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IESE Dept.

University of Illinois
Urbana, IL 61801

angelia@illinois.edu

S. Sundhar Ram
ECE Dept.

University of Illinois
Urbana, IL 61801

ssrini5@illinois.edu

Abstract— We consider a distributed multi-agent network sys-
tem where the goal is to minimize the sum of convex functions,
each of which is known (with stochastic errors) to a specific
network agent. We are interested in asynchronous algorithms
for solving the problem over a connected network where the
communications among the agent are random. At each time, a
random set of agents communicate and update their information.
When updating, an agent uses the (sub)gradient of its individual
objective function and its own stepsize value. The algorithm is
completely asynchronous as it neither requires the coordination
of agent actions nor the coordination of the stepsize values. We
investigate the asymptotic error bounds of the algorithm with a
constant stepsize for strongly convex and just convex functions.
Our error bounds capture the effects of agent stepsize choices
and the structure of the agent connectivity graph. The error
bound scales at best as m in the number m of agents when the
agent objective functions are strongly convex.

Index Terms— convex optimization, networked system, stochas-
tic algorithms, asynchronous algorithms, random consensus.

I. INTRODUCTION

An important problem in the context of wired and wireless
networks is the problem of minimizing of a sum of functions
where each component function is available (with stochastic
errors) to a specific network agent [14], [23], [27], [28]. Such
a problem requires the design of optimization algorithms that
are distributed and local. The algorithms are to be distributed
in the sense that they have to execute their actions without
a central coordinator and/or access to a central information.
The algorithms are to be local in the sense that each agent can
only use its local objective function and can exchange some
limited information with its immediate neighbors.

In this paper, we propose an asynchronous distributed
algorithm for optimization over random networks arising from
random communications among the agents. At each iteration
of the algorithm, a random subset of agents is active, whereby
each agent in the set performs a consensus step followed by
a gradient step. In the consensus step, an agent computes a
“weighted” average of its estimate and the estimates received
from its neighbors. In the gradient step, an agent updates the
weighted average based on the gradient of its local objective
function computed with a stochastic error. We are interested
in the case when the agents use constant but uncoordinated
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stepsize values. We investigate the asymptotic bounds on the
system error resulting from the stepsize choices, network
structure and the stochastic gradient errors. In particular, we
provide such error bounds for the iterates of the algorithm
when the agent objective functions are strongly convex, and
for the averaged iterates when the functions are just convex.

The algorithm in this paper is closely related to the
asynchronous gossip algorithm proposed in [24], where the
convergence of the gossip-based algorithm is investigated
for convex and nonconvex (scalar) objective functions. In
contrast with [24], this present paper develops a more general
algorithm with the focus on establishing the error bounds for
approximate solutions in the case of convex functions.

The work in this paper is also closely related to the work
in [17], where a distributed subgradient method is considered
over a network with a random dynamic network connectivity
structure. There, the subgradient evaluations are exact, the
stepsize values have to be coordinated among the agents,
and the matrices used by the agents in the consensus step
are assumed to be doubly stochastic almost surely. The last
two requirements are somewhat restrictive since both require
some coordination of the agents. Unlike [17], we consider the
method with stochastic errors, uncoordinated stepsize values,
and we relax the doubly stochasticity requirement on the
matrices used in the consensus step. However, our work is
limited to random communications occurring over a network
with a static underlying connectivity graph, which is less
general than the dynamic connectivity graph used in [17].

On a broader basis, the algorithm in this paper is related
to the distributed (deterministic) consensus-based optimization
algorithm proposed in [21], [22] and further studied in [15],
[17], [20], [25], [27]. That algorithm is requires the agents to
update simultaneously and to coordinate their stepsize choices,
which is in contrast with the algorithm discussed in this paper.

A different distributed model has been proposed in [31] and
also studied in [3], [7], [32], where the complete objective
function information is available to each agent, with the aim
of distributing the processing by allowing an agent to update
only a part of the decision vector. Related to the algorithm of
this paper is also the literature on incremental algorithms [6],
[12]–[14], [16], [18], [19], [23], [26], [29], where the network
agents sequentially update a single iterate sequence and only



one agent updates at any given time in a cyclic or a random
order. While being local, the incremental algorithms differ
fundamentally from the algorithm studied in this paper (where
all agents maintain and update their own iterate sequence).
In addition, since we are interested in the effect of stochastic
errors, on a broader scale our work is also related to stochastic
(sub)gradient methods [4], [9]–[11].

The novelty of this work is mainly in three aspects. First,
we establish the error bounds on the performance of the
asynchronous distributed algorithms where the agents use un-
coordinated stepsize. The error bounds show favorable scaling
with the size m of the network. Second, our model is general
enough to account for random failures of communication links.
Second, we are dealing with the general case where the agents
compute their (sub)gradients with stochastic errors.

Our development combines the ideas used to study the
basic random gossip and broadcast algorithms [1], [8] with
the tools that are generally used to study the convergence of
the stochastic (sub)gradient methods.

The rest of the paper is organized in the following manner.
In Section II, we describe the problem of our interest, present
our algorithm and assumptions. In Section III, we show some
basic relation for later use, while in Section IV we provide
a relation for the the disagreement of the agent iterates. We
establish the error bounds for the algorithm in Section V, and
we conclude with a discussion in Section VI.

Notation. All vectors are column vectors. For a vector x,
[x]i denotes its ith component and ‖x‖ denotes its Euclidean
norm. The vector with all entries equal to 1 is denoted by 1.
We use ΠX [x] to denote the Euclidean projection of a vector
x on a set X . For a matrix W , [W ]ij denotes its ijth entry
and ‖W‖ denotes the matrix norm induced by the Euclidean
vector norm. A matrix is termed stochastic if all its entries
are nonnegative and the sum of the entries in each row is
equal to 1. A matrix W is doubly stochastic if both W and
WT are stochastic. The cardinality of a set U with finitely
many elements is denoted by |U |. We use E[Y ] to denote the
expectation of a random variable Y . We denote by χE the
indicator function of a random event E.

