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Abstract— In this paper, we investigate limiting behavior of
linear dynamic systems driven by random stochastic matrices.
We introduce and study the new concepts of partial ergodicity
and `1-approximation of a given chain of stochastic matrices.
We show that partial ergodicity of a chain is invariant under
`1-approximations. We also introduce an infinite flow graph of
a random chain and use the connectivity components of this
graph to characterize the ergodicity classes of a chain. Finally,
we provide a result showing that, under certain conditions,
the ergodicity classes of an independent random chain and its
expected counterpart are the same.

I. INTRODUCTION

Ergodicity of chains (products) of stochastic matrices is
one of the central concepts in both deterministic and random
settings, as it is closely related to the behavior of time-
inhomogeneous linear dynamics driven by such matrices.
Many of the works on this topic have focused on sufficient
conditions for ergodicity and the rate of convergence in
ergodic chains [1], [5], [9], [3], [6], [7]. However, not
much is known about the behavior of random chains when
ergodicity is not present. In this case, an array of questions
arises about the limiting behavior including the existence and
the characterization of the accumulation points. The main
objective of this work is to study the limiting behavior of
dynamics driven by random chains that are not ergodic.

The organization of the paper is as follows: in Section II,
we introduce a natural generalization of ergodicity, the
concept that we term mutual ergodicity, and we discuss
some basic properties of the concept for a deterministic
and random chains. Then, in Section III, we introduce the
notion of `1-approximation of a chain and we show that
`1-approximations do not change the ergodic properties of
a given chain. We define the class M2 of random chains
in Section IV, and we investigate `1-approximations of one
sub-class in M2. Finally, in Section V we define infinite flow
graph of a chain. Using this graph, and the tools developed
in the preceding sections, we establish our main result of
this paper. For a class of random chains, the result shows
that the ergodic properties of a chain can be completely
characterized by the connected component of the infinite flow
graph associated with the chain. Furthermore, under certain
conditions, we prove that the connected components of the
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infinite flow graphs of a chain and its corresponding expected
chain are the same.
Basic Notation and Terminology. We use subscripts to
index the entries of vectors and matrices. We write x ≥ 0 or
x > 0 if xi ≥ 0 or xi > 0 respectively holds for all i. We
use `1(R) to denote the set of all scalar sequences {ak} such
that

∑∞
k=0 |ak| < ∞. A sequence of vectors and matrices

are `1-sequence if the sequence generated by each entry of
the corresponding object is a sequence in `1(R). We use ei
to denote the vector in Rn whose ith entry is 1 and the
other entries are 0. A vector a is stochastic if a ≥ 0 and∑
i ai = 1. A matrix W is stochastic if all its rows are

stochastic vectors, and it is doubly stochastic if its rows and
columns are stochastic vectors. For a matrix W , the norm
‖W‖p is the norm induced by the vector norm ‖x‖p for
p ∈ [1,∞]. We use [m] to denote the set {1, . . . ,m}. We
denote a proper subset of [m] by S ⊂ [m] and its complement
by S̄. A set S ⊂ [m] such that S 6= ∅ is a nontrivial subset of
[m]. For an m×m matrix W , we use W j to denote the jth
column vector of W . We let WS =

∑
i∈S,j∈S̄(Wij+Wji) for

S ⊂ [m]. We write W = diag(W (1), . . . ,W (τ)) to denote
that the matrix W is a block diagonal matrix with its rth
diagonal block being the matrix W (r). We use G = (V, E)
to denote a graph with the vertex set V and edge set E .
We write E[X] to denote the expected value of a random
variable X . We often use a.s. to denote almost surely.

II. BASIC DEFINITIONS

Throughout this paper we work with m × m stochastic
matrices. We denote the set of all such matrices by Sm,
and we let FSm be the Borel sigma algebra on Sm. Given
a probability space (Ω,E ,Pr(·)), a measurable function
W : (Ω,E ,Pr(·)) → Π∞k=0(Sm,FSm) is referred to as
a random chain, random dynamic or random model. We
represent random chains by its coordinate map sequence
{W (k)}. A random model {W (k)} is an independent model
if its coordinate sequence {W (k)} is independent, and if, in
addition, W (k)s are identically distributed, the model is i.i.d.

We discuss a generalization of the ergodicity notion for
random (and deterministic) models. In particular, let {W (k)}
be a random chain. Given a starting time t0 and a starting
point x(t0) ∈ Rm, our goal is to investigate the limiting
behavior of the following dynamic system:

x(t+ 1) = W (t)x(t) for t ≥ t0, (1)



where time t0 ≥ 0 is an initial time and the system is initiated
at some starting state x(t0) ∈ Rm. In what follows, we
often use the dynamic system (1) with a deterministic chain
{A(t)}. In this case, we view {A(t)} as a random model
{W (t)} with W (t) = A(t) a.s. for t ≥ t0.

We next introduce some notions.
Definition 1: For the dynamic system in (1) driven by a

deterministic chain {A(k)}, we have the following:
(a) The index i ∈ [m] is an ergodic index for the chain
{A(t)} if the limit limt→∞ xi(t) exists for any starting
time t0 ≥ 0 and any initial point x(t0) ∈ Rm. When
each index i ∈ [m] is ergodic, we say the chain is
partially-ergodic.

(b) Two indices i, j ∈ [m] with i 6= j, are mutually ergodic
indices if i or j is an ergodic index and limt→∞(xi(t)−
xj(t)) = 0 for any initial time t0 ≥ 0 and initial point
x(t0) ∈ Rm. We write i⇔ j when the indices i and j
are mutually ergodic for the chain {A(k)}.

(c) The chain {A(t)} is ergodic chain if all the indices i ∈
[m] are mutually ergodic, i.e., i⇔ j for all i, j ∈ [m].

For a random model {W (k)}, if any of the above properties
hold almost surely, we say that the model has the correspond-
ing property.

In view of Definition 1, when the chain {W (t)} is
partially-ergodic, the mutual ergodicity relation ⇔ is an
equivalence relation on the index set [m], which induces the
equivalency classes for the chain {W (t)}. We refer to these
classes as ergodic classes for the chain. By Definition 1(c),
we see that a chain is ergodic if and only if it has a single
ergodic class.

