Lecture 15
Newton Method and Self-Concordance

October 23, 2008
Outline

- Self-concordance Notion
- Self-concordant Functions
- Operations Preserving Self-concordance
- Properties of Self-concordant Functions
- Implications for Newton's Method
- Equality Constrained Minimization
Classical Convergence Analysis of Newton’s Method

- Given a level set \(L_0 = \{ x \mid f(x) \leq f(x_0) \} \), it requires for all \(x, y \in L_0 \):

\[
\| \nabla^2 f(x) - \nabla^2 f(y) \| \leq L \| x - y \|^2 \quad mI \preceq \nabla^2 f(x) \preceq MI
\]

for some constants \(L > 0, m > 0, \) and \(M > 0 \)

- Given a desired error level \(\epsilon \), we are interested in an \(\epsilon \)-solution of the problem i.e., a vector \(\tilde{x} \) such that \(f(\tilde{x}) \leq f^* + \epsilon \)

- An upper bound on the number of iterations to generate an \(\epsilon \)-solution is given by

\[
\frac{f(x_0) - f^*}{\gamma} + \log_2 \log_2 \left(\frac{\epsilon_0}{\epsilon} \right)
\]

where \(\gamma = \sigma \beta \eta^2 \frac{m}{M^2} \), \(\eta \in (0, m^2/L) \), and \(\epsilon_0 = 2m^3/L^2 \)
This follows from

\[\frac{L}{2m^2} \| \nabla f(x_k + K) \| \leq \left(\frac{L}{2m^2} \| \nabla f(x_k) \| \right)^{2^K} \leq \left(\frac{1}{2} \right)^{2^K} \]

where \(k \) is such that \(\| \nabla f(x_k) \| \leq \eta \) and \(\eta \) is small enough so that \(\eta \frac{L}{2m^2} \leq \frac{1}{2} \). By the above relation and strong convexity of \(f \), we have

\[f(x_k) - f^* \leq \frac{1}{2m} \| \nabla f(x_k) \|^2 \leq \frac{2m^3}{L^2} \left(\frac{1}{2} \right)^{2^K} \]

- The bound is conceptually informative, but not practical
- Furthermore, the constants \(L, m, \) and \(M \) change with affine transformations of the space, while Newton’s method is affine invariant
- Can a bound be obtained in terms of problem data that is affine invariant and, moreover, practically verifiable?
Self-concordance

- Nesterov and Nemirovski introduced a notion of \textit{self-concordance} and a class of \textit{self-concordant functions}

- Importance of the self-concordance:
 - Possesses affine invariant property
 - Provides a new tool for analyzing Newton’s method that exploits the affine invariance of the method
 - Results in a practical upper bound on the Newton’s iterations
 - Plays a crucial role in performance analysis of interior point method

\textbf{Def.} A function $f: \mathbb{R} \mapsto \mathbb{R}$ is \textit{self-concordant} when f is \textit{convex} and

$$|f'''(x)| \leq 2f''(x)^{3/2} \text{ for all } x \in \text{dom} f$$

The rate of change in curvature of f is bounded by the curvature

\textbf{Note:} One can use a constant κ other than 2 in the definition
Examples

• Linear and quadratic functions are self-concordant \(f'''(x) = 0 \) for all \(x \)

• Negative logarithm \(f(x) = -\ln x, \ x > 0 \) is self-concordant:

 \[
 f''(x) = \frac{1}{x^2}, \quad f'''(x) = -\frac{2}{x^3}, \quad \frac{|f'''(x)|}{f''(x)^{3/2}} = 2 \quad \text{for all } x > 0
 \]

• Exponential function \(e^x \) is not self-concordant:

 \[
 f''(x) = f'''(x) = e^x, \quad \frac{|f'''(x)|}{f''(x)^{3/2}} \rightarrow \infty \text{ as } x \rightarrow -\infty
 \]

• Even-power monomial \(x^{2p}, \ p > 2 \) is not self-concordant:

 \[
 f''(x) = 2p(2p-1)x^{2p-2}, \quad f'''(x) = 2p(2p-1)(2p-2)x^{2p-3},
 \]

 \[
 \frac{|f'''(x)|}{f''(x)^{3/2}} = \frac{p_3|x^{2p-3}|}{p_2x^{3(p-1)}}, \quad \frac{|f'''(x)|}{f''(x)^{3/2}} \rightarrow \infty \text{ as } x \downarrow 0
 \]
Scaling and Affine Invariance