II. PROBLEM, ALGORITHM AND ASSUMPTIONS

We consider a network of m agents that are indexed by
1, . . . ,m, and we let V = {1, . . . ,m}. The network has a
static topology that is represented by the bidirectional graph
(V, E), where E is the set of links in the network. We have
{i, j} ∈ E if agents i and j can communicate with each other.
We assume that {i, i} ∈ E , which models the fact that each
agent has access to its own information state. The network
objective is to solve the following optimization problem:

minimize f(x) ,
m∑

i=1

fi(x)

subject to x ∈ X,

(1)

where X ⊆ Rn, and fi : D → R for all i, where D is
some open set that contains the set X . The function fi is

only known to agent i that can compute the gradients ∇fi(x)
with stochastic errors1. The goal is to solve problem (1) using
an algorithm that confirms with the distributed nature of the
problem information and local connectivity structure of the
agents in the network. Our interest is in an algorithm that
does not require any coordination of the agents’ actions.

A. Asynchronous Optimization Algorithm

We consider a generic class of random algorithms where
the agent communications are randomized. We let Wk be the
matrix describing the information exchange in the network at
time k. The matrix Wk has nonnegative entries and its sparsity
structure is compliant with the network connectivity graph
(V, E), i.e., the entry [Wk]ij can be positive only if {i, j} ∈ E .
Furthermore, [Wk]ij > 0 if and only if agent j communicates
with agent i at time k, and otherwise [Wk]ij = 0. Thus, we
have for each i, j ∈ V with i 6= j,

[Wk]ij > 0 iff (j, i) is active at time k and {i, j} ∈ E ,
[Wk]ij = 0 otherwise,

and for each i ∈ V ,
[Wk]ii > 0.

We now describe the algorithm. First, each agent i performs
a consensus-like step to combine its current estimate xi,k−1 ∈
Rn with the estimates xj,k−1 ∈ Rn received from some of its
neighbors, as follows:

vi,k =
m∑

j=1

[Wk]ij xj,k−1. (2)

The matrix Wk captures the weights used by the agents as
well as the communication pattern at time k. Define the sets

Uk = {j ∈ V | [Wk]j` > 0 for some ` 6= j} for each k.

The set Uk is the set of agents j that receive estimates x`,k−1

from their neighbors ` at time k. Basically, the set Uk is the
index set of agents that update at time k. The new iterates are
defined as follows: for each i ∈ V ,

xi,k = ΠX

[
vi,k − αi (∇f(vi,k) + εi,k) χ{i∈Uk}

]
, (3)

where αi > 0 is a constant stepsize of agent i. The vector
∇fi(x) is the gradient2 of fi at x, and εi,k is the stochastic
error of computing ∇f(x) at x = vi,k. The initial iterates
xi,0 ∈ X are random and independent of {Wk}.

We note that our model for Wk includes the network
connectivity models with random link failures, as well as
random gossip and broadcast. In the gossip algorithm [8], the
matrix Wk has the form Wk = I − 1

2 (eIk
− eJk

)(eIk
− eJk

)T ,
where Ik and Jk are two neighboring agents that update, i.e.,
Uk = {Ik, Jk}. For the case of the broadcast algorithm [1],
the set Uk consists of all the neighbors j of some agent Ik,
i.e., Uk = {j ∈ V | {Ik, j} ∈ E}.

1See [26] for the motivation for studying stochastic errors.
2If the function is not differentiable but is convex, then ∇fi(x) denotes a

subgradient, as discussed later.



B. Assumptions

For the constraint set X and the agent objective functions
fi, we use the following assumption.

Assumption 1: The set X is compact and convex. Each fi is
defined and convex over some open set containing the set X .

A convex function is continuous over the relative interior of
its domain (see [2], Proposition 1.4.6). Thus, by Assumption 1,
each fi is continuous over the set X , and the sum f =

∑m
i=1 fi

is also continuous over X . Moreover, by the compactness of
X , problem (1) has an optimal solution.

Differentiability of the functions fi is not assumed. At a
point where the gradient does not exist, we use a subgradient:
∇g(x) is a subgradient of a function g at a point x in the
domain of g (denoted by dom g) if the following relation holds

∇g(x)T (y − x) ≤ g(y)− g(x) for all y ∈ dom g.

By Assumption 1, a subgradient of fi(x) exists at every point
x ∈ X for each i (see [2], Proposition 4.4.2). Under the
compactness of X , the subgradients of each function fi are
bounded uniformly over X . We let a scalar C be such that

‖∇fi(x)‖ ≤ C for all x ∈ X and i ∈ V . (4)

For the underlying graph (V, E) and the matrices Wk, we
assume the following.

Assumption 2: The graph (V, E) is connected. The matrix
sequence {Wk} is i.i.d. and each Wk has positive diagonal
entries almost surely. Each matrix Wk is stochastic and the ex-
pected matrix W̄ = E[Wk] is doubly stochastic. Furthermore,
W̄ has the sparsity pattern compliant with the underlying
graph, i.e., for i, j ∈ V with i 6= j,

W̄ij > 0 if and only if {i, j} ∈ E .
Note that the requirement that W̄ij > 0 for {i, j} ∈ E

does not require that W̄ is symmetric, but rather that W̄ has
a symmetric sparsity pattern.

Assumption 2 is satisfied in randomized gossip and broad-
cast schemes. Furthermore, in both of these schemes, when
the graph (V, E) is connected there exists λ < 1 such that:

E
[
‖Dkz‖2

]
≤ λ‖z‖2

for the matrices Dk = Wk − 1
m11T Wk and all z ∈ Rm.

Essentially, the relation states that the largest eigenvalue of
the matrix E

[
DT

k Dk

]
is less than 1, and λ could be taken

to be equal to the largest eigenvalue. We later show that the
relation holds for the matrices satisfying Assumption 2 (see
Theorem 1 in Section IV).

We have several additional comments regarding the impli-
cations of Assumption 2. Under the assumption that {Wk} is
i.i.d., the random index-set sequence {Uk} is also i.i.d. Thus,
for every i ∈ V , the event sequence {i ∈ Uk} is i.i.d. We
let γi denote the probability of the event {i ∈ Uk}, which is
actually the probability that agent i updates at any given time.