When discussing the mutual ergodicity relation among the
indices i ∈ [m] with respect to different chains {W (k)}
and {U(k)}, we often write ⇔W and ⇔U to distinguish
the equivalence relation among the indices for the chains
{W (k)} and {U(k)}, respectively.

Let Φ(k, s) = W (k) · · ·W (s) for k ≥ s ≥ t0, and
consider the dynamic system (1) started at x(t0) = e` with
` ∈ [m]. Then, x(k) = Φ(k − 1, t0)e` and hence, xi(k) =
Φi`(k − 1, 0) for all i. Therefore, if limk→∞ xi(k) exists
almost surely, then limk→∞ Φi`(k−1, t0) also exists almost
surely. Particularly, if i is an ergodic index, the preceding
assertion holds for any ` ∈ [m] and any initial time t0, which
implies that the ith row of Φ(k, t0) converges almost surely
for any t0 ≥ 0. The converse is also true, i.e., if the ith row of
Φ(k, t0) converges almost surely, xi(k) will converge almost
surely. Similarly, the relation i⇔ j implies that

lim
k→∞

(Φi`(k, t0)−Φj`(k, t0)) = 0 for all ` ∈ [m] and t0 ≥ 0.

Therefore, i⇔ j if and only if, for any t0 ≥ 0, the ith and
jth row of Φ(k, t0) converge a.s. to a common stochastic
(random) vector π(t0).

For each i ∈ [m], let Ei be the event that limk→∞ xi(k)
exists for any initial time t0 ≥ 0 and x(t0) ∈ Rm. Also,
for any i, j ∈ [m] with i 6= j, let Eij be the event that
limk→∞(xi(k)−xj(k)) = 0 for any t0 ≥ 0 and x(t0) ∈ Rm
happens on Ei. We have the following result.

Lemma 1: For an independent random chain {W (k)}, the
events Ei and Eij occur with probability either 0 or 1 for
any i, j ∈ [m].

Proof: We have Φ(k, t) = Φ(k, t0)Φ(t0, t) for k ≥
t0 ≥ t ≥ 0. Therefore, if limk→∞ xi(k) exists for starting
time t0 and any x(t0) ∈ Rm, then limk→∞ xi(k) exists for
any starting time t ≤ t0 and x(t) ∈ Rm. Also, if the ith
row and jth row of Φ(k, t0) converge to a common value,
then the ith and jth row of Φ(k, t) converge to a common
value. Thus, each Ei and Eij depends on the tale of the chain
{W (k)}. By Kolmogorov’s 0-1 theorem ([2] page 61), the
events Ei and Eij occur with probability either 0 or 1.

Note that it is possible that all events Ei and Eij occur
with probability 0. This is the case, for example, when the
matrices W (k) are chosen independently and uniformly from
the set of m×m permutation matrices.

We have the following result, which is an extension of the
result in Lemma 3 of [7] for ergodic independent chains.

Lemma 2: Let {W (k)} be an independent random chain.
If index i is ergodic for {W (k)}, then i is ergodic for the
expected chain {E[W (k)]}. Moreover, if i⇔ j for the chain
{W (k)}, then i⇔ j for the expected chain {E[W (k)]}.

Proof: If i is ergodic index for {W (k)}, then the ith
row of Φ(k, s) converges a.s. for any s ≥ 0, as k → ∞.
By the dominated convergence theorem, it follows that the
ith row of E[Φ(k, s)] also converges. Since the chain is
independent, there holds E[Φ(k, s)] = E[W (k)] · · ·E[W (s)].
Hence, for any s ≥ 0, the ith row of E[W (k)] · · ·E[W (s)]
converges as k → ∞, implying that i is ergodic index for
the chain {E[W (k)]}. Similarly, we can show that i⇔ j in
{W (k)} implies i⇔ j in {E[W (k)]}.

III. APPROXIMATION OF CHAINS

In this section, we define `1-approximation for chains, and
we show that two chains that approximate each other have
the same ergodic properties. We define `1-approximation for
deterministic chains, as follows.

Definition 2: A chain {B(k)} is an `1-approximation of
a chain {A(k)} if {Bij(k)−Aij(k)} is an `1-sequence for
every i, j ∈ [m], i.e.,

∞∑
k=0

|Bij(k)−Aij(k)| <∞ for all i, j ∈ [m].

Note that the `1-approximation is an equivalence relation.
Also, note that there are alternative (equivalent) definitions
of `1-approximation. Since we deal with m × m matrices,
we have

∑∞
k=0 |Bij(k) − Aij(k)| < ∞ for all i, j ∈ [m] if

and only if
∑∞
k=0

∑
i,j∈[m] |Bij(k) − Aij(k)| < ∞, which

yields an equivalent characterization of {B(k)} being `1-
approximation of {A(k)}. Also, since ‖ 1

me‖1 = 1, we
have 1

m

∑
j∈[m] |Bij(k) − Aij(k)| ≤ ‖B(k) − A(k)‖1 for

any i ∈ [m]. Hence,
∑
ij |Bij(k) − Aij(k)| ≤ m‖B(k) −

A(k)‖1 ≤ m
∑
ij |Bij(k) − Aij(k)|. Thus, {B(k)} is an

`1-approximation of {A(k)} if and only if
∑∞
k=0 ‖B(k) −

A(k)‖1 < ∞. Furthermore, since lp-norms are equivalent



for finite dimensional matrices, the chain {B(k)} is an `1-
approximation of {A(k)} if and only if

∞∑
k=0

‖B(k)−A(k)‖p <∞ for any p ∈ [1,∞]. (2)

Finally, note that for M(k) = maxij |Bij(k) − Aij(k)|, we
have 1

m‖B(k)−A(k)‖1 ≤M(k) ≤ ‖B(k)−A(k)‖1. Hence,
{B(k)} is an `1-approximation of {A(k)} if and only if
{M(k)} ∈ `1(R).

Now, let {W (k)} and {U(k)} be independent random
models adapted to the same sigma-field. Because of the Kol-
mogorov’s 0-1 law,

∑∞
k=0 |Wij(k)−Uij(k)| <∞ with either

probability 0 or 1 for any i, j ∈ [m]. Hence, without any
ambiguity, we can define two (adapted) independent random
chains {W (k)} and {U(k)} to be an `1-approximations of
each other if

∑∞
k=0 |Wij(k) − Uij(k)| < ∞ almost surely

for all i, j ∈ [m]. We will use the following result to provide
an alternative characterization of `1-approximation of two
random chains.

