γ
+ ‖µ∗‖+ αL

}
for some k > 0.

(12)
We now consider two cases: q(µk) ≥ q∗ − αL2/2 and q(µk) < q∗ − αL2/2.

Case 1: q(µk) ≥ q∗−αL2/2. By using the definition of the iterate µk+1 in Eq. (9) and
the subgradient boundedness, we obtain

‖µk+1 − µ∗‖ ≤ ‖µk + αgk − µ∗‖ ≤ ‖µk‖+ ‖µ∗‖+ αL.

Since q(µk) ≥ q∗ − αL2/2, it follows that µk ∈ Qα. According to Lemma 1, the set Qα

is bounded and, in particular, ‖µ‖ ≤ 1
γ

(f(x̄)− q∗ + αL2/2) for all µ ∈ Qα. Therefore

‖µk‖ ≤
1

γ
(f(x̄)− q∗) +

αL2

2γ
.

By combining the preceding two relations, we obtain

‖µk+1 − µ∗‖ ≤ 1

γ
(f(x̄)− q∗) +

αL2

2γ
+ ‖µ∗‖+ αL,

thus showing that the estimate in Eq. (11) holds for k + 1.

Case 2: q(µk) < q∗ − αL2/2. By using Lemma 2(a) with µ = µ∗, we obtain

‖µk+1 − µ∗‖2 ≤ ‖µk − µ∗‖2 − 2α (q∗ − q(µk)) + α2‖gk‖2.

By using the subgradient boundedness, we further obtain

‖µk+1 − µ∗‖2 ≤ ‖µk − µ∗‖2 − 2α

(
q∗ − q(µk)−

αL2

2

)
.

Since q(µk) < q∗−αL2/2, it follows that q∗− q(µk)−αL2/2 > 0, which when combined
with the preceding relation yields

‖µk+1 − µ∗‖ < ‖µk − µ∗‖.

By the induction hypothesis [cf. Eq. (12)], it follows that the estimate in Eq. (11) holds
for k + 1 as well. Hence, the estimate in Eq. (11) holds for all k ≥ 0.

11



From Eq. (11) we obtain for all k ≥ 0,

‖µk‖ ≤ ‖µk−µ∗‖+‖µ∗‖ ≤ max

{
‖µ0 − µ∗‖, 1

γ
(f(x̄)− q∗) +

αL2

2γ
+ ‖µ∗‖+ αL

}
+‖µ∗‖.

By using ‖µ0 − µ∗‖ ≤ ‖µ0‖+ ‖µ∗‖, we further have for all k ≥ 0,

‖µk‖ ≤ max

{
‖µ0‖+ ‖µ∗‖, 1

γ
(f(x̄)− q∗) +

αL2

2γ
+ ‖µ∗‖+ αL

}
+ ‖µ∗‖

= 2‖µ∗‖+ max

{
‖µ0‖,

1

γ
(f(x̄)− q∗) +

αL2

2γ
+ αL

}
.

Since M∗ = {µ ≥ 0 | q(µ) ≥ q∗}, according to Lemma 1, we have the following bound
on the dual optimal solutions

max
µ∗∈M∗

‖µ∗‖ ≤ 1

γ
(f(x̄)− q∗) ,

implying that for all k ≥ 0,

‖µk‖ ≤ 2

γ
(f(x̄)− q∗) + max

{
‖µ0‖,

1

γ
(f(x̄)− q∗) +

αL2

2γ
+ αL

}
.

The error estimate of Lemma 3 depends explicitly on the dual optimal value q∗. In
practice, the value q∗ is not readily available. However, since q∗ ≥ q(µ0), by replacing
q∗ with q(µ0), we have obtain the following norm bound for the multiplier sequence:

‖µk‖ ≤
2

γ
(f(x̄)− q(µ0)) + max

{
‖µ0‖,

1

γ
(f(x̄)− q(µ0)) +

αL2

2γ
+ αL

}
,

where γ = min1≤j≤m{−gj(x̄)}. Note that this bound depends on the algorithm pa-
rameters and problem data only. Specifically, it involves the initial iterate µ0 of the
subgradient method, the stepsize α, the vector x̄ satisfying the Slater condition, and the
subgradient norm bound L. In some practical applications, such as those in network op-
timization, such data is readily available. One may think of optimizing this bound with
respect to the Slater vector x̄. This might be an interesting and challenging problem on
its own. However, this is outside the scope of our paper.