Under the assumption that the matrices Wk are stochastic,
we have the following observation. When agent i does not
receive any new information at time k, i.e., i 6∈ Uk, there

holds [Wk]i` = 0 for all ` 6= i. By the stochasticity of Wk, it
follows [Wk]ii = 1. Hence, from relations (2)–(3) we see that

xi,k = vi,k, vi,k = xi,k−1 for i 6∈ Uk. (5)

Thus, when i 6∈ Uk, agent i does not update.
Under Assumptions 1–2, the iterates xi,k lie in the set X . In

particular, since the set X is closed and convex, the projection
on X is well defined. Since xi,0 ∈ X for all i and the matrices
Wk are stochastic, it follows that

vi,k ∈ X and xi,k ∈ X for all i ∈ V and k ≥ 1. (6)

We next discuss the assumptions on the gradient errors εi,k.
Let Fk be the σ-algebra generated by the entire history of the
algorithm up to time k, i.e., for k ≥ 1,

Fk = {(xi,0, i ∈ V ); Wt, (εj,t, j ∈ Ut), 1 ≤ t ≤ k},

with F0 = {xi,0, i ∈ V }. We use the following assumption.
Assumption 3: With probability 1, we have:

(a) E[εi,k | Fk−1,Wk] = 0 for all i ∈ Uk and all k ≥ 1.
(b) E

[
‖εi,k‖2 | Fk−1,Wk

]
≤ ν2 for some deterministic

scalar ν > 0, and for all i ∈ Uk and k ≥ 1.
Assumption 3 holds, for example, when εi,k are zero mean,
independent in time, and have bounded second moments.

III. PRELIMINARIES

In this section, we establish some preliminary results that
we use later in our error analysis.

We make use of the following lemma for a scalar sequence.
Lemma 1: Let β ∈ (0, 1), and let {dk} and{uk} be scalar

sequences such that

dk ≤ βdk−1 + uk−1 for all k ≥ 1.

Then,

lim sup
k→∞

dk ≤
1

1− β
lim sup

k→∞
uk.

Proof: From the relation between dk and uk, we can see
by induction (on k) that

dk ≤ βkd0 +
k−1∑
t=0

βk−t−1ut for all k ≥ 1.

Since β ∈ (0, 1), it follows

lim sup
k→∞

dk ≤ lim sup
k→∞

k−1∑
t=0

βk−t−1ut.

It remains to show that

lim sup
k→∞

k∑
t=0

βk−tut ≤
1

1− β
lim sup

t→∞
ut. (7)

Let γ = lim supk→∞ uk. If γ = +∞, then the relation is
satisfied. Let ε > 0 be arbitrary if γ is finite, and let M > 0
be a large scalar if γ = −∞. Define a = γ + ε if γ is finite



and a = −M if γ = −∞. Choose index K large enough so
that uk ≤ a for all k ≥ K. We then have for k ≥ K,

k∑
t=0

βk−tut =
K∑

t=0

βk−tut +
k∑

t=K+1

βk−tut

≤ max
0≤s≤K

us

K∑
t=0

βk−t + a

k∑
t=K+1

βk−t.

Since
∑k

t=K+1 βk−t ≤ 1
1−β and

∑K
t=0 βk−t ≤ βk−K

1−β , it
follows that for all k ≥ K,

k∑
t=0

βk−tut ≤
(

max
0≤s≤K

us

)
βk−K

1− β
+

a

1− β
.

Therefore, lim supk→∞
∑k

t=0 βk−tut ≤ a
1−β , and relation (7)

follows by the definition of a.
We also use the following lemma providing two basic

relations between vi,k and xj,k−1.
Lemma 2: Let {Wk} be a sequence of stochastic and i.i.d.

matrices with E[Wk] being doubly stochastic. Then, for the
vectors vi,k of (2), we have for any z ∈ Rn and all k ≥ 1,

m∑
i=1

E[‖vi,k − z‖ | Fk−1] ≤
m∑

j=1

‖xj,k−1 − z‖, (8)

m∑
i=1

E
[
‖vi,k − z‖2 | Fk−1

]
≤

m∑
j=1

‖xj,k−1 − z‖2. (9)

Proof: The convexity of the norm and the stochasticity of
Wk yield ‖vi,k − z‖ ≤

∑m
j=1[Wk]ij‖xj,k−1 − z‖ for any z ∈

Rn, i ∈ V and k ≥ 1. By taking the conditional expectation
on the past history Fk−1, using the independency of Wk, and
by summing over all i, we have

m∑
i=1

E[‖vi,k − z‖ | Fk−1] ≤
m∑

i=1

m∑
j=1

E[Wk]ij ‖xj,k−1 − z‖.

Exchanging the order of summation and using the doubly
stochasticity of E[Wk], we obtain relation (8). The proof of
relation (9) follows the same line of argument starting with
the convexity of the squared Euclidean norm.

We next provide an estimate for the expected value
E
[
‖∇fi(vi,k) + εi,k‖2 | Fk−1,Wk

]
.

Lemma 3: Under Assumption 1, Assumption 3, and the
stochasticity of Wk, we have for all i and k ≥ 1,

E
[
‖∇fi(vi,k) + εi,k‖2 | Fk−1,Wk

]
≤ (C + ν)2.

Proof: Expanding the term ‖∇fi(vi,k)+ εi,k‖2, we have

‖∇fi(vi,k)+εi,k‖2 = ‖∇fi(vi,k)‖2+2∇fi(vi,k)T εi,k+‖εi,k‖2.

When X is convex and Wk’s are stochastic, we have vi,k ∈
X for all i and k ≥ 1, see (6). Under Assumption 1, the
(sub)gradients of each fi are uniformly bounded over the set
X by some scalar C (see (4)). Hence, ‖∇fi(vi,k)‖ ≤ C. Using
this, the fact that vi,k is completely determined given Fk−1

and Wk, and using Assumption 3 on εi,k, from the preceding
equality we obtain

E
[
‖∇fi(vi,k) + εi,k‖2 | Fk−1,Wk

]
≤ C2 + ν2 ≤ (C + ν)2.

We now provide a basic iterate relation for the method. This
relation relies on the preceding lemma and the nonexpansive
property of the projection on a closed convex set X ⊂ Rn:

‖ΠX [x]−z‖ ≤ ‖x−z‖ for any x ∈ Rn and z ∈ X. (10)

The basic iterate relation is given in the following.
Lemma 4: Under Assumption 1, Assumption 3, and the

stochasticity of Wk, we have for all z ∈ X , k ≥ 1, and
i ∈ Uk,

E
[
‖xi,k − z‖2 | Fk−1,Wk

]
≤‖vi,k − z‖2 + α2

i (C + ν)2

− 2αi∇fi(vi,k)T (vi,k − z).
Proof: For i ∈ Uk, from relation (3) and the nonexpan-

sive property of the projection operation in (10), we obtain

‖xi,k − z‖2 ≤ ‖vi,k − αi (∇fi(vi,k) + εi,k)− z‖2
= ‖vi,k − z‖2 + α2

i ‖∇fi(vi,k) + εi,k‖2
−2αi(∇fi(vi,k) + εi,k)T (vi,k − z).