Lemma 3: Let {X(k)} be a sequence of independent
scalar random variables such that X(k) ∈ [0, α] almost
surely for all k and for some α > 0. Then,

∑∞
k=0X(k) <∞

almost surely if and only if
∑∞
k=0 E[X(k)] <∞.

Proof: If
∑∞
k=0 E[X(k)] < ∞, then by the monotone

convergence theorem it follows that
∑∞
k=0X(k) < ∞. For

the converse, suppose that
∑∞
k=0X(k) < ∞ almost surely.

Then, by Kolmogorov’s three series theorem ([2] page 63),
it follows that

∑∞
k=0 E

[
X(k)1{|X(k)|≤α}

]
< ∞ where 1E

is the indicator function of the event E. Since X(k) ∈ [0, α],
we have X(k)1{|X(k)|≤α} = X(k) and the result follows.

For two stochastic matrices W and U , we have 0 ≤
maxij |Wij−Uij | ≤ 2. From this and Lemma 3, we have the
following alternative characterization of `1-approximation.

Corollary 1: Let {W (k)} and {U(k)} be two indepen-
dent random models adapted to the same sigma-field. Then,
the chain {W (k)} is an `1-approximation of {U(k)} if and
only if

∑∞
k=0 E[maxij |Wij(k)− Uij(k)|] <∞.

Our next result shows that the ergodicity of an index as
well as the ergodic classes of a chain are invariant under
`1-approximations of the chain. These properties, while
important in their own right, provide us with some essential
tools for later use.

Lemma 4: (Approximation lemma) Suppose that a deter-
ministic chain {B(k)} is an `1-approximation of a determin-
istic chain {A(k)}. Then, {A(k)} and {B(k)} have the same
ergodic properties, i.e., i is an ergodic index for {A(k)} if
and only if i is ergodic index for {B(k)}, and i ⇔A j if
and only if i⇔B j.

Proof: Recalling the discussion following Definition 1,
it suffice to consider initial states x(t0) = e` with ` ∈ [m]
and arbitrary t0. Thus, let t0 ≥ 0 and ` ∈ [m] be arbitrary. Let
{x(k)} be the sequence generated by (1) driven by {A(k)},
i.e., x(k + 1) = A(k)x(k) for k ≥ t0 with x(t0) = e`.
Let ε > 0 be arbitary. Since {B(k)} is an `1-approximation
of {A(k)} for the given ε, there exists Nε ≥ t0 such that∑∞
k=Nε

‖B(k)−A(k)‖∞ < ε (see (2)).

Now, define z(k+ 1) = B(k)z(k) for k ≥ Nε with initial
condition z(Nε) = x(Nε). By induction on k, we show that
for all k ≥ Nε,

‖x(k + 1)− z(k + 1)‖∞ ≤
k∑

t=Nε

‖A(t)−B(t)‖∞. (3)

To see this, note that for any k ≥ Nε, we have

x(k + 1) = A(k)x(k) = (A(k)−B(k))x(k) +B(k)x(k).

Since the matrices A(k) are stochastic and x(t0) = ε`, we
have 0 ≤ xi(k) ≤ 1 for any k ≥ t0. Therefore,

‖(A(k)−B(k))x(k)‖∞ ≤ ‖A(k)−B(k)‖∞. (4)

Therefore, ‖x(Nε + 1) − B(Nε)x(Nε)‖∞ ≤ ‖A(Nε) −
B(Nε)‖∞. Since z(Nε) = x(Nε), by the definition of z(k),
we have z(Nε + 1) = B(Nε)x(Nε), implying

‖x(Nε + 1)− z(Nε + 1)‖∞ ≤ ‖A(Nε)−B(Nε)‖∞.
Thus, relation (3) is valid for k = Nε. Now, suppose
that relation (3) holds for k − 1, i.e., ‖x(k) − z(k)‖∞ ≤∑k−1
t=Nε

‖A(t) − B(t)‖∞. Using the definitions of x(k) and
z(k), Eq. (4) and the triangle inequality, we have

‖x(k + 1)− z(k + 1)‖∞ = ‖A(k)x(k)−B(k)z(k)‖∞
≤ ‖(A(k)−B(k))x(k)‖∞ + ‖B(k)(x(k)− z(k))‖∞
≤ ‖A(k)−B(k)‖∞‖x(k)‖∞ + ‖B(k)‖∞‖x(k)− z(k)‖∞
≤ ‖A(k)−B(k)‖∞ + ‖x(k)− z(k)‖∞

where the last inequality follows by ‖x(k)‖∞ ≤ 1 and
‖B(k)‖∞ = 1 (since B(k) is a stochastic matrix). Now by
using the induction hypothesis, we obtain ‖x(k+ 1)− z(k+
1)‖∞ ≤

∑k
t=Nε

‖A(t)−B(t)‖∞, thus showing relation (3).
Note that from relation (3) and the choice of Nε, we have

‖x(k + 1)− z(k + 1)‖∞ ≤ ε for all k ≥ Nε. (5)

Now if i is an ergodic index for {B(k)}, then
limk→∞ zi(k) = z∞ exists. Hence, there exists M ≥ Nε
such that |zi(k)− z∞| ≤ ε. Therefore, for k, k′ ≥M ,

|xi(k)−xi(k′)| = |(xi(k)− zi(k)) + (xi(k
′)− zi(k′))

+ (zi(k)− z∞) + (zi(k
′)− z∞)| ≤ 4ε,

which holds by the triangle inequality and inequality (5). But
this argument holds for any ε > 0 and hence, {xi(k)} is a
Cauchy sequence in [0, 1] which proves that limi→∞ xi(k)
exists. Here we did not use any assumption about the starting
time being 0. Therefore, using the same argument, we obtain
that i is an ergodic index for {A(k)}.