• In the definition of the self-concordant function, one can use any other κ

• Let f be self-concordant with κ, then $\tilde{f}(x) = \frac{\kappa^2}{4} f(x)$ is self-concordant with $\kappa = 2$:

$$\frac{|\tilde{f}'''(x)|}{\tilde{f}''(x)^{3/2}} = \frac{8\kappa^2}{4\kappa^3} \frac{|f'''(x)|}{f''(x)^{3/2}} \leq 2$$

• Self-concordant function is affine invariant: for f self-concordant and $x = ay + b$, we have $\tilde{f}(y) = f(x)$ self-concordant with the same κ:

 • Convexity is preserved: \tilde{f} is convex
 • $\tilde{f}'''(y) = a^3 f'''(x)$, $\tilde{f}''(y) = a^2 f''(x)$

$$\frac{|\tilde{f}'''(x)|}{\tilde{f}''(x)^{3/2}} = \frac{|a|^3 |f'''(x)|}{|a|^3 f''(x)^{3/2}} \leq \kappa$$
Self-concordant Function in \mathbb{R}^n

Def. A function $f : \mathbb{R}^n \to \mathbb{R}$ is self-concordant when it is self-concordant along every line, i.e.,

- f is convex
- $g(t) = f(x + tv)$ is self-concordant for all $x \in \text{dom} f$ and all v,

Note: The constant κ of self-concordance is independent of the choice of x and v, i.e.,

$$\frac{|g'''(t)|}{g''(t)^{3/2}} \leq 2$$

for all $x \in \text{dom} f$, $v \in \mathbb{R}^n$, and $t \in \mathbb{R}$ such that $x + tv \in \text{dom} f$.
Operations Preserving Self-concordance

Note: To start with, these operations have to *preserve convexity*

- *Scaling with a positive factor of at least 1:* when f is self-concordant and $a > 1$, then af is also self-concordant
- The *sum* $f_1 + f_2$ of two self-concordant functions is self-concordant (extends to any finite sum)
- *Composition with affine mapping:* when $f(y)$ is self-concordant, then $f(Ax + b)$ is self-concordant
- *Composition with ln-function:* Let $g : \mathbb{R} \to \mathbb{R}$ be a convex function with $\text{dom}g = \mathbb{R}_{++}$, and
 \[|g'''(x)| \leq 3 \frac{g''(x)}{x} \quad \text{for all } x > 0 \]

 Then:
 \[f(x) = -\ln (-g(x)) - \ln(x) \quad \text{over } \{x > 0 \mid g(x) < 0\} \]
 is self-concordant

HW7
Implications

- When $f''(x) > 0$ for all x (then f is strictly convex), the self-concordant condition can be written as

$$
\left| \frac{d}{dx} \left(f''(x)^{-\frac{1}{2}}\right) \right| \leq 1 \quad \text{for all } x \in \text{dom } f.
$$

- Assuming that for some $t > 0$, the interval $[0, t]$ lies in $\text{dom } f$, we can integrate from 0 to t, and obtain

$$
-t \leq \int_0^t \frac{d}{dx} \left(f''(x)^{-\frac{1}{2}}\right) \, dx \leq t.
$$
This implies the following lower and upper bounds on $f''(x)$,

\[
\frac{f''(0)}{(1 + t\sqrt{f''(0)})^2} \leq f''(t) \leq \frac{f''(0)}{(1 - t\sqrt{f''(0)})^2},
\]

where the lower bound is valid for all $t \geq 0$ with $t \in \text{dom} f$, and the upper bound is valid for all $t \in \text{dom} f$ with $0 \leq t < f''(0)^{-1/2}$.
Bounds on f

Consider $f : \mathbb{R}^n \to \mathbb{R}$ with $\nabla^2 f(x) > 0$. Let v be a descent direction, i.e., such that $\nabla f(x)^T v < 0$. Consider $g(t) = f(x + tv) - f(x)$ for $t > 0$. Integrating the lower bound of Eq. (1) twice, we obtain

$$g(t) \geq g(0) + tg'(0) + t\sqrt{g''(0)} - \ln \left(1 + t\sqrt{g''(0)}\right)$$

Consider now $v = \text{Newton's direction}$, i.e., $v = [\nabla^2 f(x)]^{-1} \nabla f(x)$. Let $h(t) = f(x + tv)$. We have

$$h'(0) = \nabla f(x)v = -\lambda^2(x), \quad h''(0) = v^T \nabla^2 f(0)v = \lambda^2(x).$$

