Lecture 18

Subgradients

November 3, 2008
Outline

• Existence of Subgradients

• Subdifferential Properties

• Optimality Conditions
Convex-Constrained Non-differentiable Minimization

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in C
\end{align*}
\]

- **Characteristics:**
 - The function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is convex and possibly non-differentiable
 - The set \(C \subseteq \mathbb{R}^n \) is nonempty closed and convex
 - The optimal value \(f^* \) is finite

- Our focus here is *non-differentiability*
Definition of Subgradient and Subdifferential

Def. A vector $s \in \mathbb{R}^n$ is a **subgradient of f at $\hat{x} \in \text{dom } f$** when

$$f(x) \geq f(\hat{x}) + s^T(x - \hat{x}) \quad \text{for all } x \in \text{dom } f$$

Def. A **subdifferential of f at $\hat{x} \in \text{dom } f$** is the set of all subgradients s of f at $\hat{x} \in \text{dom } f$

- The **subdifferential of f at \hat{x}** is denoted by $\partial f(\hat{x})$

- When f is differentiable at \hat{x}, we have $\partial f(\hat{x}) = \{\nabla f(\hat{x})\}$ (the subdifferential is a singleton)

- Examples

\[
 f(x) = |x|, \quad \partial f(0) = \begin{cases}
 \text{sign}(x) & \text{for } x \neq 0 \\
 [-1, 1] & \text{for } x = 0
\end{cases}
\]

\[
 f(x) = \begin{cases}
 x^2 + 2|x| - 3 & \text{for } |x| > 1 \\
 0 & \text{for } |x| \leq 1
\end{cases}
\]
Subgradients and Epigraph

• Let s be a subgradient of f at \hat{x}:
 \[f(x) \geq f(\hat{x}) + s^T(x - \hat{x}) \quad \text{for all } x \in \text{dom } f \]

• The subgradient inequality is equivalent to
 \[-s^T\hat{x} + f(\hat{x}) \leq -s^Tx + f(x) \quad \text{for all } x \in \text{dom } f \]

• Let $f(x) > -\infty$ for all $x \in \mathbb{R}^n$. Then
 \[\text{epi } f = \{(x, w) \mid f(x) \leq w, x \in \mathbb{R}^n \} \]
 Thus, $-s^T\hat{x} + f(\hat{x}) \leq -s^Tx + w$ for all $(x, w) \in \text{epi } f$, equivalent to
 \[
 \begin{bmatrix}
 -s \\
 1
 \end{bmatrix}^T
 \begin{bmatrix}
 \hat{x} \\
 f(\hat{x})
 \end{bmatrix}
 \leq
 \begin{bmatrix}
 -s \\
 1
 \end{bmatrix}^T
 \begin{bmatrix}
 x \\
 w
 \end{bmatrix}
 \quad \text{for all } (x, w) \in \text{epi } f
 \]

Therefore, the hyperplane
\[H = \{(x, \gamma) \in \mathbb{R}^{n+1} \mid (-s, 1)^T(x, \gamma) = (-s, 1)^T(\hat{x}, f(\hat{x})) \} \]
supports \text{epi } f at the vector $(\hat{x}, f(\hat{x}))$
Subdifferential Set Properties

Theorem 1 A subdifferential set $\partial f(\hat{x})$ is convex and closed

Proof H7.

Theorem 2 *(Existence)* Let f be convex with a nonempty $\text{dom } f$. Then:

(a) For $x \in \text{relint}(\text{dom } f)$, we have $\partial f(x) \neq \emptyset$.

(b) $\partial f(x) \neq \emptyset$ is nonempty and bounded if and only if $x \in \text{int}(\text{dom } f)$.

Implications

- The subdifferential $\partial f(\hat{x})$ is nonempty compact convex set for every \hat{x} in the interior of $\text{dom } f$.

- When $\text{dom } f = \mathbb{R}^n$, $\partial f(x)$ is nonempty compact convex set for all x
Partial Proof: If $\hat{x} \in \text{int}(\text{dom } f)$, then $\partial f(\hat{x})$ is nonempty and bounded.

- $\partial f(\hat{x})$ Nonempty.
 Let \hat{x} be in the interior of $\text{dom } f$. The vector $(\hat{x}, f(\hat{x}))$ does not belong to the interior of $\text{epi } f$. The epigraph $\text{epi } f$ is convex and by the Supporting Hyperplane Theorem, there is a vector $(d, \beta) \in \mathbb{R}^{n+1}$, $(d, \beta) \neq 0$ such that

 $$d^T \hat{x} + \beta f(\hat{x}) \leq d^T x + \beta w \quad \text{for all } (x, w) \in \text{epi } f$$

 We have $\text{epi } f = \{(x, w) \mid f(x) \leq w, x \in \text{dom } f\}$. Hence,

 $$d^T \hat{x} + \beta f(\hat{x}) \leq d^T x + \beta w \quad \text{for all } x \in \text{dom } f, f(x) \leq w$$

 We must have $\beta \geq 0$. We cannot have $\beta = 0$ (it would imply $d = 0$). Dividing by β, we see that $-d/\beta$ is a subgradient of f at \hat{x}.
• $\partial f(\hat{x})$ Bounded.