Suppose now that i⇔B j, then i and j are ergodic indices
for {B(k)} and by the preceding discussion they are also
ergodic indices for {B(k)}. To show i ⇔A j, it remains
to prove that xi(k) − xj(k) → 0. Since i ⇔A j, we have
limk→∞(zi(k)− zj(k)) = 0. Thus, by using inequality (5),
we can see lim supk→∞ |xi(k)−xj(k)| ≤ 2ε for any ε > 0.
Therefore, lim supk→∞ |xi(k) − xj(k)| = 0. The converse
statement follows by the same argument.

The result of Approximation Lemma 4 has immediate
implications for random chains. Specifically, if a random



chain {W (k)} is an `1-approximation of another random
chain {U(k)}, then the result of Approximation Lemma 4
holds for almost all realizations of {W (k)} and {U(k)}.
Hence, `1-approximations preserve the ergodic properties of
random chains almost surely.

The following result is an immediate consequence of
Approximation Lemma 4.

Corollary 2: The class of deterministic ergodic chains is
closed under `1-approximations. Also, the class of ergodic
random chains is closed under `1-approximations.

IV. APPROXIMATION AND ERGODICITY ON CLASS M2

As in [7], we say a chain {W (k)} has a common steady
state π in expectation if π is a stochastic vector such that
πTE[W (k)] = πT for all k. In [7], we studied the ergodicity
properties of such chains by using the function

V (x) =

m∑
i=1

πi(xi − πTx)2, (6)

and we have shown the following result ([7], Theorem 4).
Theorem 1: Let the random model {W (k)} be indepen-

dent with a common steady state π in expectation. Let the
sequence {x(k)} be given by (1) with t0 = 0 and arbitrary
x(0) ∈ Rm. Then, we almost surely have for all k ≥ 0,

E[V (x(k + 1)) | x(k)] ≤ V (x(k))

−
∑
i<j

Hij(k) (xi(k)− xj(k))
2
,

where H(k) = E
[
WT (k)DW (k)

]
and D = diag(π).

Regarding this result, a natural question is: if {U(k)} is an
`1-approximation of the chain {W (k)} for which Theorem 1
holds, will the result hold for the chain {U(k)}? The answer
to the question is not obvious, since when {U(k)} is an `1-
approximation of {W (k)}, the chain {U(k)} need not have a
common steady state in expectation. To answer the question,
we define a class of random chains as follows.

Definition 3: Let M2 be the class of independent random
models {W (k)} with the following property: there exists a
vector u > 0 such that for any t0 ≥ 0 and x(t0) ∈ Rm, the
sequence {x(k)} of the dynamic system (1) is such that

∞∑
k=t0

∑
i<j

Hij(k)E
[
(xi(k)− xj(k))2

]
<∞ a.s.,

where H(k) = E
[
WT (k)diag(u)W (k)

]
. The vector u is

termed an asymptotic distribution for the chain {W (k)}.
Note that since the matrix E

[
WT (k)diag(u)W (k)

]
is a

linear function of u and the expectation operation E[·] is
linear, if u is an asymptotic distribution for {W (k)}, then
the vector λπ for any λ > 0 is also an asymptotic distribution
for {W (k)}. Thus, by a proper normalization of the vector
u in Definition 3, we can obtain a stochastic vector as an
asymptotic distribution for the chain.

By Definition 3, the class of independent random models
that have some common steady state in expectation is a sub-
class of M2. We next show that `1-approximations of such
models yield chains that stay in the class M2.

We now state a direct consequence of Theorem 1, which
we need in the sequel.

Lemma 5: Let W be a random matrix and π be a stochas-
tic vector such that E

[
πTW

]
= π. Then, for any vector

x ∈ Rm,

E[V (Wx)] ≤ V (x)−
∑
i<j

Hij(xi − xj)2,

where H = E
[
WT diag(π)W

]
.

Using this result, we establish the following theorem.
Theorem 2: Let {W (k)} be an independent random chain

with a common steady state π in expectation. Let {U(k)} be
an `1-approximation of {W (k)}. Then, {U(k)} ∈ M2 and
π is an asymptotic distribution for {U(k)}.

Proof: Let D = diag(π). Let {z(k)} be the sequence
resulted from (1) with the chain {U(k)}, i.e., z(k + 1) =
U(k)z(k) for k ≥ t0. Without loss of generality, let t0 =
0 and z(0) ∈ [0, 1]m. We have E[V (z(k + 1)) | z(k)] =
E
[
zT (k + 1)(D − ππT )z(k + 1) | z(k)

]
. By letting y =

(U(k)−W (k))z(k), we write

E[V (z(k + 1)) | z(k)]

= E
[
(W (k)z(k) + y)T (D − ππT )(W (k)z(k) + y) | z(k)

]
≤ E[V (W (k)z(k))|z(k)]

+ 2E
[
yT (D − ππT )z(k + 1) | z(k)

]
, (7)

which holds since V (y) ≥ 0. Define H(k) =
E
[
WT (k)DW (k)

]
for k ≥ 0. and note that by

Lemma 5, we have E[V (W (k)z(k)) | z(k)] ≤ V (z(k)) −∑
i<j Hij(k)(zi(k)− zj(k))2. Thus,

E[V (z(k + 1)) | z(k)] ≤ V (z(k))

−
∑
i<j

Hij(k)(zi(k)− zj(k))2

+ 2E
[
yT (D − ππT )z(k + 1) | z(k)

]
. (8)

Since U(k)s are stochastic, z(k) ∈ [0, 1]m for all k. Each
entry of D − ππT is bounded by 1 in the absolute value.
Furthermore, |yi| ≤ ‖W (k) − U(k)‖∞ for all i ∈ [m].
Therefore, yT (D−ππT )z(k+1) ≤ m2‖W (k)−U(k)‖∞ for
all k. By the independency assumption, U(k) and W (k) are
independent of z(k). Thus, from Eqs. (7) and (8), it follows

E[V (z(k + 1)) | z(k)] ≤ V (z(k))

−
∑
i<j

Hij(k)(zi(k)− zj(k))2 + 2m2E[‖W (k)− U(k)‖∞] .