Integrating the lower bound of Eq. (1) twice, we obtain for $0 \leq t < \frac{1}{\lambda(x)}$

$$h(t) \leq h(0) - t\lambda^2(x) - t\lambda(x) - \ln (1 - t\lambda(x)) \quad (2)$$

Convex Optimization
Newton Direction for Self-concordant Functions

Let $f : \mathbb{R}^n \to \mathbb{R}$ be self-concordant and $\nabla^2 f(x) \succ 0$ for all $x \in L_0$

- Using self-concordance it can be seen that
 - For Newton’s decrement $\lambda(x)$ and any $v \in \mathbb{R}^n$:
 \[
 \lambda(x) = \sup_{v \neq 0} \frac{-v^T \nabla f(x)}{(v^T \nabla^2 f(x) v)^{1/2}}
 \]
 with the supremum attainment at $v = -[\nabla^2 f(x)]^{-1} \nabla f(x)$

HW7
Self-Concordant Functions: Newton Method Analysis

• Consider Newton’s method, started at x_0, with backtracking line search.

• Assume that $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is self-concordant and strictly convex. (If $\text{dom} f \neq \mathbb{R}^n$, assume the level set $\{x \mid f(x) \leq f(x_0)\}$ is closed.

• Also, assume that f is bounded from below.

Under the preceding assumptions an optimizer x^* of f over \mathbb{R}^n exists. HW7

• Analysis is similar to the classic one except
 • Self-concordance replaces strict convexity and Lipschitz Hessian assumptions
 • Newton decrement replaces the role of the gradient norm
Convergence Result

Theorem 1 Assume that f is self-concordant strictly convex function that is bounded below over \mathbb{R}^n. Then, there exist $\eta \in (0, 1/4)$ and γ such that

- **Damped phase** If $\lambda_k > \eta$, we have $f(x_{k+1}) - f(x_k) \leq -\gamma$.

- **Pure Newton** If $\lambda_k \leq \eta$, the backtracking line search selects $\alpha = 1$ and

$$2\lambda_{k+1} \leq (2\lambda_k)^2$$

where $\lambda_k = \lambda(x_k)$.
Proof

Let \(h(\alpha) = f(x_k + \alpha d_k) \). As seen in Eq. (2), we have for \(0 \leq \alpha < \frac{1}{\lambda_k} \)

\[
h(\alpha) \leq h(0) - \alpha \lambda_k^2 - \alpha \lambda_k - \ln (1 - \alpha \lambda_k)
\]

(3)

We use this relation to show that the stepsize \(\hat{\alpha} = \frac{1}{1 + \lambda_k} \) satisfies the exit condition of the line search. In particular, letting \(\alpha = \hat{\alpha} \), we have

\[
h(\hat{\alpha}) \leq h(0) - \hat{\alpha} \lambda_k^2 - \hat{\alpha} \lambda_k - \ln(1 - \hat{\alpha} \lambda_k)
= h(0) - \lambda_k + \ln(1 + \lambda_k)
\]

Using the inequality \(-t + \ln(1 + t) \leq -\frac{t^2}{2(1+t)}\) for \(t \geq 0 \), and \(\sigma \leq 1/2 \), we obtain
\[h(\hat{\alpha}) \leq h(0) - \sigma \frac{\lambda_k^2}{1 + \lambda_k} = h(0) - \sigma \hat{\alpha} \lambda_k^2. \]

Therefore, at the exit of the line search, we have \(\alpha_k \geq \frac{\beta}{1 + \lambda_k} \), implying

\[h(\alpha_k) \leq h(0) - \sigma \beta \frac{\lambda_k^2}{1 + \lambda_k}. \]

When \(\lambda_k > \eta \), since \(h(\alpha_k) = f(x_{k+1}) \) and \(h(0) = f(x_k) \), we have

\[f(x_{k+1}) \leq f(x_k) - \gamma, \quad \gamma = \sigma \beta \frac{\eta^2}{1 + \eta}. \]

Assume that \(\lambda_k \leq \frac{1-2\sigma}{2} \), from Eq. (3) and the inequality

\[-x - \ln(1 - x) \leq x^2/2 + x^3 \quad \text{for } 0 \leq x \leq 0.81,\]

we have
\[h(1) \leq h(0) - \frac{1}{2} \lambda_k^2 + \lambda_k^3 \leq h(0) - \sigma \lambda_k^2, \]

where the last inequality follows from \(\lambda_k \leq \frac{1-2\sigma}{2} \).
Thus, the unit step satisfies the sufficient decrease condition (no damping).