We now take the conditional expectation on the past Fk−1

and Wk. Under the assumptions on the errors, we have
E
[
εT
i,k(vi,k − z) | Fk−1,Wk

]
= 0. Using this and Lemma 3,

we obtain the desired relation.
In our subsequent analysis, we invoke Hölder’s inequality

E

[
K∑

i=1

|yT
i zi|

]
≤

√√√√ K∑
i=1

E[‖yi‖2]

√√√√ K∑
i=1

E[‖zi‖2], (11)

which is valid for any two collections {yi}K
i=1 and {zi}K

i=1 of
random vectors with finite second moments ( [5], page 242).

IV. DISAGREEMENT ESTIMATE

The disagreement estimates as a function of time are impor-
tant in our development of the error bounds for the method. We
start the development by showing that under our assumptions,
there exists λ < 1 such that E

[
‖Dkz‖2

]
≤ λ‖z‖2 for the

matrices Dk = Wk− 1
m11T Wk and all z ∈ R. This relation is

instrumental for the establishment of the estimates in this and
the following section. The relation is justified by the following.

Theorem 1: Let W be a random stochastic matrix such that
E[W ] is doubly stochastic. Assume that the diagonal elements
of W are positive almost surely. Let (V, E) be an undirected
connected graph such that for all i, j ∈ V with i 6= j,

E[Wij ] > 0 if {i, j} ∈ E .

Then, we have for a scalar λ < 1,

E
[
‖Dz‖2

]
≤ λ‖z‖2 for all z ∈ Rm,

where D = W − 1
m11T W .

Proof: Consider the vector D1 and note that from the
stochasticity of W we have D1 = 1− 1

m11T1 = 0. Thus,

Dz = 0 for all z = c1 for some c ∈ R.

Therefore, it suffices to show that there exists λ < 1 such that
E
[
‖Dz‖2

]
≤ λ‖z‖2 for all z ∈ Rm with zT1 = 0.



To do so, let us define

V (z) =
1
m

m∑
i=1

(zi − z̄)2 for any z ∈ Rm.

Let z be arbitrary and let y = Dz. Note that by the definition
of D, we have ȳ = 0. Therefore ‖Dz‖2 = ‖y − ȳ1‖2 =
mV (y). It can be seen that (see Theorem 4 in [30]),

E[V (y)] ≤ V (z)− 1
m

∑
i<j

Hij(zi − zj)2,

where H = E
[
WT W

]
. Thus,

E
[
‖Dz‖2

]
≤ mV (z)−

∑
i<j

Hij(zi − zj)2. (12)

Note that for any i, j ∈ V such that E[Wij ] > 0 or E[Wji] > 0,
we have

Hij = E

[
m∑

`=1

W`iW`j

]
≥ E[WiiWij ] + E[WjiWjj ] .

Since Wii > 0 and Wjj > 0 almost surely, it follows Hij > 0
whenever E[Wij ] > 0 or E[Wji] > 0. Since E[Wij ] > 0
whenever {i, j} ∈ E , we see that Hij > 0 whenever {i, j} ∈
E . Thus, let h = 1

m min{i,j}∈E Hij > 0. From (12) we have

E
[
‖Dz‖2

]
≤ mV (z)−mh

∑
{i,j}∈E

(zi − zj)2. (13)

Since the properties assumed in the theorem are invariant
under permutation of indices, let us assume that the entries of
z are sorted in nondecreasing order, i.e., z1 ≤ z2 ≤ · · · ≤ zm

(otherwise, we can permute coordinate indices of z, and the
rows and columns of W accordingly). Then, we have (zi −
zj)2 ≥

∑j−1
`=i (z`+1 − z`)2 and hence,

∑
{i,j}∈E

(zi − zj)2 ≥
∑

{i,j}∈E

j−1∑
`=i

(z`+1 − z`)2. (14)

Now, since the graph (V, E) is connected, for any ` =
1, 2, . . . ,m − 1, there exists i ≤ ` and j ≥ ` + 1 such
that {i, j} ∈ E , for otherwise, the two vertex sets {1, · · · , `}
and {` + 1, · · · ,m} will be disconnected. Hence, by relation
(14) we have

∑
{i,j}∈E(zi − zj)2 ≥

∑m−1
`=1 (z`+1 − z`)2. By

convexity of the squared-norm, we obtain
m−1∑
`=1

(z`+1 − z`)2 ≥ 1
m− 1

(zm − z1)2

≥ 1
m(m− 1)

m∑
i=1

(zi − z̄)2.

Therefore, by combining (13), (14) and the preceding relation
and using the definition of V (z), we see

E
[
‖Dz‖2

]
≤ mV (z)− h

m− 1

m∑
i=1

(zi − z̄)2

=
(

1− h

m− 1

)
‖z − z̄‖2.

It follows that for all z ∈ Rm with zT1 = 0 we have

E
[
‖Dz‖2

]
≤

(
1− h

m− 1

)
‖z‖2.

Hence, the desired relation holds with λ = 1− h
m−1 < 1.

When Assumption 2 holds, each Wk satisfies the conditions
of Theorem 1 so that, in view of i.i.d. property of {Wk}, we
have for λ < 1,

E
[
‖Dkz‖2

]
≤ λ‖z‖2 for all z ∈ Rm. (15)

We next measure the agent disagreement as the dispersion
of the iterates xi,k around their average at any given time. For
this, we define

ȳk =
1
m

m∑
j=1

xj,k for all k ≥ 0.

We quantify the agent disagreement by
∑m

i=1 E[‖xi,k − ȳk‖],
for which we have the following estimate.

Proposition 1: Let Assumptions 1–3 hold. Let {xi,k}, i ∈
V , be the sequences generated by algorithm (2)–(3). Then, we
have for all k ≥ 0,

m∑
i=1

E[‖xi,k − ȳk‖] ≤
√

m λ
k
2

√√√√ m∑
i=1

E[‖xi,0 − ȳ0‖2] + εnet,

where εnet is the error given by

εnet =
√

m

1−
√

λ

√
Nαmax (C + ν),

αmax = max1≤j≤m αj , and N is the maximum number of
nodes updating at any time, i.e., N = maxk |Uk|, and λ < 1
is the scalar as in (15).

