Lecture 3

Convex Functions

September 2, 2008
Outline

- Convex Functions
- Examples
- Verifying Convexity of a Function
- Operations on Functions Preserving Convexity
Convex Functions

Informally: f is convex when for every segment $[x_1, x_2]$, as $x_\alpha = \alpha x_1 + (1-\alpha)x_2$ varies over the line segment $[x_1, x_2]$, the points $(x_\alpha, f(x_\alpha))$ lie below the segment connecting $(x_1, f(x_1))$ and $(x_2, f(x_2))$.

Let f be a function from \mathbb{R}^n to \mathbb{R}, $f : \mathbb{R}^n \to \mathbb{R}$.

The domain of f is a set in \mathbb{R}^n defined by

$$\text{dom}(f) = \{ x \in \mathbb{R}^n | f(x) \text{ is well defined (finite)} \}$$

Def. A function f is *convex* if

1. Its domain $\text{dom}(f)$ is a convex set in \mathbb{R}^n and
2. For all $x_1, x_2 \in \text{dom}(f)$ and $\alpha \in (0, 1)$

$$f(\alpha x_1 + (1 - \alpha)x_2) \leq \alpha f(x_1) + (1 - \alpha)f(x_2)$$
More on Convex Function

Def. A function \(f \) is \textit{strictly convex} when \(\text{dom}(f) \) is convex and

\[
f(\alpha x_1 + (1 - \alpha)x_2) < \alpha f(x_1) + (1 - \alpha)f(x_2)
\]

for all \(x_1, x_2 \in \text{dom}(f) \) and \(\alpha \in (0, 1) \)

Def. A function \(f \) is \textit{concave} when \(-f \) is convex, i.e.,

(1) Its domain \(\text{dom}(f) \) is a convex set in \(\mathbb{R}^n \) and

(2) For all \(x_1, x_2 \in \text{dom}(f) \) and \(\alpha \in (0, 1) \)

\[
f(\alpha x_1 + (1 - \alpha)x_2) \geq \alpha f(x_1) + (1 - \alpha)f(x_2)
\]

Def. A function \(f \) is \textit{strictly concave} when \(-f \) is strictly convex
Examples on \mathbb{R}

Convex:

- Affine: $ax + b$ over \mathbb{R} for any $a, b \in \mathbb{R}$
- Exponential: e^{ax} over \mathbb{R} for any $a \in \mathbb{R}$
- Power: x^p over $(0, +\infty)$ for $p \geq 1$ or $p \leq 0$
- Powers of absolute value: $|x|^p$ over \mathbb{R} for $p \geq 1$
- Negative entropy: $x \ln x$ over $(0, +\infty)$

Concave:

- Affine: $ax + b$ over \mathbb{R} for any $a, b \in \mathbb{R}$
- Powers: x^p over $(0, +\infty)$ for $0 \leq p \leq 1$
- Logarithm: $\ln x$ over $(0, +\infty)$
Examples: Affine Functions and Norms

- Affine functions are both convex and concave
- Norms are convex

Examples on \mathbb{R}^n

- Affine function $f(x) = a'x + b$ with $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$
- Euclidean, l_1, and l_∞ norms
- General l_p norms

\[
\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \quad \text{for } p \geq 1
\]
Examples on $\mathbb{R}^{m \times n}$

The space $\mathbb{R}^{m \times n}$ is the space of $m \times n$ matrices

- Affine function

$$f(X) = \text{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_{ij} + b$$

- Spectral (maximum singular value) norm

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = \sqrt{\lambda_{\max}(X^T X)}$$

where $\lambda_{\max}(A)$ denotes the maximum eigenvalue of a matrix A
Verifying Convexity of a Function

We can verify that a given function f is convex by

- Using the definition

- Applying some special criteria
 - Second-order conditions
 - First-order conditions
 - Reduction to a scalar function

- Showing that f is obtained through operations preserving convexity
Second-Order Conditions

Let f be twice differentiable and let $\text{dom}(f) = \mathbb{R}^n$ [in general, it is required that $\text{dom}(f)$ is open]

The Hessian $\nabla^2 f(x)$ is a symmetric $n \times n$ matrix whose entries are the second-order partial derivatives of f at x:

$$
\left[\nabla^2 f(x) \right]_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j} \quad \text{for } i, j = 1, \ldots, n
$$

2nd-order conditions: For a twice differentiable f with convex domain

- f is convex if and only if
 $$
 \nabla^2 f(x) \succeq 0 \quad \text{for all } x \in \text{dom}(f)
 $$

- f is strictly convex if
 $$
 \nabla^2 f(x) \succ 0 \quad \text{for all } x \in \text{dom}(f)
 $$
Examples