4 Approximate Primal Solutions

In this section, we provide approximate primal solutions by considering the running
averages of the primal sequence {xk} generated as a by-product of the subgradient
method [cf. Eq. (10)]. Intuitively, one would expect that, by averaging, the primal cost
and the amount of constraint violation of primal infeasible vectors can be reduced due
to the convexity of the cost and the constraint functions. It turns out that the benefits

12



of averaging are far more reaching than merely cost and infeasibility reduction. We
show here that under the Slater condition, we can also provide upper bounds for the
number of subgradient iterations needed to generate a primal solution within a given
level of constraint violation. We also derive upper and lower bounds on the gap from the
optimal primal value. These bounds depend on some assumptions and prior information
such as a Slater vector and a bound on subgradient norms.

We now introduce the notation that we use in our averaging scheme throughout the
rest of the paper. We consider the multiplier sequence {µk} generated by the subgradient
algorithm of Eq. (9), and the corresponding sequence of primal vectors {xk} ⊂ X that
provide the subgradients gk in the algorithm , i.e.,

gk = g(xk), xk ∈ argmin
x∈X

{f(x) + µ′kg(x)} for all k ≥ 0

[cf. Eq. (10)]. We define x̂k as the average of the vectors x0, . . . , xk−1, i.e.,

x̂k =
1

k

k−1∑
i=0

xi for all k ≥ 1. (13)

The average vectors x̂k lie in the set X because X is convex and xi ∈ X for all i.
However, these vectors need not satisfy the primal inequality constraints gj(x) ≤ 0,
j = 1, . . . ,m, and therefore, they can be primal infeasible.

In the rest of this section, we study some basic properties of the average vectors x̂k.
Using these properties and the Slater condition, we provide estimates for the primal
optimal value and the feasibility violation at each iteration of the subgradient method.

4.1 Basic Properties of the Averaged Primal Sequence

In this section, we provide upper and lower bounds on the primal cost of the running
averages x̂k. We also provide an upper and a lower bound on the amount of feasibility
violation of these vectors. These bounds are given per iteration, as seen in the following.

Proposition 1 Let the multiplier sequence {µk} be generated by the subgradient
method of Eq. (9). Let the vectors x̂k for k ≥ 1 be the averages given by Eq. (13).
Then, for all k ≥ 1, the following hold:

(a) An upper bound on the amount of constraint violation of the vector x̂k is given by

∥∥g(x̂k)
+
∥∥ ≤ ‖µk‖

kα
.

(b) An upper bound on the primal cost of the vector x̂k is given by

f(x̂k) ≤ q∗ +
‖µ0‖2

2kα
+

α

2k

k−1∑
i=0

‖g(xi)‖2.

13



(c) A lower bound on the primal cost of the vector x̂k is given by

f(x̂k) ≥ q∗ − ‖µ∗‖‖g(x̂k)
+‖,

where µ∗ is a dual optimal solution.

Proof. (a) By using the definition of the iterate µk+1 in Eq. (9), we obtain

µk + αgk ≤ [µk + αgk]
+ = µk+1 for all k ≥ 0.

Since gk = g(xk) with xk ∈ X, it follows that

αg(xk) ≤ µk+1 − µk for all k ≥ 0.

Therefore,
k−1∑
i=0

αg(xi) ≤ µk − µ0 ≤ µk for all k ≥ 1,

where the last inequality in the preceding relation follows from µ0 ≥ 0. Since xk ∈ X
for all k, by the convexity of X, we have x̂k ∈ X for all k. Hence, by the convexity of
each of the functions gj, it follows that

g(x̂k) ≤
1

k

k−1∑
i=0

g(xi) =
1

kα

k−1∑
i=0

αg(xi) ≤
µk

kα
for all k ≥ 1.

Because µk ≥ 0 for all k, we have g(x̂k)
+ ≤ µk/(kα) for all k ≥ 1 and, therefore,

∥∥g(x̂k)
+
∥∥ ≤ ‖µk‖

kα
for all k ≥ 1.

(b) By the convexity of the primal cost f(x) and the definition of xk as a minimizer of
the Lagrangian function f(x) + µ′kg(x) over x ∈ X [cf. Eq. (10)], we have

f(x̂k) ≤
1

k

k−1∑
i=0

f(xi) =
1

k

k−1∑
i=0

{f(xi) + µ′ig(xi)} −
1

k

k−1∑
i=0

µ′ig(xi).