The proof that \(2\lambda_{k+1} \leq (2\lambda_k)^2 \) left for HW7.
The preceding material is from Chapter 9.6 of the book by Boyd and Vandenberghe.
Newton’s Method for Self-concordant Functions

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be self-concordant and $\nabla^2 f(x) \succeq 0$ for all $x \in L_0$

- The analysis of Newton’s method with backtracking line search:
 - For an ϵ-solution, i.e., \tilde{x} with $f(\tilde{x}) \leq f^* + \epsilon$
 - An upper bound on the number of iterations is given by

$$\frac{f(x_0) - f^*}{\Gamma} + \log_2 \log_2 \frac{1}{\epsilon}, \quad \Gamma = \sigma \beta \frac{\eta^2}{1 + \eta}, \quad \eta = \frac{1 - 2\sigma}{4}$$

- Explicitly:

$$\frac{f(x_0) - f^*}{\Gamma} + \log_2 \log_2 \frac{1}{\epsilon} = \frac{20 - 8\sigma}{\sigma \beta (1 - 2\sigma)^2} [f(x_0) - f^*] + \log_2 \log_2 \frac{1}{\epsilon}$$

- The bound is practical (when f^* can be underestimated)
Equality Constrained Minimization

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

Assumption:
- The function \(f \) is convex, twice continuously differentiable
- The matrix \(A \in \mathbb{R}^{p \times n} \) has \(\text{Rank} \ A = p \)
- Optimal value \(f^* \) is finite and attained
 - If \(Ax = b \) for some \(x \in \text{relint}(\text{dom} f) \), there is no duality gap and there exists an optimal dual solution
- \textbf{KKT Optimality Conditions} state \(x^* \) is optimal if and only if there exists \(\lambda^* \) such that

\[
Ax^* = b, \quad \nabla f(x^*) + A^T \lambda^* = 0
\]

- Solving the problem is equivalent to solving the KKT conditions: \(n + p \) equations in \(n + p \) variables, \(x^* \in \mathbb{R}^n \) and \(\lambda^* \in \mathbb{R}^p \)
Equality Constrained Quadratic Minimization

minimize $\frac{1}{2} x^T P x + q^T x + r$ with $P \in S^n_+$
subject to $A x = b$

Important in extending the Newton’s method to equality constraints

KKT Optimality Conditions

$$\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x^* \\ \lambda^* \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}$$

• Coefficient matrix is referred to as \textit{KKT matrix}
• The KKT matrix is nonsingular if and only if

$$Ax = 0, x \neq 0 \implies x^T P x > 0 \quad [P \text{ is psd over null space of } A]$$

• Equivalent conditions for nonsingularity of A:
 • $P + A^T A \succ 0$
 • $\mathcal{N}(A) \cap \mathcal{N}(P) = \{0\}$
Newton’s Method with Equality Constraints

Almost the same as Newton’s method, except for two differences:

• The initial iterate x_0 has to be feasible, $Ax_0 = b$

• The Newton’s directions d_k have to be feasible, $Ad_k = 0$

Given iterate x_k, Newton’s direction d_k is determined as a solution to

$$
\text{minimize} \quad f(x_k) + \nabla f(x_k)d + \frac{1}{2}d^T \nabla^2 f(x_k)d
$$

subject to $A(x_k + d) = b$

• The KKT conditions: (w_k is optimal dual for the quadratic minimization)

$$
\begin{bmatrix}
\nabla^2 f(x_k) & A^T \\
A & 0 \\
\end{bmatrix}
\begin{bmatrix}
d_k \\
w_k \\
\end{bmatrix}
=
\begin{bmatrix}
-\nabla f(x_k) \\
0 \\
\end{bmatrix}
$$
Newton’s Method with Equality Constraints

Given starting point \(x \in \text{dom} \, f \) with \(Ax = b \) and tolerance \(\epsilon > 0 \).

Repeat

1. Compute Newton’s direction \(d_N(x) \) by solving the corresponding KKT system.
2. Compute the decrement \(\lambda(x) \)
3. Stopping criterion. Quit if \(\lambda^2/2 \leq \epsilon \).
4. Line search. Choose stepsize \(\alpha \) by backtracking line search.
5. Update. \(x := x + \alpha d_N(x) \).