Since {U(k)} is an `1-approximation of {W (k)}, we have∑∞
k=0 E[‖W (k)− U(k)‖∞] < ∞. By Robbins-Siegmund

supermartingale result ([4], page 50), it follows
∞∑
k=0

∑
i<j

Hij(k)(zi(k)− zj(k))2 <∞ a.s. (9)

To complete the proof, we show that the difference be-
tween the two sums

∑∞
k=0

∑
i<j Hij(k)(zi(k)−zj(k))2 and∑∞

k=0

∑
i<j Lij(k)(zi(k) − zj(k))2 is finite almost surely,

where L(k) = E
[
UT (k)DU(k)

]
for k ≥ 0. Let T (k) =



U(k) − W (k). Since |T`i(k)| = |U`i(k) − W`i(k)| ≤
‖T (k)‖∞, we have

Lij(k) =

m∑
`=1

E[π`U`i(k)U`j(k)]

≤
m∑
`=1

E[π`(W`i(k) + T`i(k))(W`j(k) + T`j(k))]

≤ Hij(k) + αE[‖T (k)‖∞] ,

for some α > 0 which holds since π`,W`i(k),W`j(k) ∈
[0, 1]. Since (zi(k)− zj(k))2 ≤ 1, we have

∞∑
k=0

∑
i<j

Lij(k)(zi(k)− zj(k))2

≤
∞∑
k=0

∑
i<j

Hij(k)(zi(k)− zj(k))2 +m2α

∞∑
k=0

E[‖T (k)‖∞] .

We note that
∑∞
k=0 E[‖T (k)‖∞] <∞ since {U(k)} is an `1-

approximation of {W (k)}. By using this and inequality (9),
we obtain

∑∞
k=0

∑
i<j Lij(k)(zi(k) − zj(k))2 < ∞ a.s.,

thus showing that {U(k)} ∈M2 and that π is an asymptotic
distribution for {U(k)}.

We now give some definitions, as introduced in [7].
Definition 4: ([7]) A random model {W (k)} has weak-

feedback property if there exists a scalar γ > 0 such that
E
[
W i(k)

T
W j(k)

]
≥ γE[Wij(k) +Wji(k)] for all k ≥ 0

and i, j ∈ [m]. The scalar γ is termed a feedback constant
for {W (k)}.

Definition 5: ([7]) A chain {W (k)} has infinite flow prop-
erty if

∑∞
k=0WS(k) =∞ for any S ⊂ [m].

We next provide a generalization of the Infinite Flow
Theorem established in [7].

Theorem 3: Let {W (k)} ∈ M2 have the weak feedback
property. Then, the following statements are equivalent:

(a) The model is ergodic.
(b) The model has infinite flow property.
(c) The expected model has infinite flow property.
(d) The expected model is ergodic.

The proof of this result follows almost the same line of
arguments as that of Theorem 3 in [8]. There one should
notice that the proof can rest on the definition of the class
M2 chains as opposed to models with a common steady state
π in expectation.

V. INFINITE FLOW GRAPH

So far, we showed that the infinite flow property and
ergodicity are equivalent under some conditions for chains
{W (k)} in the class M2. We now focus on the situation
when the infinite flow property does not hold and we aim
to answer the question “what happens with the dynamics in
(1) when the infinite flow is not present?” We provide some
insights into that question. For this, we let {W (k)} be an
independent random model and define the infinite flow graph
associated with the model as follows.

Definition 6: For a given independent random model
{W (k)}, the infinite flow graph of the model is the undi-
rected graph G∞ = ([m], E∞) where {i, j} ∈ E∞ if and
only if

∑∞
k=0(Wij(k) +Wji(k)) =∞ almost surely.

Since the model is independent, the event
∑∞
k=0(Wij(k) +

Wji(k)) = ∞ is a tale event and hence, it happens with
either probability zero or probability one. Thus, {i, j} 6∈ E∞
if and only if

∑∞
k=0(Wij(k) +Wji(k)) <∞ almost surely.

Note that the graph G∞ is connected if and only if the
model has infinite flow property. In [7], Theorem 1, we have
shown that the infinite flow property is necessary for the
ergodicity of any random chain. Here, we will give a stronger
version of this result by the use of the following lemma.

Lemma 6: Let {A(k)} be a deterministic chain, and let
the indices i, j ∈ [m] be such that i ⇔A j. Then, i and j
belong to the same connected component of G∞.

Proof: Let S be the vertex set corresponding to the
connected component of G∞ for which i ∈ S. To arrive
at a contradiction, assume that j 6∈ S, so we have j ∈ S̄
and

∑∞
k=0AS(k) < ∞. Without loss of generality, we can

assume that S = {1, · · · , `} for some ` < m. Then, we
construct a matrix B(k) by modifying the entries of A(k) for
i ∈ S and j 6∈ S. In particular, for i ∈ S we let Bij′ = Aij′

if j′ ∈ S with j′ 6= i, Bii = Aii+
∑
j′∈S̄ Aij′ , and Bij′ = 0

for j′ ∈ S̄. Similarly, we define Bi′j′ for i′ ∈ S̄: Bi′j′ =
Ai′j′ if j′ ∈ S̄ with j′ 6= i′, Bi′i′ = Ai′i′ +

∑
j′∈S Ai′j′ ,

and Bi′j′ = 0 for j′ ∈ S. By this construction, we have

B(k) =

[
B1(k) 0

0 B2(k)

]
, where B1(k) and B2(k) are

`×` and (m−`)× (m−`) stochastic matrices, respectively.
Note that because

∑∞
k=0AS(k) < ∞, the chain {B(k)} is

an `1-approximation of {A(k)}.
Now, let z =

∑`
i=1 ei. Then, B(k)z = z for any k ≥ 0.

Since i ∈ S and j ∈ S̄, we have zi = 1 for all i ∈ S and
zj = 0 for all j ∈ S̄. Hence, i 6⇔B j and by Approximation
Lemma 4 it follows i 6⇔A j - a contradiction.

If in Lemma 6, the chain {A(k)} is ergodic, then i⇔A j
for any i, j ∈ [m], implying that G∞ is connected, which
means that {A(k)} has infinite flow property.