Since q(µi) = f(xi) + µ′ig(xi) and q(µi) ≤ q∗ for all i, it follows that for all k ≥ 1,

f(x̂k) ≤
1

k

k−1∑
i=0

q(µi)−
1

k

k−1∑
i=0

µ′ig(xi) ≤ q∗ − 1

k

k−1∑
i=0

µ′ig(xi). (14)

From the definition of the algorithm in Eq. (9), by using the nonexpansive property of
the projection, and the facts 0 ∈ {µ ∈ Rm | µ ≥ 0} and gi = g(xi), we obtain

‖µi+1‖2 ≤ ‖µi‖2 + 2αµ′ig(xi) + α2‖g(xi)‖2 for all i ≥ 0,
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implying that

−µ′ig(xi) ≤
‖µi‖2 − ‖µi+1‖2 + α2‖g(xi)‖2

2α
for all i ≥ 0.

By summing over i = 0, . . . , k − 1 for k ≥ 1, we have

−1

k

k−1∑
i=0

µ′ig(xi) ≤
‖µ0‖2 − ‖µk‖2

2kα
+

α

2k

k−1∑
i=0

‖g(xi)‖2 for all k ≥ 1.

Combining the preceding relation and Eq. (14), we further have

f(x̂k) ≤ q∗ +
‖µ0‖2 − ‖µk‖2

2kα
+

α

2k

k−1∑
i=0

‖g(xi)‖2 for all k ≥ 1,

implying the desired estimate.

(c) Given a dual optimal solution µ∗, we have

f(x̂k) = f(x̂k) + (µ∗)′g(x̂k)− (µ∗)′g(x̂k) ≥ q(µ∗)− (µ∗)′g(x̂k).

Because µ∗ ≥ 0 and g(x̂k)
+ ≥ g(x̂k), we further have

−(µ∗)′g(x̂k) ≥ −(µ∗)′g(x̂k)
+ ≥ −‖µ∗‖‖g(x̂k)

+‖.

From the preceding two relations and the fact q(µ∗) = q∗ it follows that

f(x̂k) ≥ q∗ − ‖µ∗‖‖g(x̂k)
+‖.

An immediate consequence of Proposition 1(a) is that the maximum violation ‖g(x̂k)
+‖∞

of constraints gj(x), j = 1, . . . ,m, at x = x̂k is bounded by the same bound. In partic-
ular, we have

max
1≤j≤m

gj(x̂k)
+ ≤ ‖µk‖

kα
for all k ≥ 1.

which follows from the proposition in view of the relation ‖y‖∞ ≤ ‖y‖ for any y.
We note that the results of Proposition 1 in parts (a) and (c) show how the amount of

feasibility violation ‖g(x̂k)
+‖ affects the lower estimate of f(x̂k). Furthermore, we note

that the results of Proposition 1 indicate that the bounds on the feasibility violation
and the primal value f(x̂k) are readily available provided that we have bounds on the
multiplier norms ‖µk‖, optimal solution norms ‖µ∗‖, and subgradient norms ‖g(xk)‖.
This is precisely what we use in the next section to establish our estimates.

Let us also note that the bounds on the primal cost of Proposition 1 in parts (b)
and (c) hold for a more general subgradient algorithm than the algorithm of Eq. (9).
In particular, the result in part (c) is independent of the algorithm that is used to
generate the multiplier sequence {µk}. The proof of the result in part (c) relies on the
nonexpansive property of the projection operation and the fact that the zero vector
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belongs to the projection set {µ ∈ Rm | µ ≥ 0}. Therefore, the results in parts (b) and
(c) hold when we use a more general subgradient algorithm of the following form:

µk+1 = PD[µk + αgk] for k ≥ 1,

where D ⊆ {µ ∈ Rm | µ ≥ 0} is a closed convex set containing the zero vector. We study
a subgradient algorithm of this form in Section 5 and establish similar error estimates.

Finally, bounds similar to those of Proposition 1 can be established for a multiplier
sequence {µk} generated by a subgradient algorithm that uses a general (nonequal)
stepsize sequence. In particular, given a stepsize sequence {αk} and an initial iterate
µ0 ≥ 0, consider the subgradient method

µk+1 = [µk + αkgk]
+ for k = 0, 1, . . . , (15)

where gk is given by

gk = g(xk), xk ∈ argmin
x∈X

{f(x) + µ′kg(x)} for all k ≥ 0.