- When \(f \) is strictly convex and self-concordant, the bound on the number of iterations required to achieve an \(\epsilon \)-accuracy is the same as in the “unconstrained case”
Newton’s Method with Infeasible Points

Useful when determining an initial feasible iterate x_0 is difficult

Linearizing optimality conditions $Ax^* = b$ and $\nabla f(x^*) + A^T \lambda^*$ at some $x + d \approx x^*$, with x is possibly infeasible, and using $w \approx \lambda^*$

- We have
 \[
 \nabla f(x^*) \approx \nabla f(x + d) \approx \nabla f(x) + \nabla^2 f(x) d
 \]

- Approximate KKT
 \[
 A(x + d) = b, \quad \nabla f(x) + \nabla^2 f(x) d + A^T w = 0
 \]

- At infeasible x_k, the set of linear inequalities determining d_k and w_k:
 \[
 \begin{bmatrix}
 \nabla^2 f(x_k) & A^T \\
 A & 0
 \end{bmatrix}
 \begin{bmatrix}
 d_k \\
 w_k
 \end{bmatrix}
 = - \begin{bmatrix}
 \nabla f(x_k) \\
 Ax_k - b
 \end{bmatrix}
 \]

Note: When x_k is feasible, the system of equations is the same as in the feasible point Newton’s method
Equality Constrained Analytic Centering

minimize \(f(x) = -\sum_{i=1}^{n} \ln x_i \)
subject to \(Ax = b \)

Feasible point Newton’s method: \(g = \nabla f(x) \), \(H = \nabla^2 f(x) \)

\[
\begin{bmatrix}
H & A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
d \\
w
\end{bmatrix}
= \begin{bmatrix}
-g \\
0
\end{bmatrix},
\quad g = \begin{bmatrix}
-\frac{1}{x_1} \\
\vdots \\
-\frac{1}{x_n}
\end{bmatrix},
\quad H = \text{diag} \left[\frac{1}{x_1^2}, \ldots, \frac{1}{x_n^2} \right]
\]

- The Hessian is positive definite
- KKT matrix first row: \(Hd + A^T w = -g \Rightarrow d = -H^{-1}(g + A^T w) \) (1)
- KKT matrix second row, \(Ad = 0 \), and Eq. (1) \(\Rightarrow AH^{-1}(g + A^T w) = 0 \)
- The matrix \(A \) has full row rank, thus \(AH^{-1}A^T \) is invertible, hence
 \[
 w = -\left(AH^{-1}A^T \right)^{-1} AH^{-1} g,
 \quad H^{-1} = \text{diag} \left[x_1^2, \ldots, x_n^2 \right]
 \]
- The matrix \(-AH^{-1}A^T\) is known as Schur complement of \(H \) (any \(H \)
Network Flow Optimization

minimize $\sum_{l=1}^{n} \phi_l(x_l)$
subject to $Ax = b$

- Directed graph with n arcs and $p + 1$ nodes
- Variable x_l: flow through arc l
- Cost ϕ_l: cost flow function for arc l, with $\phi''_l(t) > 0$
- Node-incidence matrix $\tilde{A} \in \mathbb{R}^{(p+1) \times n}$ defined as
 $$\tilde{A}_{il} = \begin{cases}
1 & \text{arc } j \text{ originates at node } i \\
-1 & \text{arc } j \text{ ends at node } i \\
0 & \text{otherwise}
\end{cases}$$
- Reduced node-incidence matrix $A \in \mathbb{R}^{p \times n}$ is \tilde{A} with last row removed
- $b \in \mathbb{R}^p$ is (reduced) source vector
- Rank $A = p$ when the graph is connected
KKT system for infeasible Newton’s method

\[
\begin{bmatrix}
H & A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
d \\
w
\end{bmatrix}
= -
\begin{bmatrix}
g \\
h
\end{bmatrix}
\]

where \(h = Ax - b \) is a measure of infeasibility at the current point \(x \)

- \(g = [\phi'_1(x_1), \ldots, \phi'_n(x_n)]^T \)

- \(H = \text{diag} [\phi''_1(x_1), \ldots, \phi''_n(x_n)] \) with positive diagonal entries

- Solve via elimination:

\[
w = (AH^{-1}A^T)^{-1}[h - AH^{-1}g], \quad d = -H^{-1}(g + A^Tw)
\]