Proof: To prove the estimate, we will consider compo-
nents of the vectors xi,k. Define for each ` = 1, . . . , n, the
vectors

z`
k = ([x1,k]`, . . . , [xm,k]`)

T for k ≥ 0. (16)

From the definition of the method, we have

z`
k = Wk z`

k−1 + ζ`
k for ` = 1, . . . , n, k ≥ 1, (17)

where ζ`
k ∈ Rm is a vector with coordinates [ζ`

k]i given by

[ζ`
k]i =


[ΠX [vi,k − αi (∇fi(vi,k) + εi,k)]− vi,k]` if i ∈ Uk,
0 otherwise.

(18)
Furthermore, note that [ȳk]` is the average of the entries of the
vector z`

k, i.e., for all ` and k,

[ȳk]` =
1
m
1T z`

k. (19)

By (17) and (19), we have [ȳk]` = 1
m

(
1T Wkz`

k−1 + 1T ζ`
k

)
for all ` and k ≥ 1, implying

z`
k − [ȳk]`1 = Wkz`

k−1 + ζ`
k −

1
m
11T (Wkz`

k−1 + ζ`
k)

= Dk z`
k−1 + Mζ`

k,



where Dk = Wk− 1
m 11T Wk, M = I− 1

m 11T and I denotes
the identity matrix. Since the matrices Wk are stochastic
(Wk1 = 1), it follows Dk1 = 0, implying that Dk[ȳk]`1 = 0.
Hence, for all ` and k,

z`
k − [ȳk]`1 = Dk(z`

k−1 − [ȳk−1]`1) + Mζ`
k.

From the preceding relation we have for all ` and k ≥ 1,

‖z`
k − [ȳk]`1‖2 ≤ ‖Dk(z`

k−1 − [ȳk−1]`1)‖2 + ‖Mζ`
k‖2

+2‖Dk(z`
k−1 − [ȳk−1]`1)‖ ‖Mζ`

k‖.
By summing these relations over ` = 1, . . . , n, and then taking
the expectation and using Hölder’s inequality (11), we obtain

nX
`=1

E
h
‖z`

k − [ȳk]`1‖2
i

≤

0@vuut nX
`=1

E
ˆ
‖Dk(z`

k−1 − [ȳk−1]`1)‖2
˜

+

vuut nX
`=1

E
ˆ
‖Mζ`

k‖2
˜ 1A2

. (20)

We estimate the term E
[
‖Dk(z`

k−1 − [ȳk−1]`1)‖2
]

by using
the iterated expectation rule, conditioning on Fk−1, and using
the fact the matrix Wk is independent of Fk−1. This yields
for all ` and k ≥ 1,

E
[∥∥Dk(z`

k−1 − [ȳk−1]`1)
∥∥2

]
≤ λ‖z`

k−1 − [ȳk−1]`1‖2, (21)

where λ = ‖E
[
DT

k Dk

]
‖2 with λ < 1 (see (15)).

We now estimate the term E
[
‖Mζ`

k‖2
]

of (20). The matrix
M = I − 1

m 11T is a projection matrix (it projects on the
subspace orthogonal to the vector 1), so that we have ‖M‖2 =
1, implying that ‖Mζ`

k‖2 ≤ ‖ζ`
k‖2 for all k. Using this and

the definition of ζ`
k in (18), we obtain

‖Mζ`
k‖2 ≤

∑
i∈Uk

∣∣[ΠX [vi,k − αi (∇fi(vi,k) + εi,k)]− vi,k]`
∣∣2 .

Thus, by summing these relations over all `, by using vi,k ∈
X (cf. (6)), and by using the nonexpansive property of the
projection (cf. (10)), we see

n∑
`=1

‖Mζ`
k‖2 ≤

∑
i∈Uk

‖ΠX [vi,k − αi (∇fi(vi,k) + εi,k)]− vi,k‖2

≤
∑
i∈Uk

α2
i ‖∇fi(vi,k) + εi,k‖2 .

Taking the expectation, and using the iterated expectation rule
and Lemma 3, we obtain

nX
`=1

E
h
‖Mζ`

k‖2
i

≤ E

24 X
i∈Uk

α2
i E

ˆ
‖∇fi(vi,k) + εi,k‖2 | Fk−1

˜35
≤ Nα2

max(C + ν)2, (22)

where N = maxk |Uk| and αmax = maxi αi.
From relations (20)–(22) we have for all k ≥ 1,√√√√ n∑
`=1

E
[
‖z`

k − [ȳk]`1‖2
]
≤
√

λ

√√√√ n∑
`=1

E
[
‖z`

k−1 − [ȳk−1]`1‖2
]

+
√

Nαmax (C + ν).

Since λ < 1, it follows that for all k ≥ 1,√√√√ n∑
`=1

E
[
‖z`

k − [ȳk]`1‖2
]
≤
√

λk

√√√√ n∑
`=1

E
[
‖z`

0 − [ȳ0]`1‖2
]

+
1−

√
λk

1−
√

λ

√
Nαmax (C + ν).

(23)

Using z`
k = ([x1,k]`, . . . , [xm,k]`)T (see (16)), we have for all

k ≥ 0,√√√√ n∑
`=1

E
[
‖z`

k − [ȳk]`1‖2
]

=

√√√√ m∑
i=1

E[‖xi,k − ȳk‖2]. (24)

By Hölder’s inequality (11), we also have for all k ≥ 0,

m∑
i=1

E[‖xi,k − ȳk‖] ≤
√

m

√√√√ m∑
i=1

E[‖xi,k − ȳk‖2]. (25)

Combining relation (23) (where we use 1 −
√

λk ≤ 1),
equality (24) (for k = 0), and inequality (25), we obtain

m∑
i=1

E[‖xi,k − ȳk‖] ≤
√

m
√

λk

√√√√ m∑
i=1

E[‖xi,0 − ȳ0‖2]

+
√

m

1−
√

λ

√
Nαmax (C + ν) for k ≥ 1.

Note that this relation holds for k = 0 in view of (25).
The result of Proposition 1 captures the effects of the

connectivity structure of the underlying graph (V, E) and the
information flow due to choice of matrices Wk. In particular,
the random gossip algorithm we have N = 2, while in the
random broadcast, N is equal to the maximum number of the
neighbors of an agent [the maximum node degree in the graph
(V, E)]. We also note that the error grows as

√
m in the size

m of the network for the network structures where N and λ
do not depend on m.

Observe that, since λ < 1, as k → ∞ the estimate of
Proposition 1 yields the following asymptotic error:

lim sup
k→∞

m∑
i=1

E[‖xi,k − ȳk‖] ≤
√

m

1−
√

λ

√
Nαmax (C + ν).

Thus, the growth of the disagreement is of the order
√

m in
the size m of the network if N and λ do not depend on m.