Define x̃k as the convex combination of the vectors x0, . . . , xk−1 with weights α0, . . . αk−1,

x̃k =

∑k−1
i=0 αixi∑k−1
i=0 αi

. (16)

Following a similar analysis to that of Proposition 1, we establish the following estimates
for the weighted-average vectors x̃k.

Proposition 2 Let the multiplier sequence {µk} be generated by the subgradient
method of Eq. (15). Let the vectors x̃k for k ≥ 1 be the averages given by Eq. (16).
Then, for all k ≥ 1, the following hold:

(a) An upper bound on the amount of constraint violation of the vector x̃k is given by

∥∥g(x̃k)
+
∥∥ ≤ ‖µk‖∑k−1

i=0 αi

.

(b) An upper bound on the primal cost of the vector x̃k is given by

f(x̃k) ≤ q∗ +
‖µ0‖2

2
∑k−1

i=0 αi

+

∑k−1
i=0 α2

i ‖g(xi)‖2

2
∑k−1

i=0 αi

.

(c) A lower bound on the primal cost of the vector x̃k is given by

f(x̃k) ≥ q∗ − ‖µ∗‖‖g(x̃k)
+‖,

where µ∗ is a dual optimal solution.

16



4.2 Properties of the Averaged Primal Sequence under Slater

Here, we strengthen the relations of Proposition 1 under the Slater condition and the
boundedness of the set X. Our main result is given in the following proposition.

Proposition 3 Let the sequence {µk} be generated by the subgradient algorithm (9).
Let the Slater condition and the bounded set assumption hold [cf. Assumptions 1 and
2]. Also, let

B∗ =
2

γ
(f(x̄)− q∗) + max

{
‖µ0‖,

1

γ
(f(x̄)− q∗) +

αL2

2γ
+ αL

}
. (17)

Let the vectors x̂k for k ≥ 1 be the averages given by Eq. (13). Then, the following
holds for all k ≥ 1:

(a) An upper bound on the amount of constraint violation of the vector x̂k is given by

‖g(x̂k)
+‖ ≤ B∗

kα
.

(b) An upper bound on the primal cost of the vector x̂k is given by

f(x̂k) ≤ f ∗ +
‖µ0‖2

2kα
+

αL2

2
.

(c) A lower bound on the primal cost of the vector x̂k is given by

f(x̂k) ≥ f ∗ − 1

γ
[ f(x̄)− q∗ ] ‖g(x̂k)

+‖.

Proof. (a) Under the assumptions, by Lemma 3 we have

‖µk‖ ≤
2

γ
(f(x̄)− q∗) + max

{
‖µ0‖,

1

γ
(f(x̄)− q∗) +

αL2

2γ
+ αL

}
for all k ≥ 0.

By the definition of B∗ in Eq. (17), the preceding relation is equivalent to

‖µk‖ ≤ B∗ for all k ≥ 0. (18)

By using Proposition 1(a), we obtain

‖g(x̂k)
+‖ ≤ ‖µk‖

kα
≤ B∗

kα
for all k ≥ 1.

(b) From Proposition 1(b), we obtain

f(x̂k) ≤ q∗ +
‖µ0‖2

2kα
+

α

2k

k−1∑
i=0

‖g(xi)‖2 for all k ≥ 1.
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Under the Slater condition, there is zero duality gap, i.e., q∗ = f ∗. Furthermore, the
subgradients are bounded by a scalar L [cf. Assumption 2], so that

f(x̂k) ≤ f ∗ +
‖µ0‖2

2kα
+

αL2

2
for all k ≥ 1.

(c) Under the Slater condition, a dual optimal solution exists and there is zero duality
gap, i.e., q∗ = f ∗. Thus, by Proposition 1(c), for any dual solution µ∗ we have

f(x̂k) ≥ f ∗ − ‖µ∗‖‖g(x̂k)
+‖ for all k ≥ 1.

By using Lemma 1 with µ̄ = µ∗, we see that the dual set is bounded and, in particular,
‖µ∗‖ ≤ 1

γ
(f(x̄)− q∗) for all dual optimal vectors µ∗. Hence,

f(x̂k) ≥ f ∗ − 1

γ
[ f(x̄)− q∗ ] ‖g(x̂k)

+‖ for all k ≥ 1.