For convenience, in the rest of this paper we use the
following notation. Given a random model {W (k)}, we let
its infinite flow graph G∞ have τ connected components,
τ ≥ 1. We let S1, . . . , Sτ ⊂ [m] be the sets of vertices in the
connected components of G∞. Without loss of generality, we
assume the sets Sr and their elements are ordered as follows:
S1 = {a0 + 1, . . . , a1}, S2 = {a1 + 1, . . . , a2}, . . . , Sτ =
{aτ−1 + 1, . . . , aτ} for a0 = 0 < a1 < . . . < aτ = m. Let
mr be the number of vertices in Sr for 1 ≤ r ≤ τ , for which
we have mr = ar−ar−1 and

∑τ
r=1mr = m. Evidently, the

sets Sr, 1 ≤ r ≤ τ form a partition of the set [m]. In order
to properly relate the elements in the sets [mr] and [m], we
define ir = i + ar−1 for r = 1, . . . , τ . Thus, ir ∈ [m] is
the vertex in the set [m] corresponding to i ∈ [mr] (the ith
vertex of the rth connected component Sr).

Now, given a chain {W (k)} and its infinite flow graph
G∞, we construct a special block diagonal approximation
of {W (k)} based on the partition {Sr, 1 ≤ r ≤ τ} of G∞.



For any r ∈ [τ ], we define a matrix W̃ (r)(k) for each k
based on the matrix W (k) and the index set Sr, as follows:
for i, j ∈ [mr] and any k ≥ 0,

W̃
(r)
ij (k) =

{
Wirjr (k) +

∑
`∈S̄r Wir`(k) if j = i,

Wirjr (k) if j 6= i.
(10)

Thus, for each r, the matrices W̃ (r)(k) are mr×mr, and the
model {W̃ (r)(k)} is defined over Smr . The block diagonal
approximation of {W (k)} is given by

W̃ (k) = diag(W̃ (1)(k), . . . , W̃ (τ)(k))

=


W̃ (1)(k) 0 · · · 0

0 W̃ (2)(k) · · · 0
...

...
. . .

...
0 0 . . . W̃ (τ)(k)

 . (11)

Based on the construction, the chain {W̃ (k)} has the same
infinite flow graph as the chain {W (k)}. Furthermore, every
sub-chain {W̃ (r)(k)} has its infinite flow graph equal to the
subgraph of G∞ induced by the r-th connected component
(with vertex set Sr) for r ∈ [τ ]. Therefore, the models
{W̃ (r)(k)}, r ∈ [τ ] have infinite flow property.

In fact, the block diagonal approximation of a model is an
`1-approximation of the model, as seen in the following.

Lemma 7: Let {W (k)} be an independent random model
and {W̃ (k)} be its block diagonal approximation. Then,
{W̃ (k)} is an `1-approximation of {W (k)}.

Proof: First we show that W̃ (k) is a stochastic matrix
for any k ≥ 0. By the form of the matrix W̃ (k) in Eq. (10),
it suffice to show that W̃ (r)(k) is stochastic for 1 ≤ r ≤ τ .
By the definition of W̃ (r)(k), we have W̃ (r)(k) ≥ 0. Also,
for any i ∈ [mr], we have:
mr∑
j=1

W̃
(r)
ij (k) = W̃

(r)
ii (k) +

∑
j 6=i,j∈[mr]

W̃
(r)
ij (k)

=

Wirir (k) +
∑
`∈S̄r

Wir`(k)

+
∑

` 6=ir,`∈Sr

Wir`(k)

=

m∑
`=1

Wir`(k) = 1. (12)

Therefore, the matrices W̃ (r)(k) are stochastic.
To show that {W̃ (k)} is an `1-approximation, we estimate

the terms |W̃ij(k)−Wij(k)| for i, j ∈ [m]. For this, we let
i ∈ Sr for r ∈ [τ ]. Then, we have three cases:
(1) If j 6∈ Sr, we have W̃ij(k) = 0, implying that |W̃ij(k)−
Wij(k)| = Wij(k).
(2) If j ∈ Sr and j 6= i, by the definition of W̃ (k) we have
W̃ij(k) = Wij(k) and hence, |W̃ij(k)−Wij(k)| = 0.
(3) If j = i, we have

W̃ii(k) = Wii(k) +
∑
j 6∈Sr

Wij(k).

Hence, |W̃ij(k)−Wij(k)| =
∑
j 6∈Sr Wij(k).

From the preceding three cases, we have for any r ∈ [τ ],
m∑
j=1

|W̃ij(k)−Wij(k)| = 2
∑
j 6∈Sr

Wij(k) for all i ∈ Sr.

By summing over all i ∈ Sr, we have for any r ∈ [τ ],∑
i∈Sr

m∑
j=1

|W̃ij(k)−Wij(k)| = 2
∑
i∈Sr

∑
j 6∈Sr

Wij(k) ≤ 2WSr (k).

By summing these inequalities for r = 1, . . . , τ , we obtain∑
i,j∈[m]

|W̃ij(k)−Wij(k)| =
τ∑
r=1

∑
i∈Sr

m∑
j=1

|W̃ij(k)−Wij(k)|

≤ 2

τ∑
r=1

WSr (k).

The sets S1, . . . , Sτ are the sets of vertices of the connected
components in the infinite flow graph G∞. By the definition
of the infinite flow graph, we have

∑∞
k=0

∑τ
r=1WSr (k) <

∞ almost surely. Therefore, it follows that
∞∑
k=0

∑
i,j∈[m]

|W̃ij(k)−Wij(k)− | <∞ a.s.,

proving that {W̃ (k)} is an `1-approximation of {W (k)}.
By Theorem 3, we know that for M2 models with asymp-

totic distribution π > 0 and weak feedback property, the
model is ergodic if and only if the infinite flow graph is
connected. The following theorem characterizes the behavior
of system (1) when the dynamics is driven by an independent
chain {W (k)} with a common steady state π > 0 in
expectation and weak feedback property.

Theorem 4: Let {W (k)} be an independent model with
a common steady state π > 0 in expectation and weak
feedback property. Then, the model is partially ergodic and
i ⇔ j if and only if i and j are in the same connected
component of G∞.

Proof: The “if” part follows from Lemma 6. To
show the “only if” part, we use two `1-approximations
successively. The first approximation is the block diagonal
approximation, which gives us almost all of the properties
we are looking for. However, it does not necessarily pre-
serve weak-feedback property, so we construct another `1-
approximation to cure this problem.