By the subgradient inequality, we have

$$f(x) \geq f(\hat{x}) + s^T(x - \hat{x}) \quad \text{for all } x \in \text{dom } f$$

Suppose that the subdifferential $\partial f(\hat{x})$ is unbounded. Let s_k be a sequence of subgradients in $\partial f(\hat{x})$ with $\|s_k\| \to \infty$.

Since \hat{x} lies in the interior of domain, there exists a $\delta > 0$ such that $\hat{x} + \delta y \in \text{dom } f$ for any $y \in \mathbb{R}^n$. Letting $x = \hat{x} + \delta \frac{s_k}{\|s_k\|}$ for any k, we have

$$f \left(\hat{x} + \delta \frac{s_k}{\|s_k\|} \right) \geq f(\hat{x}) + \delta \|s_k\| \quad \text{for all } k$$

As $k \to \infty$, we have $f \left(\hat{x} + \delta \frac{s_k}{\|s_k\|} \right) - f(\hat{x}) \to \infty$.

However, this relation contradicts the continuity of f at \hat{x}. [Recall, a convex function is continuous over the interior of its domain.]

Example Consider $f(x) = -\sqrt{x}$ with $\text{dom } f = \{ x \mid x \geq 0 \}$. We have $\partial f(0) = \emptyset$. Note that 0 is not in the interior of the domain of f
Boundedness of the Subdifferential Sets

Theorem 2 Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be convex and let X be a bounded set. Then, the set

$$\bigcup_{x \in X} \partial f(x)$$

is bounded.

Proof
Assume that there is an unbounded sequence of subgradients s_k, i.e.,

$$\lim_{k \to \infty} \|s_k\| = \infty,$$

where $s_k \in \partial f(x_k)$ for some $x_k \in X$. The sequence $\{x_k\}$ is bounded, so it has a convergent subsequence, say $\{x_k\}_K$ converging to some $x \in \mathbb{R}^n$. Consider $d_k = \frac{s_k}{\|s_k\|}$ for $k \in K$. This is a bounded sequence, and it has a
convergent subsequence, say \(\{d_k\}_{K'} \) with \(K' \subseteq K \). Let \(d \) be the limit of \(\{d_k\}_{K'} \).

Since \(s_k \in \partial f(x_k) \), we have for each \(k \),

\[
 f(x_k + d_k) \geq f(x_k) + s_k^T d_k = f(x_k) + \|s_k\|.
\]

By letting \(k \to \infty \) with \(k \in K' \), we see that

\[
 \limsup_{k \to \infty} [f(x_k + d_k) - f(x_k)] \geq \limsup_{k \to \infty} \|s_k\|.
\]

By continuity of \(f \),

\[
 \limsup_{k \to \infty} [f(x_k + d_k) - f(x_k)] = f(x + d) - f(x),
\]

hence finite, implying that \(\|s_k\| \) is bounded. This is a contradiction (\(\{s_k\} \) was assumed to be unbounded).
Continuity of the Subdifferential

Theorem 3 Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and let $\{x_k\}$ converge to some $x \in \mathbb{R}^n$. Let $s_k \in \partial f(x_k)$ for all k. Then, the sequence $\{s_k\}$ is bounded and every of its limit points is a subgradient of f at x.

Proof H7.
Subdifferential and Directional Derivatives

Definition The directional derivative $f'(x; d)$ of f at x along direction d is the following limiting value

$$f'(x; d) = \lim_{\alpha \to 0} \frac{f(x + \alpha d) - f(x)}{\alpha}.$$

- When f is convex, the ratio $\frac{f(x + \alpha d) - f(x)}{\alpha}$ is nondecreasing function of $\alpha > 0$, and as α decreases to zero, the ratio converges to some value or decreases to $-\infty$. (HW)

Theorem 4 Let $x \in \text{int}(\text{dom } f)$. Then, the directional derivative $f'(x; d)$ is finite for all $d \in \mathbb{R}^n$. In particular, we have

$$f'(x; d) = \max_{s \in \partial f(x)} s^T d.$$
Proof
When \(x \in \int(\text{dom } f) \), the subdifferential \(\partial f(x) \) is nonempty and compact. Using the subgradient defining relation, we can see that \(f'(x; d) \geq s^T d \) for all \(s \in \partial f(x) \). Therefore,

\[
f'(x; d) \geq \max_{s \in \partial f(x)} s^T d.
\]

To show that actually equality holds, we rely on Separating Hyperplane Theorem. Define

\[
C_1 = \{(z, w) \mid z \in \text{dom } f, f(z) < w\},
\]

\[
C_2 = \{(y, v) \mid y = x + \alpha d, v = f(x) + \alpha f'(x; d), \alpha \geq 0\}.
\]

These sets are nonempty, convex, and disjoint (HW). By the Separating
Hyperplane Theorem, there exists a nonzero vector \((a, \beta) \in \mathbb{R}^{n+1}\) such that

\[
a^T(x + \alpha d) + \beta(f(x) + \alpha f'(x; d)) \leq a^T z + \beta w, \tag{1}
\]

for all \(\alpha \geq 0\), \(z \in \text{dom } f\), and \(f(z) < w\). We must have \(\beta \geq 0\) - why? We cannot have \(\beta = 0\) - why?