It seems reasonable to choose the initial iterate as µ0 = 0, as suggested by the upper
bound for f(x̂k) in part (b) Proposition 3. In this case, the bound B∗ in part (a), with
q∗ = f ∗, reduces to

B∗ =
3

γ
[f(x̄)− f ∗] +

αL2

2γ
+ αL for k ≥ 1, (19)

while the estimate in part (b) reduces to

f(x̂k) ≤ f ∗ +
αL2

2
for all k ≥ 1. (20)

Using the preceding two relations, one can estimate the order of the number of iterations
needed to achieve an ε-feasible and ε-optimal solution.4 In particular, to achieve the ε-
optimality, from Eq. (20) the stepsize should satisfy α ≤ 2ε/L2. Assuming for the sake
of simplicity, that the term 1

γ
[f(x̄)− f ∗] is dominant in Eq. (19), to obtain ε-feasibility,

the number of iterations k should satisfy k ≥ [f(x̄)−f∗] L2

cγε2
, where c is some constant

independent of ε. Thus, to achieve ε-feasible and ε-optimal solution, the number of
iterations is of the order 1/ε2, which is typical for subgradient methods.

The results can alternatively be interpreted for a fixed stepsize value α. In this
case, by Proposition 3(a), the amount of feasibility violation ‖g(x̂k)

+‖ of the vector x̂k

diminishes to zero as the number of subgradient iterations k increases. By combining
the results in (a)-(c), we see that the limits of the function values f(x̂k), as k →∞, are
within the range [f ∗, f∗ + αL2/2].

Finally, we note that a more practical bound than the bound B∗ in Proposition 3 can
be obtained by using max0≤i≤k q(µi) as an approximation of the optimal value f ∗ = q∗.

4We thank an anonymous referee for this insight.
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5 Modified Subgradient Method under Slater

In this section, we consider a modified version of the subgradient method under the Slater
assumption. The motivation is coming from the fact that under the Slater assumption,
the set of dual optimal solutions is bounded (cf. Lemma 1). Therefore, it is of interest
to consider a subgradient method in which dual iterates are projected onto a bounded
superset of the dual optimal solution set. We consider such algorithms and generate
primal solutions using averaging as described in Section 4. Also, we provide estimates
for the amount of constraint violation and cost of the average primal sequence. Our
goal is to compare these estimates with the error estimates obtained for the “ordinary”
subgradient method in Section 4.

Formally, we consider subgradient methods of the following form:

µk+1 = PD [µk + αgk], (21)

where the set D is a compact convex set containing the set of dual optimal solutions (to
be discussed shortly) and PD denotes the projection on the set D. The vector µ0 ∈ D
is an arbitrary initial iterate and the scalar α > 0 is a constant stepsize. The vector gk

is a subgradient of q at µk given by

gk = g(xk), xk ∈ argmin
x∈X

{f(x) + µ′kg(x)} for all k ≥ 0,

[see Eq. (5)].
Under the Slater condition, the dual optimal set M∗ is nonempty and bounded, and

a bound on the norms of the dual optimal solutions is given by

m∑
j=1

µ∗j ≤
1

γ
(f(x̄)− q∗) for all µ∗ ∈ M∗,

with γ = min1≤j≤m{−gj(x̄)} [cf. Lemma 1]. Thus, having the dual value q̃ = q(µ̃) for
some µ̃ ≥ 0, since q∗ ≥ q̃, we obtain

m∑
j=1

µ∗j ≤
1

γ
(f(x̄)− q̃) for all µ∗ ∈ M∗. (22)

This motivates the following choice for the set D:

D =

{
µ ≥ 0

∣∣∣ ‖µ‖ ≤ f(x̄)− q̃

γ
+ r

}
, (23)

with a scalar r > 0. Clearly, the set D is compact and convex, and it contains the set
of dual optimal solutions in view of relation (22) and the fact ‖y‖ ≤ ‖y‖1 for any vector
y; (the illustration of the set D is provided in Figure 1).

Similar to Section 4, we provide near-feasible and near-optimal primal vectors by
averaging the vectors from the sequence {xk}. In particular, we define x̂k as the average
of the vectors x0, . . . , xk−1, i.e.,

x̂k =
1

k

k−1∑
i=0

xi for all k ≥ 1. (24)
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Figure 1: The dual optimal set M∗ and the set D, which is considered in the modified
subgradient method.

In the next proposition, we provide per-iterate bounds for the constraint violation
and primal cost values of the average vectors x̂k.