Let the infinite flow graph of {W (k)} be G∞ and suppose
it has τ connected components. Let S1, . . . , Sτ be the vertex
sets corresponding to the connected components of G∞. Let
πmin = mini∈[m] πi > 0.

Consider the diagonal approximation {W̃ (k)} of {W (k)}
with W̃ (r)(k) be defined as in Eq. (10) for r ∈ [τ ].
Let M(k) = E

[
maxi,j∈[m] |W̃ij(k)−Wij(k)|

]
. Since

{W̃ (k)} is an `1-approximation of {W (k)}, by Lemma 1∑∞
k=0M(k) < ∞. Therefore limk→∞M(k) = 0. Thus,

there exists N ≥ 0 such that M(k) ≤ πmin

8m for any k ≥ N .
Let J (r) = π(r)e(mr)T where π(r) = (πar−1+1, . . . , πar ),

which is a sub-vector of π having the coordinates πi with



i ∈ Sr. Let U(k) = I for k < N and for k ≥ N ,

U (r)(k) = (1− d(k))W̃ (r)(k) + d(k)J (r),

where d(k) = 4m
πmin

M(k) for k ≥ 0. Since M(k) ≤ πmin

8m for
k ≥ N , we have d(k) ∈ [0, 1

2 ]. Since convex combination of
stochastic matrices is a stochastic matrix, it follows that each
U (r)(k) is stochastic. Note that

∑∞
k=0M(k) < ∞ implies∑∞

k=0 d(k) < ∞ and hence, the model {U (r)(k)}k≥N
is an `1-approximation of {W̃ (r)(k)}k≥N . But since, the
entries of each matrix are in [0, 1], changing finitely many
matrices in a chain cannot change infinite flow properties.
Therefore, {U (r)(k)} is an `1-approximation of {W̃ (r)(k)}
and the model {U(k)} with matrices defined by U(k) =
diag(U (1)(k), . . . , U (τ)(k)), k ≥ 0 is an `1-approximation
of {W̃ (k)}. By Lemma 7, {W̃ (k)} is an `1-approximation
of the original model {W (k)} and therefore, {U(k)} is an
`1-approximation of {W (k)}.

For k < N , U(k) = I which has weak-feedback property
with constant 1. So, let us fix k ≥ N and show weak
feedback property for U(k). Let r ∈ [τ ] be arbitrary and
for simplicity of notation, let Q = U (r)(k). For i, j ∈ [mr]
recall that their corresponding indices in [m] are given by
ir = i + ar − 1, jr = j + ar − 1. Also, recall that W s

denotes the sth column vector of a matrix W . Using this,
for any i, j ∈ [mr] with i 6= j we have:

Qi
T
Qj =

(
(1− d(k))W̃ (r)ir (k) + d(k)π(r)

)T
(

(1− d(k))W̃ (r)jr (k) + d(k)π(r)
)

≥ (1− d(k))2(W̃ (r)ir (k))T W̃ (r)jr (k)

+ (1− d(k))d(k)π(r)T (W̃ (r)ir (k) + W̃ (r)jr (k)). (13)

Now, based on the definition of π(r), we have:

π(r)T W̃ (r)ir (k) = πTW ir (k) + πT (W̃ ir (k)−W ir (k))

≥ πTW i(k)−max
i′j′
|W̃i′j′(k)−Wi′j′(k)|,

which holds due to the stochasticity of π. Therefore,

E
[
π(r)T W̃ (r)ir (k)

]
≥ πi −M(k),

which follows from π being a common steady state in expec-
tation of {W (k)}. Similarly, we have E

[
π(r)T W̃ (r)jr (k)

]
≥

πj − M(k). Taking the expectation of the both sides in
Eq. (13) and using the preceding inequalities, we obtain

E
[
QiTQj

]
≥ (1− d(k))2E

[
(W̃ ir (k))T W̃ jr (k)

]
+ (1− d(k))d(k)(πi + πj − 2M(k))

≥ (1− d(k))2E
[
(W̃ ir (k))T W̃ jr (k)

]
+ (1− d(k))d(k)

πi + πj
2

, (14)

which holds by M(k) ≤ πmin

8m ≤
πi
4 for i ∈ [m] and k ≥ N .

Since, W̃`ir (k) ≥W`ir (k)−maxij |W̃ij(k)−Wij(k)| for
all ` ∈ [m], we have

E
[
(W̃ ir (k))T W̃ jr (k)

]
≥ E

[
(W ir (k))TW jr (k)

]
−2mM(k).

Therefore, using the above inequality in Eq. (14), we have:

E
[
QiTQj

]
≥ (1− d(k))2E

[
(W ir (k))TW jr (k)

]
− (1− d(k))22mM(k) + (1− d(k))d(k)

πi + πj
2

.

But 0 ≤ 4m
πmin

M(k) = d(k) ≤ 1 and hence,

2mM(k) ≤ d(x)
πi + πj

4
.

By combining the preceding two relations, we have

E
[
QiTQj

]
≥ (1− d(k))2E

[
(W ir (k))TW jr (k)

]
+ (1− d(k))d(k)

πi + πj
4

≥ (1− d(k))2γE[Wirjr (k) +Wjrir (k)]

+ (1− d(k))d(k)
πi + πj

4
, (15)

where the last inequality follows by weak feedback property
of {W (k)}. Without loss of generality, we may assume
γ ≤ 1

4 (otherwise we replace γ by 1
4 ). Since ir, jr ∈ Sr and

ir 6= jr, by the construction of W̃ (k), we have W̃irjr (k) =
Wirjr (k). Hence, E[Qij +Qji] = (1− d(k))(E[Wirjr (k)] +
E[Wjrir (k)]) + d(k)(πi + πj). By combining this with
Eq. (15), we have

E
[
QiTQj

]
≥ (1− d(k))γ (E[Qij +Qji]− d(k)(πi + πj))

+ (1− d(k))d(k)
πi + πj

4
= (1− d(k))γE[Qij +Qji]

+ (1− d(k))d(k)

(
−γ +

1

4

)
(πi + πj)

≥ γ

2
E[Qij +Qji] ,

which follows from d(k) ≤ 1
2 and γ ≤ 1

4 . Note that we
set Q = U (r)(k) where r ∈ [τ ] and k ≥ N was arbitrary.
Hence, each of the decoupled random models {U (r)(k)} has
weak-feedback property with feedback constant γ

2 .
Let x(0) ∈ Rm and {x(k)} be the chain resulted from

{U(k)} and dynamic system (1). By Theorem 2, it follows
that {U(k)} ∈M2 and π > 0 is an asymptotic distribution
for {W (k)}. Hence,

∑∞
k=0

∑
i<j Lij(k)(xi(k)− xj(k))2 <

∞ almost surely, where L(k) = E
[
UT (k)diag(π)U(k)

]
.