Thus, \(\beta > 0\) and we can divide by \(\beta\) the relation in (1), and obtain with \(\tilde{a} = a/\beta\),

\[
\tilde{a}^T(x + \alpha d) + f(x) + \alpha f'(x; d) \leq \tilde{a}^T z + w, \tag{2}
\]

for all \(\alpha \geq 0\), \(z \in \text{dom } f\), and \(f(z) < w\). Choosing \(\alpha = 0\) and letting \(w \downarrow f(z)\), we see

\[
\tilde{a}^T x + f(x) \leq \tilde{a}^T z + f(z),
\]

implying that \(f(x) - \tilde{a}^T(z - x) \leq f(z)\) for all \(z \in \text{dom } f\). Therefore \(-\tilde{a} \in \partial f(x)\).
Letting $z = x$, $w \downarrow f(z)$ and $\alpha = 1$ in (2), we obtain

$$\tilde{a}^T(x + d) + f(x) + f'(x; d) \leq \tilde{a}^T x + f(x),$$

implying $f'(x; d) \leq -\tilde{a}^T d$. In view of $f'(x; d) \geq \max_{s \in \partial f(x)} s^T d$, it follows that

$$f'(x; d) = \max_{s \in \partial f(x)} s^T d,$$

where the maximum is attained at the “constructed” subgradient $-\tilde{a}$.
Optimality Conditions: Unconstrained Case

Unconstrained optimization

\[\text{minimize } f(x) \]

Assumption

- The function \(f \) is convex (non-differentiable) and proper
 \([f \text{ proper means } f(x) > -\infty \text{ for all } x \text{ and } \text{dom } f \neq \emptyset]\)

Theorem Under this assumption, a vector \(x^* \) minimizes \(f \) over \(\mathbb{R}^n \) if and only if

\[0 \in \partial f(x^*) \]

- The result is a generalization of \(\nabla f(x^*) = 0 \)

- **Proof** \(x^* \) is optimal if and only if \(f(x) \geq f(x^*) \) for all \(x \), or equivalently
 \[f(x) \geq f(x^*) + 0^T(x - x^*) \quad \text{for all } x \in \mathbb{R}^n \]

 Thus, \(x^* \) is optimal if and only if \(0 \in \partial f(x^*) \)
Examples

• The function $f(x) = |x|

\[\partial f(0) = \begin{cases} \text{sign}(x) & \text{for } x \neq 0 \\ [-1, 1] & \text{for } x = 0 \end{cases} \]

The minimum is at $x^* = 0$, and evidently $0 \in \partial f(0)$

• The function $f(x) = \|x\|

\[\partial f(x) = \begin{cases} \frac{x}{\|x\|} & \text{for } x \neq 0 \\ \{s \mid \|s\| \leq 1\} & \text{for } x = 0 \end{cases} \]

Again, the minimum is at $x^* = 0$ and $0 \in \partial f(0)$
The function \(f(x) = \max\{x^2 + 2x - 3, x^2 - 2x - 3, 4\} \)

\[
f(x) = \begin{cases}
 x^2 - 2x - 3 & \text{for } x < -1 \\
 4 & \text{for } x \in [-1, 1] \\
 x^2 + 2x - 3 & \text{for } x > 1
\end{cases}
\]

\[
\partial f(x) = \begin{cases}
 2x - 2 & \text{for } x > 1 \\
 [-4, 0] & \text{for } x = -1 \\
 0 & \text{for } x \in (-1, 1) \\
 [0, 4] & \text{for } x = 1 \\
 2x + 2 & \text{for } x > 1
\end{cases}
\]

The optimal set is \(X^* = [-1, 1] \)

For every \(x^* \in X^* \), we have \(0 \in \partial f(x^*) \)
Optimality Conditions: Constrained Case

Constrained optimization

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in C
\end{align*}
\]

Assumption

- The function \(f \) is convex (non-differentiable) and proper

- The set \(C \) is nonempty closed and convex

Theorem

Under this assumption, a vector \(x^* \in C \) minimizes \(f \) over the set \(C \) if and only if there exists a subgradient \(d \in \partial f(x^*) \) such that

\[
d^T(x - x^*) \geq 0 \quad \text{for all } x \in C
\]

- The result is a generalization of \(\nabla f(x^*)^T(x - x^*) \geq 0 \) for \(x \in C \)