Proposition 4 Let the Slater condition and the bounded set assumption hold [cf. As-
sumptions 1 and 2]. Let the dual sequence {µk} be generated by the modified subgradient
method of Eq. (21). Let {x̂k} be the average sequence defined in Eq. (24). Then, for all
k ≥ 1, we have:

(a) An upper bound on the amount of constraint violation of the vector x̂k is given by

‖g(x̂k)
+‖ ≤ 2

kαr

(
f(x̄)− q̃

γ
+ r

)2

+
αL2

2r
.

(b) An upper bound on the primal cost of the vector x̂k is given by

f(x̂k) ≤ f ∗ +
‖µ0‖2

2kα
+

αL2

2
.

(c) A lower bound on the primal cost of the vector x̂k is given by

f(x̂k) ≥ f ∗ −
(

f(x̄)− q̃

γ

)
‖g(x̂k)

+‖.

Here, the scalars r > 0 and q̃ with q̃ ≤ q∗ are those from the definition of the set D in
Eq. (23).

Proof. (a) Using the definition of the iterate µk+1 in Eq. (21) and the nonexpansive
property of projection on a closed convex set, we obtain for all µ ∈ D and all i ≥ 0,

‖µi+1 − µ‖2 = ‖PD [µi + αgi]− µ‖2

≤ ‖µi + αgi − µ‖2

≤ ‖µi − µ‖2 + 2αg′i(µi − µ) + α2‖gi‖2

≤ ‖µi − µ‖2 + 2αg′i(µi − µ) + α2L2.
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Therefore, for any µ ∈ D,

g′i(µ− µi) ≤
‖µi − µ‖2 − ‖µi+1 − µ‖2

2α
+

αL2

2
for all i ≥ 0. (25)

Since gi is a subgradient of the dual function q at µi, using the subgradient inequality
[cf. Eq. (1)], we obtain for any dual optimal solution µ∗,

g′i(µi − µ∗) ≤ q(µi)− q(µ∗) ≤ 0 for all i ≥ 0,

where the last inequality follows from the optimality of µ∗ and the feasibility of each
µi ∈ D [i.e., µi ≥ 0]. We then have for all µ ∈ D and all i ≥ 0,

g′i(µ− µ∗) = g′i(µ− µ∗ − µi + µi) = g′i(µ− µi) + g′i(µi − µ∗) ≤ g′i(µ− µi).

From the preceding relation and Eq. (25), we obtain for any µ ∈ D,

g′i(µ− µ∗) ≤ ‖µi − µ‖2 − ‖µi+1 − µ‖2

2α
+

αL2

2
for all i ≥ 0.

Summing over i = 0, . . . , k − 1 for k ≥ 1, we obtain for any µ ∈ D and k ≥ 1,

k−1∑
i=0

g′i(µ− µ∗) ≤ ‖µ0 − µ‖2 − ‖µk − µ‖2

2α
+

αkL2

2
≤ ‖µ0 − µ‖2

2α
+

αkL2

2
.

Therefore, for any k ≥ 1,

max
µ∈D

{
k−1∑
i=0

g′i(µ− µ∗)

}
≤ 1

2α
max
µ∈D

‖µ0 − µ‖2 +
αkL2

2
. (26)

We now provide a lower estimate on the left-hand side of the preceding relation. Let
k ≥ 1 be arbitrary and, for simplicity, we suppress the explicit dependence on k by
letting

s =
k−1∑
i=0

gi. (27)

Let s+ be the component-wise maximum of s and the zero vector, i.e., the j-th entry of
the vector s+ is given by s+

j = max{sj, 0}. If s+ = 0, then the bound in part (a) of this
proposition trivially holds. Thus, assume that s+ 6= 0 and define a vector µ̄ as follows:

µ̄ = µ∗ + r
s+

‖s+‖
.

Note that µ̄ ≥ 0 since µ∗ ≥ 0, s+ ≥ 0 and r > 0. By Lemma 1, the dual optimal solution
set is bounded and, in particular, ‖µ∗‖ ≤ f(x̄)−q∗

γ
. Furthermore, since q̃ ≤ q∗, it follows

that ‖µ∗‖ ≤ f(x̄)−q̃
γ

for any dual solution µ∗. Therefore, by the definition of the vector
µ̄, we have

‖µ̄‖ ≤ ‖µ∗‖+ r ≤ f(x̄)− q̃

γ
+ r, (28)
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implying that µ̄ ∈ D. Using the definition of the vector s in Eq. (27) and relation (26),
we obtain

s′(µ̄− µ∗) =
k−1∑
i=0

g′i(µ̄− µ∗) ≤ max
µ∈D

{
k−1∑
i=0

g′i(µ− µ∗)

}
≤ 1

2α
max
µ∈D

‖µ0 − µ‖2 +
αkL2

2
.