Quadratic function: \(f(x) = (1/2)x'Px + q'x + r \) with a symmetric \(n \times n \) matrix \(P \)

\[
\nabla f(x) = Px + q, \quad \nabla^2 f(x) = P
\]

Convex for \(P \succeq 0 \)

Least-squares objective: \(f(x) = \|Ax - b\|^2 \) with an \(m \times n \) matrix \(A \)

\[
\nabla f(x) = 2A^T(Ax - b), \quad \nabla^2 f(x) = 2A^TA
\]

Convex for any \(A \)

Quadratic-over-linear: \(f(x, y) = x^2/y \)

\[
\nabla^2 f(x, y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0
\]

Convex for \(y > 0 \)
Verifying Convexity of a Function

We can verify that a given function f is convex by

- Using the definition

- Applying some special criteria
 - Second-order conditions
 - First-order conditions
 - Reduction to a scalar function

- Showing that f is obtained through operations preserving convexity
First-Order Condition

f is differentiable if $\text{dom}(f)$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \ldots, \frac{\partial f(x)}{\partial x_n} \right)$$

exists at each $x \in \text{dom} f$

1st-order condition: differentiable f is convex if and only if its domain is convex and

$$f(x) + \nabla f(x)^T(z - x) \leq f(z) \quad \text{for all } x, z \in \text{dom}(f)$$

A first order approximation is a global underestimate of f

Very important property used in algorithm designs and performance analysis
Restriction of a convex function to a line

\(f \) is convex if and only if \(\text{dom} f \) is convex and the function \(g : \mathbb{R} \to \mathbb{R} \),
\[g(t) = f(x + tv), \quad \text{dom} g = \{ t \mid x + tv \in \text{dom}(f) \} \]
is convex (in \(t \)) for any \(x \in \text{dom} f, v \in \mathbb{R}^n \)

Checking convexity of multivariable functions can be done by checking convexity of functions of one variable

Example \(f : S^n \to \mathbb{R} \) with \(f(X) = -\ln \det X \), \(\text{dom} f = S^n_{++} \)

\[g(t) = -\ln \det(X + tv) = -\ln \det X - \ln \det(I + tX^{-1/2} V X^{-1/2}) \]
\[= -\ln \det X - \sum_{i=1}^{n} \ln(1 + t\lambda_i) \]

where \(\lambda_i \) are the eigenvalues of \(X^{-1/2} V X^{-1/2} \)
\(g \) is convex in \(t \) (for any choice of \(V \) and any \(X \succ 0 \)); hence \(f \) is concave
Operations Preserving Convexity

- Positive Scaling
- Sum
- Composition with affine function
- Pointwise maximum and supremum
- Composition
- Minimization
Scaling, Sum, & Composition with Affine Function

Positive multiple: For a convex f and $\lambda > 0$, the function λf is convex.

Sum: For convex f_1 and f_2, the sum $f_1 + f_2$ is convex (extends to infinite sums, integrals).

Composition with affine function: For a convex f and affine g [i.e., $g(x) = Ax + b$], the composition $f \circ g$ is convex, where $(f \circ g)(x) = f(Ax + b)$.

Examples
- Log-barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \ln(b_i - a_i^T x), \quad \text{dom} f = \{x \mid a_i^T x < b_i, i = 1, \ldots, m\}$$

- (Any) Norm of affine function: $f(x) = \|Ax + b\|$
Pointwise maximum

For convex functions \(f_1, \ldots, f_m \), the pointwise-max function
\[
F(x) = \max \{ f_1(x), \ldots, f_m(x) \}
\]
is convex (What is domain of \(F \)?)

Examples

- Piecewise-linear function: \(f(x) = \max_{i=1,\ldots,m} (a_i^T x + b_i) \) is convex
- Sum of \(r \) largest components of a vector \(x \in \mathbb{R}^n \):

\[
f(x) = x[1] + x[2] + \cdots + x[r]
\]
is convex (\(x[i] \) is \(i \)-th largest component of \(x \))

\[
f(x) = \max_{(i_1,\ldots,i_r) \in I_r} \{ x_{i_1} + x_{i_2} + \cdots + x_{i_r} \}
\]

\[
I_r = \{ (i_1,\ldots,i_r) \mid i_1 < \ldots < i_r, \ i_j \in \{1,\ldots,m\}, \ j = 1,\ldots,n \}
\]
Pointwise Supremum

Let \(A \subseteq \mathbb{R}^p \) and \(f : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R} \). Let \(f(x, z) \) be convex in \(x \) for each \(z \in A \). Then, the supremum function over the set \(A \) is convex:

\[
g(x) = \sup_{z \in A} f(x, z)
\]