V. ERROR ESTIMATES

In this section, we provide error estimates for the method.
We consider the iterates of the method for the case when
the functions fi are strongly convex in Section V-A. When
the functions are not strongly convex, we look at the running
averages of the iterates in Section V-B.



A. Estimates for Iterates
Assuming that the functions fi are strongly convex over

the set X , we provide asymptotic error estimates for∑m
i=1 E

[
‖xi,k − x∗‖2

]
where x∗ is an optimal solution.

Based on Proposition 1, we have the following result.
Proposition 2: Let Assumptions 1–3 hold. Assume that, for

each i ∈ V , the function fi is strongly convex over the set X
with a constant σi. Also, let the stepsize αi > 0 be such that
2αiσi < 1. Then, for the optimal solution x∗ of problem (1)
and the sequences {xi

k}, i ∈ V, of method (2)–(3), we have

lim sup
k→∞

m∑
i=1

E
[
‖xi,k − x∗‖2

]
≤ ε + 2αmaxCεnet

1− q
,

where

ε =2m(1− γmin)δα,σC2
X +

m∑
i=1

α2
i γi(C + ν)2

+ 2mδα,γCCX .

αmax = max` α`, γmin = minj γj , q = 1− 2γmin min` α`σ`,
δα,σ = max` α`σ` − minj αjσj , δα,γ = max` α`γ` −
minj αjγj , CX = maxx,y∈X ‖x − y‖ and εnet is as given
in Proposition 1.

Proof: Since each fi is strongly convex, the sum f =∑m
i=1 fi is also strongly convex. Thus, problem (1) has a

unique optimal solution x∗ ∈ X . From Lemma 4 where we
let z = x∗, we obtain for any k ≥ 1 and any i ∈ Uk,

E
[
‖xi,k − x∗‖2 | Fk−1,Wk

]
≤ ‖vi,k − x∗‖2

+ α2
i (C + ν)2 − 2αi∇fi(vi,k)T (vi,k − x∗). (26)

Using the strong convexity of fi, we have

∇fi(vi,k)T (vi,k − x∗) = (∇fi(vi,k)−∇fi(x∗))
T (vi,k − x∗)

+∇fi(x∗)T (vi,k − x∗)

≥ σi‖vi,k − x∗‖2

+∇fi(x∗)T (vi,k − x∗).

Adding and subtracting ȳk−1 = 1
m

∑m
j=1 xj,k, we further

have ∇fi(x∗)T (vi,k − x∗) = ∇fi(x∗)T (ȳk−1 − x∗) +
∇fi(x∗)T (vi,k − ȳk−1), implying

∇fi(x∗)T (vi,k−x∗) ≥ ∇fi(x∗)T (ȳk−1−x∗)−C ‖vi,k−ȳk−1‖.
(27)

By combining the preceding two relations with inequality (26),
we obtain for any i ∈ Uk and k ≥ 1,

E
[
‖xi,k − x∗‖2 | Fk−1,Wk

]
≤ (1− 2αiσi)‖vi,k − x∗‖2

+ α2
i (C + ν)2 − 2αi∇fi(x∗)T (ȳk−1 − x∗)

+ 2αiC‖vi,k − ȳk−1‖.

Since xi,k = vi,k = xi,k−1 when i 6∈ Uk (agent i does not
update), we can write

E
[
‖xi,k − x∗‖2 | Fk−1,Wk

]
≤ (1− 2αiσi)‖vi,k − x∗‖2

+ 2αiσi‖xi,k−1 − x∗‖2(1− χ{i∈Uk})

+
(
α2

i (C + ν)2 − 2αi∇fi(x∗)T (ȳk−1 − x∗)
)
χ{i∈Uk}

+ 2αiC‖vi,k − ȳk−1‖.

Taking the expectation with respect to Fk−1, and noting that
the agent updates with the probability γi > 0, independently
of the past, we obtain for any i ∈ V and k ≥ 1,

E
[
‖xi,k − x∗‖2 | Fk−1

]
≤ (1− 2αiσi)E

[
‖vi,k − x∗‖2 | Fk−1

]
+ 2αiσi‖xi,k−1 − x∗‖2(1− γmin)

+ α2
i γi(C + ν)2 − 2αiγi∇fi(x∗)T (ȳk−1 − x∗)

+ 2αiCE[‖vi,k − ȳk−1‖ | Fk−1]

with γmin = min` γ`. Now we note that αiσi ≤ min` α`σ` +
δα,σ, with δα,σ = maxs αsσs −min` α`σ`. Similarly, αiγi ≤
min` α`γ` + δα,γ , with δα,γ = maxs αsγs − min` α`γ`. We
use these relations, the boundedness of ‖xi,k−1 − x∗‖, and

∇fi(x∗)T (ȳk−1 − x∗) ≤ C max
x,y∈X

‖y − x‖

(which follows from the subgradient boundedness and ȳk−1 ∈
X), to obtain

E
[
‖xi,k − x∗‖2 | Fk−1

]
≤ (1− 2 min

`
α`σ`)E

[
‖vi,k − x∗‖2 | Fk−1

]
+ 2(1− γmin)

(
min

`
α`σ`‖xi,k−1 − x∗‖2 + δα,σC2

X

)
+ α2

i γi(C + ν)2 − 2 min
`

α`γ`∇fi(x∗)T (ȳk−1 − x∗)

+ 2δα,γCCX + 2αiCE[‖vi,k − ȳk−1‖ | Fk−1] ,

with CX = maxx,y∈X ‖x−y‖ < ∞ by the compactness of X .
Now, by summing the preceding relations over all i, using

relations (8)–(9) and
∑m

i=1∇fi(x∗)T (ȳk−1−x∗) ≥ 0 (which
holds since ȳk−1 ∈ X and x∗ is optimal), we obtain

m∑
i=1

E
[
‖xi,k − x∗‖2 | Fk−1

]
≤ q

m∑
j=1

‖xj,k−1 − x∗‖2

+ 2m(1− γmin)δα,σC2
X +

m∑
i=1

α2
i γi(C + ν)2

+ 2mδα,γCCX + 2αmaxC

m∑
j=1

‖xj,k−1 − ȳk−1‖.

where αmax = maxi αi and q = 1 − 2γmin min` α`σ`. Since
γi ∈ (0, 1) and 2αiσi ∈ (0, 1) (by our assumption), it follows
that q ∈ (0, 1). Using this and taking the total expectation,
from the preceding relation, we have for all k ≥ 1,

m∑
i=1

E
[
‖xi,k − x∗‖2

]
≤ q

m∑
j=1

E
[
‖xj,k−1 − x∗‖2

]
+ ε

+ 2αmaxC

m∑
j=1

E[‖xj,k−1 − ȳk−1‖] ,

where

ε =2m(1− γmin)δα,σC2
X +

m∑
i=1

α2
i γi(C + ν)2

+ 2mδα,γCCX .