Since µ̄ − µ∗ = r s+

‖s+‖ , we have s′(µ̄ − µ∗) = r‖s+‖. Thus, by the definition of s in Eq.

(27) and the fact gi = g(xi), we have

s′(µ̄− µ∗) = r
∥∥∥[ k−1∑

i=0

g(xi)
]+∥∥∥.

Combining the preceding two relations, it follows that∥∥∥[ k−1∑
i=0

g(xi)
]+∥∥∥ ≤ 1

2αr
max
µ∈D

‖µ0 − µ‖2 +
αkL2

2r
.

Dividing both sides of this relation by k, and using the convexity of the functions gj in
g = (g1, . . . , gm) and the definition of the average primal vector x̂k, we obtain

‖g(x̂k)
+‖ ≤ 1

k

∥∥∥[ k−1∑
i=0

g(xi)
]+∥∥∥ ≤ 1

2kαr
max
µ∈D

‖µ0 − µ‖2 +
αL2

2r
. (29)

Since µ0 ∈ D, we have

max
µ∈D

‖µ0 − µ‖2 ≤ max
µ∈D

(‖µ0‖+ ‖µ‖)2 ≤ 4 max
µ∈D

‖µ‖2.

By using the definition of the set D of Eq. (23), we have

max
µ∈D

‖µ‖ ≤ f(x̄)− q̃

γ
+ r.

By substituting the preceding two estimates in relation (29), we obtain

‖g(x̂k)
+‖ ≤ 2

kαr

(
f(x̄)− q̃

γ
+ r

)2

+
αL2

2r
.

(b) The proof follows from an identical argument to that used in the proof of Propo-
sition 1(b), and therefore is omitted.

(c) The result follows from an identical argument to that used in the proof of Propo-
sition 1(c) and the bound on the dual optimal solution set that follows in view of the
Slater condition (cf. Assumption 1 and Lemma 1 with µ̄ = µ∗).

We note here that the subgradient method of Eq. (21) with the set D given in Eq.
(23) couples the computation of multipliers. In some applications, it might be desirable
to accommodate distributed computation models whereby the multiplier components
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µ∗j are processed in a distributed manner among a set of processors or agents. To
accommodate such computations, one may modify the subgradient method of Eq. (21)
by replacing the set D of Eq. (23) with the following set

D∞ =

{
µ ≥ 0

∣∣∣ ‖µ‖∞ ≤ f(x̄)− q̃

γ
+ r

}
.

It can be seen that the results of Proposition 4 also hold for this choice of the projection
set. In particular, this can be seen by following the same line of argument as in the
proof of Proposition 4 and by using the following relation

‖µ̄‖∞ ≤ ‖µ∗‖+ r ≤ f(x̄)− q̃

γ
+ r

[cf. Eq. (28) and the fact ‖y‖∞ ≤ ‖y‖ for any vector y].

We next consider selecting the parameter r, which is used in the definition of the set
D, such that the right-hand side of the bound in part (a) of Proposition 4 is minimized at
each iteration k. Given some k ≥ 1, we choose r as the optimal solution of the problem

min
r>0

{
2

kαr

(
f(x̄)− q̃

γ
+ r

)2

+
αL2

2r

}
.

It can be seen that the optimal solution of the preceding problem, denoted by r∗(k), is
given by

r∗(k) =

√(
f(x̄)− q̃

γ

)2

+
α2L2k

4
for k ≥ 1. (30)

Consider now an algorithm where the dual iterates are obtained by

µi+1 = PDk
[µi + αgk] for each i ≥ 0,

with µ0 ∈ D0 and the set Dk given by

Dk =

{
µ ≥ 0 | ‖µ‖ ≤ f(x̄)− q̃

γ
+ r∗(k)

}
,

where r∗(k) is given by Eq. (30). Hence, at each iteration i, the algorithm projects onto
the set Dk, which contains the set of dual optimal solutions M∗.