Hence, for any r ∈ [τ ],

∞∑
k=0

∑
i<j

i,j∈Sr

Lij(k)(xi(k)− xj(k))2 <∞ a.s.

Due to the diagonal structure of U(k), we have:
(a) x(k) = (x(1)(k), · · · , x(τ)(k)), where x(r)

i (0) = xir (0),
so {x(r)(k)} are the sequences of random vectors in Rmr
driven by the individual chains {U (r)(k)}.



(b) For i, j ∈ [mr] and r ∈ [τ ],

Lirjr (k) = E

∑
`∈[m]

π`U`ir (k)U`jr (k)


= E

[∑
`∈Sr

π`U
(r)
`ir

(k)U
(r)
`jr

(k)

]

= E

 ∑
¯̀∈[mr]

π
(r)
¯̀ U

(r)
¯̀i

(k)U
(r)
¯̀j

(k)

 . (16)

Therefore, by the above observations, the random model
{U(k)} ∈ M2 acting on Rm, decomposes into τ ran-
dom models {U (1)(k)}, . . . , {U (τ)(k)} each of M2 class
and acting on Rm1 , . . . ,Rmτ , respectively. Furthermore, the
random model {W̃ (r)(k)} has an asymptotic distribution
π(r) > 0. Also each model {W̃ (r)(k)} has the infinite
flow property and hence, their `1-approximations have the
infinite flow property. Also, we showed that each random
model {W̃ (r)(k)} has weak feedback property. Hence, by
Theorem 3, {U (r)(k)} is ergodic chain for any r ∈ [τ ]
which implies i ⇔ j for any i, j ∈ Sr. Since, U(k) =
diag(U (1)(k), . . . , U (τ)(k)), hence, i⇔ j in {U(k)}. There-
fore, by Approximation Lemma 4, i⇔ j in the original chain
{W (k)} if and only if i⇔ j in {U(k)} which is true if and
only if i, j ∈ Sr for some r ∈ [τ ].

Using the above theorem, the following generalization of
the Infinite Flow theorem [7] follows immediately.

Theorem 5: Let {W (k)} be an independent chain with
a common steady state π > 0 in expectation and weak
feedback property. Then, the chain and the expected chain
are partially ergodic. Furthermore, the following conditions
are equivalent:

(a) i⇔ j in {W (k)}.
(b) i, j belong to the same connected component of G∞.
(c) i, j belong to the same connected component of Ḡ∞,

where Ḡ∞ is the infinite flow graph of {E[W (k)]}.
(d) i⇔ j in {E[W (k)]}.

Proof: By Theorem 4 {W (k)} is partially ergodic
chain and by Lemma 2, it follows that the expected chain
{E[W (k)]} is partially ergodic. By Lemma 2, (a) implies (d).
Next, (d) implies (c) by Lemma 6. Since, Wji(k)+Wij(k) ∈
[0, 2], by use of Lemma 3, the infinite flow graph of {W (k)}
and {E[W (k)]} are the same and hence, (c) and (b) are
equivalent. Finally, since {W (k)} satisfies the conditions of
Theorem 4, (b) implies (a).

Under the conditions of Theorem 4, as a special case, the
dynamics driven by deterministic chains will always have a
limit point. As an example we have the following corollary.

Corollary 3: Let {A(k)} be a deterministic chain of dou-
bly stochastic matrices. Let γ > 0 be such that Aii(k) ≥
γ > 0 for any k ≥ 0 and i ∈ [m]. Then, Φ(∞, t0) =
limk→∞Φ(k, t0) exists for any t0. Furthermore, if two
indices i and j are in the same connected component of
the infinite flow graph of {A(k)}, then the ith row and jth
row of Φ(∞, t0) are the same.

As another example, consider an application of Theorem 4
to an i.i.d. random model {W (k)} with positive diagonal
entries (almost surely). In [6], it was shown that such a chain
is ergodic if and only if its expected chain is ergodic. In [7],
it was shown that such a chain has weak-feedback property.
For this model the expected matrix E[W (k)] is time invariant
(and stochastic). Hence, the model has a common steady state
π in expectation, but π may have zero entries.

Corollary 4: Let {W (k)} be an i.i.d. model with
Wii(0) > 0 almost surely for all i ∈ [m]. Let π > 0
be a vector such that πTE[W (k)] = πT . Then, the limit
limk→∞Φ(k, 0) exists almost surely.

We next provide an example showing that the condition
π > 0 is indeed needed in Corollary 4. Consider

W (k) =

 1 0 0
α(k) 1

2 β(k)
0 0 1

 ,

where the vector (α(k), β(k)) has two random realizations,
( 1

2 , 0) and (0, 1
2 ), each occurring with probability 1

2 indepen-
dently and identically for k ≥ 0. If the dynamics is started
at x(0) = (0, 1

2 , 1), then for any k ≥ 1, x1(k) = x1(0) = 0,
x3(k) = x3(0) = 1 and x2(k) would equally likely be either
x2(k−1)+1

2 or x2(k−1)
2 , which shows that x(k) will never

converge.

VI. CONCLUSION

In this paper, we investigated the limiting behavior of
the random linear dynamics driven by independent random
stochastic matrices. We proved that for a class of independent
random models, such dynamics always converge. To do
so, we introduced notion of partial ergodicity and mutual
ergodicity as well as `1-approximation of a given chain.
We proved that `1-approximation of a given chain preserves
ergodic behaviors of the chains. Finally, we proved that such
dynamics converge and, also, we gave a characterization of
the limiting points through the use of the infinite flow graph
that we associated with the model.
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