Since q ∈ (0, 1) by applying Lemma 1, we obtain

lim sup
k→∞

m∑
i=1

E
[
‖xi,k − x∗‖2

]
≤ 1

1− q
ε

+
2αmaxC

1− q
lim sup

k→∞

m∑
j=1

E[‖xj,k−1 − ȳk−1‖] .

The desired estimate now follows by using Proposition 1.
Proposition 2 captures the effects of the stepsize, the

connectivity structure of the graph and the information flow
governed by the matrices Wk on the asymptotic error. We
now take a closer look into the error estimate. We note that
when γmin ≈ 1, the error term 2m(1 − γmin)δα,σC2

X would
be negligible. Thus, if all agents update with high probability,
this error term will be small. This term will also be small if
the difference δα,σ = max` α`σ` − minj αjσj is small. The
error term 2mδα,γCCX will be small when the difference
δα,γ = max` α`γ` −minj αjγj is small.

When both δα,σ and δα,γ are negligible, recalling q = 1−
2γmin min` α`σ`, the estimate of Proposition 2, reduces to

lim sup
k→∞

m∑
i=1

E
[
‖xi,k − x∗‖2

]
≤ 1

2γmin min` α`σ`

m∑
i=1

α2
i γi(C + ν)2 +

αmaxCεnet

γmin min` α`σ`
,

where γmin = minj γj , αmax = max` α`, and

εnet =
√

m

1−
√

λ

√
Nαmax (C + ν).

The error bound captures the effects of the agent stepsize
values αi, the probabilities γi of agents’ updates, the strong
convexity constants σi of the agent objective functions fi, and
the underlying network connectivity graph (V, E). The effect
of connectivity graph is seen through the maximum number
N of agents that update at any given time and the parameter λ
that characterizes the convergence rate of random consensus.

Observe that the error is of the order of the largest stepsize,
αmax. Finally, note that the error grows linearly, as m, with
the number m of agents in the network, when the network
connectivity structure is such that λ and N do not depend on
m. This is seen from the error term involving the summation.

Proposition 2 requires that each agent selects a stepsize αi

so that 2αiσi < 1, which can be ensured when each agent
knows the strong convexity constant σi of its own objective
function fi. Since γi ∈ (0, 1) for all i, the relation 0 < 1 −
2γmin mini αiσi < 1, i.e., q ∈ (0, 1), holds globally over the
network without any coordination among the agents.

B. Estimate for Averaged Iterates

Here, we provide another error estimate that does not require
strong convexity. The estimate is for the network objective
function values along the time-averaged iterates of each agent.

Proposition 3: Let Assumptions 1–3 hold, and let the se-
quences {xi,k}, i ∈ V, be generated by method (2)–(3). Then,
for the average vectors zi,t = 1

t

∑t−1
k=0 xi,k for t ≥ 1 and

i ∈ V , we have for any optimal solution x∗ of problem (1)
and all i ∈ V,

lim sup
t→∞

E[f(zi,t)]− f(x∗) ≤ ε

2 minj γjαj

+
(

αmax

minj γjαj
+ m

)
C εnet,

where

ε =
m∑

i=1

γiα
2
i (C + ν)2 + 2m

(
max

`
γ`α` −min

j
γjαj

)
CCX ,

CX = maxx,y∈X ‖x−y‖ and εnet is as given in Proposition 1.
Proof: Since X is compact and f =

∑m
i=1 fi is

continuous, the optimal set X∗ is nonempty. Thus, by using
Lemma 4 with z = x∗ for any x∗ ∈ X∗, we obtain for any
i ∈ Uk and k ≥ 1,

E
[
‖xi,k − x∗‖2 | Fk−1,Wk

]
≤‖vi,k − x∗‖2 + α2

i (C + ν)2

− 2αi∇fi(vi,k)T (vi,k − x∗).

By using the estimate

∇fi(x∗)T (vi,k−x∗) ≥ ∇fi(x∗)T (ȳk−1−x∗)−C ‖vi,k−ȳk−1‖

(see (27)), and the relation ∇fi(x∗)T (ȳk−1−x∗) ≥ fi(ȳk−1)−
fi(x∗), we obtain for i ∈ Uk and any k ≥ 1,

E
[
‖xi,k − x∗‖2 | Fk−1,Wk

]
≤ ‖vi,k − x∗‖2

+ α2
i (C + ν)2 − 2αi (fi(ȳk−1)− fi(x∗))

+ 2αiC‖vi,k − ȳk−1‖.

The preceding relation holds when i ∈ Uk, which happens
with probability γi. When i 6∈ Uk, we have xi

k = vi,k (see the
discussion after Assumption 2) which happens with probability
1− γi. Thus, by taking the expectation conditioned on Fk−1,
we obtain

E
[
‖xi,k − x∗‖2 | Fk−1

]
≤ E

[
‖vi,k − x∗‖2 | Fk−1

]
+ γiα

2
i (C + ν)2 − 2γiαi (fi(ȳk−1)− fi(x∗))

+ 2αiCE[‖vi,k − ȳk−1‖ | Fk−1] . (28)

We now add and subtract 2(minj γjαj) (fi(ȳk−1)− fi(x∗))
in the right hand side of (28), and use the estimate

|fi(ȳk−1)− fi(x∗)| ≤ C‖ȳk−1 − x∗‖ ≤ CCX ,

which holds by the subgradient boundedness and ȳk−1 ∈ X .
By doing so, we can see that

E
[
‖xi,k − x∗‖2 | Fk−1

]
≤ E

[
‖vi,k − x∗‖2 | Fk−1

]
+ γiα

2
i (C + ν)2 + 2

(
max

`
γ`α` −min

j
γjαj

)
CCX

− 2
(

min
j

γjαj

)
(fi(ȳk−1)− fi(x∗))

+ 2αmaxC E[‖vi,k − ȳk−1‖ | Fk−1] .