Substituting r∗(k) in the bound of Proposition 4(a), we can see that

‖g(x̂k)
+‖ ≤ 4

kα

f(x̄)− q̃

γ
+

√(
f(x̄)− q̃

γ

)2

+
α2L2k

4


≤ 4

kα

(
2(f(x̄)− q̃)

γ
+

αL
√

k

2

)

=
8

kα

(
f(x̄)− q̃

γ

)
+

2L√
k
.

The preceding discussion combined with Proposition 4(a) immediately yields the
following result:
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Proposition 5 Let the Slater condition and the bounded set assumption hold [cf. As-
sumptions 1 and 2]. Given some k ≥ 1, define the set Dk as

Dk =

µ ≥ 0
∣∣∣ ‖µ‖2 ≤

f(x̄)− q̃

γ
+

√(
f(x̄)− q̃

γ

)2

+
α2L2k

4

 . (31)

Let the dual sequence {µi} be generated by the following modified subgradient method:
let µ0 ∈ Dk and for each i ≥ 0, the dual iterate µi is obtained by

µi+1 = PDk
[µi + αgi].

Then, an upper bound on the amount of feasibility violation of the vector x̂k is given by

‖g(x̂k)
+‖ ≤ 8

kα

(
f(x̄)− q̃

γ

)
+

2L√
k
. (32)

This result shows that at a given k, the error estimate provided in Eq. (32) can be
achieved if we use a modified subgradient method where each dual iterate is projected
on the set Dk defined in Eq. (31). Given a pre-specified accuracy for the amount of
feasibility violation, this bound can be used to select the stepsize value and the set Dk.
Furthermore, using the estimate (32) in Proposition 4(c), we can obtain a lower bound
on the cost f(x̂k).

We now compare the feasibility violation bound of Proposition 3(a) for the ordi-
nary subgradient method with the result of Proposition 5 for the modified subgradient
method. As we will see, depending on the values of γ, L and the estimate q̃, each of
these bounds can be better or worse than the other one. For the sake of comparison, let
us assume that q̃ is the same in both bounds. Then, by Proposition 5(a) and by using
q∗ ≥ q̃ in the definition of the bound B∗ in Eq. (17), we obtain for all k ≥ 1:

‖g(x̂k)
+‖ ≤ 2

kαγ
(f(x̄)− q̃) +

1

kα
max

{
‖µ0‖,

1

γ
(f(x̄)− q̃) +

αL2

2γ
+ αL

}
. (33)

This bound, as compared to that of Proposition 5, is better when k is very large, since
the feasibility violation decreases in the order of 1/k, while in Proposition 5, it decreases
in the order of 1/

√
k. However, initially, the feasibility violation in Eq. (33) for the

ordinary subgradient method can be worse because it depends on the initial iterate µ0.
Suppose that the initial iterate is µ0 = 0. Then, the bound in Eq. (33) reduces to

‖g(x̂k)
+‖ ≤ 3

kαγ
[ f(x̄)− q̃ ] +

1

k

(
L2

2γ
+ L

)
.

Even in this case, initially, this bound can be worse than that of Proposition 5 because
the bound depends inversely on γ which can be very small [recall γ = min1≤j≤m{−gj(x̄)}
with a Slater vector x̄]. To complement our theoretical analysis, we need to perform some
numerical experiments to further study and compare these algorithms.
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6 Conclusions

In this paper, we have studied the application of dual subgradient algorithms for gen-
erating primal near-feasible and near-optimal optimal solutions. We have proposed and
analyzed two such algorithms under Slater condition. Both of the proposed algorithms
use projections to generate a dual sequence and an averaging scheme to produce approx-
imate primal vectors. The algorithms employ the same averaging scheme in the primal
space. However, they operate on different sets when projecting in the dual space. One
algorithm uses the projections on the nonnegative orthant, while the other algorithm
uses the projections on nested compact convex sets that change with each iteration but
always contain the dual optimal solutions. Nevertheless, both algorithms produce pri-
mal vectors whose infeasibility diminishes to zero and function values in the limit stay
within the interval [f ∗, f∗ + αL/2].

Let us note that, in general, one may consider solving the dual problem to generate
a good approximate “dual solution” (with a method more efficient than the subgradient
method with a constant step), and then proceed with our algorithm with averaging. This
can be advantageous since x(µk) for µk far from an optimum can be less informative
than those closer to an optimum5.

Our comparison of the two methods is purely based on our theoretical analysis, which
need not reflect the real behavior of these algorithms for practical implementations. Our
future goal is to numerically test and evaluate these algorithms in order to gain deeper
insights into their behavior.
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