Lecture 20

Methods for Dual Problems

November 11, 2008
Outline

• Interpretation of Polyak’s stepsize

• Convergence and Convergence Rate

• Subgradient Methods for Dual Problems
Interpretation of Polyak’s stepsize

A vector \(s \) is a subgradient of a convex function \(f : \mathbb{R}^n \mapsto \mathbb{R} \) at \(\hat{x} \in \text{dom } f \) when **subgradient inequality holds**

\[
f(z) \geq f(\hat{x}) + s^T (z - \hat{x}) \quad \text{for all } z \in \text{dom } f
\]

- We have interpreted the subgradient inequality in terms of a **hyperplane** in \(\mathbb{R}^{n+1} \) supporting the **epigraph** \(\text{epi } f \) at \((\hat{x}, f(\hat{x}))\)
Polyak stepsize can be interpreted by looking at the projection of the epigraph and the hyperplane on the set
\[\{ (x, w) \mid x \in \mathbb{R}^n, w = f^* \} \]

The projection of the hyperplane is given by
\[\tilde{H} = \{ (z, w) \in \mathbb{R}^{n+1} \mid f(\tilde{x}) + s^T (z - \tilde{x}) = f^*, w = f^* \} \]
• By looking only at x-variables (since $w = f^*$), at $\hat{x} = x_k$, the resulting hyperplane in the reduced space becomes

$$H = \{ z \in \mathbb{R}^n \mid f(x_k) + s_k^T(z - x_k) = f^* \}$$

• With Polyak’s stepsize, the iterate x_{k+1} is the projection of x_k on H

• To see that note that the projection of x_k on H can be determined by looking at the intersection of the ray $\{ z \mid z = x_k + ts_k, \ t \geq 0 \}$ with H, which gives

$$f(x_k) + t^*\|s_k\|^2 = f^*.$$

Solving for t^* yields $t^* = \frac{f^* - f(x_k)}{\|s_k\|^2}$.

• The next iterate is

$$x_{k+1} = x_k + t^*s_k = x_k - \frac{f(x_k) - f^*}{\|s_k\|^2}s_k$$

The Polyak stepsize $\alpha_k = \frac{f(x_k) - f^*}{\|s_k\|^2}$ is equal to the distance from x_k to the hyperplane H, i.e., $\alpha_k = |t^*|$.
Convergence Rate

• The convergence rate of the subgradient method with Polyak’s stepsize is linear (at best)

 • For a function f with **sharp minima**, i.e., such that for some $\eta > 0$

 $$f(x) - f^* \geq \eta \text{dist}(x, X^*)$$

 for all x

 • **The rate is linear** (HW8)

 $$\|x_k - \tilde{x}^*\| \leq c_k \|x_0 - \tilde{x}^*\|$$

 for all $k \geq 0$

 where $\tilde{x}^* \in X^*$ is the limit point of $\{x_k\}$ and

 $$c = \sqrt{1 - \frac{\eta^2}{L^2}}$$

 and L is an upper bound on the subgradient norms $\|s_k\|$.

• The rate is important for general understanding of the method

• It is rare that we can take advantage of this result in practice
Comments

- Subgradient methods considered so far:
 - Use any subgradient that is available at a given iterate
 - Simple for implementation
 - Convergence rate is at best linear
 - Useful in large-scale and decentralized computations
 - **Main criticism:** There are no general stopping rules
 - A specific criteria have been designed within particular applications

- Alternative methods exist: **Bundle methods**
 - Use a carefully selected subgradient at a given iterate
 - More sophisticated for implementation
 - There is a general stopping criteria