Examples

- **Set support function is convex** for a set \(C \subset \mathbb{R}^n \),
 \[
 S_C : \mathbb{R}^n \to \mathbb{R}, \quad S_C(x) = \sup_{z \in C} z^T x
 \]

- **Set farthest-distance function is convex** for a set \(C \subset \mathbb{R}^n \),
 \[
 f : \mathbb{R}^n \to \mathbb{R}, \quad f(x) = \sup_{z \in C} \|x - z\|
 \]

- **Maximum eigenvalue function of a symmetric matrix is convex**
 \[
 \lambda_{\text{max}} : S^n \to \mathbb{R}, \quad \lambda_{\text{max}}(X) = \sup_{\|z\|=1} z^T X z
 \]
Composition with Scalar Functions

Composition of \(g : \mathbb{R}^n \to \mathbb{R} \) and \(h : \mathbb{R} \to \mathbb{R} \) with \(\text{dom}(g) = \mathbb{R}^n \) and \(\text{dom}(h) = \mathbb{R} \):

\[
f(x) = h(g(x))
\]

\(f \) is convex if

(1) \(g \) is convex, \(h \) is nondecreasing and convex

(2) \(g \) is concave, \(h \) is nonincreasing and convex

Examples

- \(e^{g(x)} \) is convex if \(g \) is convex

- \(\frac{1}{g(x)} \) is convex if \(g \) is concave and positive
Composition with Vector Functions

Composition of \(g : \mathbb{R}^n \rightarrow \mathbb{R}^p \) and \(h : \mathbb{R}^p \rightarrow \mathbb{R} \) with \(\text{dom}(g) = \mathbb{R}^n \) and \(\text{dom}(h) = \mathbb{R}^p \):

\[
f(x) = h(g(x)) = h(g_1(x), g_2(x), \ldots, g_p(x))
\]

\(f \) is convex if

(1) each \(g_i \) is convex, \(h \) is convex and nondecreasing in each argument

(2) each \(g_i \) is concave, \(h \) is convex and nonincreasing in each argument

Example

• \(\sum_{i=1}^{m} e^{g_i(x)} \) is convex if \(g_i \) are convex
Extended-Value Functions

A function \(f \) is an extended-value function if \(f : \mathbb{R}^n \to \mathbb{R} \cup \{-\infty, +\infty\} \)

Example: consider \(f(x) = \inf_{y \geq 0} xy \) for \(x \in \mathbb{R} \)

Def. The *epigraph* of a function \(f \) over \(\mathbb{R}^n \) is the following set in \(\mathbb{R}^{n+1} \):

\[
\text{epi} f = \{(x, w) \in \mathbb{R}^{n+1} \mid x \in \mathbb{R}^n, f(x) \leq w\}
\]

General Convex Function Def. A function \(f \) is *convex* if its epigraph \(\text{epi} f \) is a convex set in \(\mathbb{R}^{n+1} \)

This definition is equivalent to the one we have used so far (when reduced to the function class we have considered thus far). How?

For an \(f \) with domain \(\text{dom} f \), we associate an extended-value function \(\tilde{f} \) defined by

\[
\tilde{f}(x) = \begin{cases}
 f(x) & \text{if } x \in \text{dom} f \\
 +\infty & \text{otherwise}
\end{cases}
\]

\(\text{dom} f \) is the projection of \(\text{epi} f \) on \(\mathbb{R}^n \); convexity of \(f \) by letting \(w = f(x) \)
Minimization

Let $C \subseteq \mathbb{R}^n \times \mathbb{R}^p$ be a nonempty convex set.

Let $f : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}$ be a convex function [in $(x, z) \in \mathbb{R}^n \times \mathbb{R}^p$]. Then

$$g(x) = \inf_{z \in C} f(x, z) \quad \text{is convex}$$

Example

- Distance to a set: for a nonempty convex $C \subset \mathbb{R}^n$,
 $$\text{dist}(x, C) = \inf_{z \in C} \|x - z\| \quad \text{is convex}$$

Proof: Let $x_1, x_2 \in \mathbb{R}^n$ and $\alpha \in (0, 1)$ be arbitrary. Let $\epsilon > 0$ be arbitrarily small. Then, there exist $z_1, z_2 \in C$ such that $f(x_1, z_1) \leq g(x_1) + \epsilon$ and $f(x_2, z_2) \leq g(x_2) + \epsilon$. Consider $f(\alpha x_1 + (1 - \alpha)x_2, \alpha z_1 + (1 - \alpha)z_2)$ and use convexity of f and C.

Convex Optimization 20