By summing the preceding inequalities over i and using
relations (8) and (9) with x = ȳk−1 ∈ X and x = x∗

respectively, after rearranging the terms, we obtain

2
(

min
j

γjαj

)
(f(ȳk−1)− f(x∗)) ≤

m∑
j=1

‖xj,k−1 − x∗‖2

−
m∑

i=1

E
[
‖xi,k − x∗‖2 | Fk−1

]
+

m∑
i=1

γiα
2
i (C + ν)2 + 2m

(
max

`
γ`α` −min

j
γjαj

)
CCX

+ 2αmaxC

m∑
j=1

‖xj,k−1 − ȳk−1‖,

where f =
∑m

i=1 fi. By convexity of f and the boundedness
of the subgradients of each fi, we have

f(xi,k−1)− f∗ ≤ f(ȳk−1)− f∗ + mC‖xi,k−1 − ȳk−1‖.

Substituting this in the preceding inequality and using the
notation

ε =
m∑

i=1

γiα
2
i (C + ν)2 + 2m

(
max

`
γ`α` −min

j
γjαj

)
CCX ,

we obtain for all i ∈ V and k ≥ 1,

2
(

min
j

γjαj

)
(f(xi,k−1)− f(x∗)) ≤

m∑
j=1

‖xj,k−1 − x∗‖2

−
m∑

i=1

E
[
‖xi,k − x∗‖2 | Fk−1

]
+ ε

+ 2
(

αmax + m min
j

γjαj

)
C

m∑
j=1

‖xj,k−1 − ȳk−1‖.

Now, we take the total expectation and by summing the
resulting relations from k = 1 to k = t for any t ≥ 1, we
obtain for any i ∈ V,

2 min
j

γjαj

t∑
k=1

E[f(xi,k−1)− f(x∗)] ≤
m∑

j=1

E
[
‖xj,0 − x∗‖2

]
−

m∑
i=1

E
[
‖xi,t − x∗‖2

]
+ tε

+ 2
(

αmax + m min
j

γjαj

)
C

t∑
k=1

m∑
j=1

E[‖xj,k−1 − ȳk−1‖] .

By dividing with 2(minj γjαj)t and then taking the limit
superior as t →∞, we have for any i ∈ V ,

lim sup
t→∞

1
t

t∑
k=1

E[f(xi,k−1)− f(x∗)] ≤ ε

2 minj γjαj
+

(
αmax

minj γjαj
+ m

)
C lim sup

t→∞

1
t

t∑
k=1

m∑
j=1

E[‖xj,k−1 − ȳk−1‖] .

By convexity of f and zi,t = 1
t

∑t
k=1 xi,k−1, we have

1
t

t∑
k=1

E[f(xi,k−1)− f(x∗)] ≥ E[f(zi,t)]− f(x∗).

Note that for any scalar sequence {uk}, there holds

lim sup
t→∞

1
t

t∑
k=1

uk ≤ lim sup
k→∞

uk.

Therefore, by combining the preceding relations, we see that

lim sup
t→∞

E[f(zi,t)]− f(x∗) ≤ ε

2 minj γjαj

+
(

αmax

minj γjαj
+ m

)
C lim sup

k→∞

m∑
j=1

E[‖xj,k−1 − ȳk−1‖] .

From Proposition 1 we have

lim sup
k→∞

m∑
j=1

E[‖xj,k−1 − ȳk−1‖] ≤ εnet,

and the desired relation follows.
As a direct consequence of Proposition 3 and the convexity

of f , we have for i ∈ V ,

lim sup
t→∞

f (E[zi,t]) ≤ f∗ +
ε

2 minj γjαj

+
(

αmax

minj γjαj
+ m

)
C εnet,

where f∗ is the optimal value of problem (1). We have another
consequence of Proposition 3. In particular, since zi,t are
averages of xi,0, . . . , xi,t−1 for t ≥ 1, we have for every i ∈ V ,

lim inf
k→∞

E[f(xi,k)] ≤ lim inf
t→∞

E[f(zi,t)] ≤ lim sup
t→∞

E[f(zi,t)] .

In view of f(xi,k)− f∗ ≥ 0 (since xi,k ∈ X for all k and i),
and Fatou’s lemma, by Proposition 3 we have

E

[
lim inf
k→∞

f(xi,k)
]
≤ lim inf

k→∞
E[f(xi,k)]

≤ f∗ +
ε

2 minj γjαj

+
(

αmax

minj γjαj
+ m

)
C εnet.

To get a closer insight into the behavior of the limiting error
of Proposition 3, let ρ be the ratio between the largest and the
smallest values of γiαi for i ∈ V , i.e.,

ρ =
max` γ`α`

minj γjαj
.

Then, the result of Proposition 3 can be written as:

lim sup
t→∞

E[f(zi,t)] ≤ f∗ +
mαmax

2
ρ(C + ν)2

+ m(ρ− 1)CCX +
(

αmax

minj γjαj
+ m

)
Cεnet,

where αmax = maxi αi and εnet =
√

m

1−
√

λ

√
N αmax(C + ν)2.



We note that the error bound captures the effects of the agent
stepsizes αi, the probabilities γi of agents’ updates [through
the ratio ρ], and the network connectivity structure (through
N and λ). The bound grows as m

√
m in the number m of the

agents, when λ and N do not depend on m. This scaling is
worse than scaling as m obtained for strongly convex functions
in Proposition 2. Nevertheless, the scaling of the order m

√
m

much is better that the scaling obtained for the distributed
consensus-based subgradient algorithm of [25]. Specifically,
for the consensus-based distributed algorithm of [25], it is
shown that3

lim sup
t→∞

E[f(zi,t)] ≤ f∗ + mα(C + ν)2
(

9
2

+
2mθβ

1− β

)
.

where α is the constant stepsize common to all agents, and
θ and β are some constants related to the network structure
(which is assumed to be dynamic, but deterministic) The
parameter θ is of the order m2, while the ratio β/(1 − β)
does not depend on m, so that the error bound scales as m4

in the size m of the network.

VI. CONCLUSION

We have considered asynchronous algorithm for optimiza-
tion of a network objective given by the sum of objective
functions of the agents in the network. We considered the
situation where the agent communicate and update at random
over a connected communication network. The proposed al-
gorithm is analyzed for the case when agents use constant but
uncoordinated stepsize values. We provided two asymptotic
error bounds for the expected function values. The first is for
the iterates of the algorithm when the agent objective functions
are strongly convex, while the second is for the averages of
the iterates when the functions are merely convex. The bounds
are given explicitly as the function of the number of the agents
in the network, the agent stepsize values and some parameters
that depend on the network connectivity structure.
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