Lecture 14

Newton Algorithm for Unconstrained Optimization

October 21, 2008
Outline

• Newton Method for System of Nonlinear Equations
• Newton’s Method for Optimization
• Classic Analysis
Newton’s Method for System of Equations

- A numerical method for solving a system of equations
 \[G(x) = 0, \quad G : \mathbb{R}^n \to \mathbb{R}^n \]

- When \(G \) is continuously differentiable, the classical Newton method is based on a natural (local) approximation of \(G \): linearization
 - Given an iterate \(x_k \), the map \(G \) is approximated at \(x_k \) by the following linear map
 \[
 L(x; x_k) = G(x_k) + JG(x_k)(x - x_k),
 \]
 where \(JG(x) \) is the Jacobian of \(G \) at \(x \)
 - We have \(L(x; x_k) \approx G(x) \)
 - System \(G(x) = 0 \) is “replaced” by the system \(L(x; x_k) = 0 \)
 - The resulting solution is defining a new iterate \(x_{k+1} \),
 \[
 x_{k+1} = x_k - JG(x_k)^{-1}G(x_k)
 \]
Properties of Newton’s Method

\[x_{k+1} = x_k - JG(x_k)^{-1}G(x_k) \]

- Fast local convergence, but globally the method can fail
 - When started far from a solution
• Numerical instabilities occur when $JG(x^*)$ is singular (or nearly singular)

• Two main properties that make the process work
 • A linear model $L(x; x_k)$ that provides good approximation of G near x_k, when x_k is near a solution
 • Solvability of linear equation $L(x; x_k) = 0$ when $JG(x_k)$ is invertible

• These two properties are “guaranteed” when
 • G is continuously differentiable and
 • $JG(x^*)$ is invertible (nonsingular)
Convergence Rate Terminology

Definition 7.2.1 Let $\{x_k\} \subseteq \mathbb{R}^n$ be a sequence converging to some $x^* \in \mathbb{R}^n$. The convergence rate is said to be

- **Q-linear** if

 $$\limsup_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} < \infty$$

- **Q-superlinear** if

 $$\limsup_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0$$

- **Q-quadratic** if

 $$\limsup_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^2} < \infty$$

- **R-linear** if

 $$\limsup_{k \to \infty} (\|x_{k+1} - x^*\|)^{1/k} < 1$$
Unconstrained Minimization

minimize \(f(x) \)

Suppose that:
- The function \(f \) is convex and twice continuously differentiable over \(\text{dom} f \)
- The optimal value is attained: there exists \(x^* \) such that

\[
f(x^*) = \inf_x f(x)
\]

Newton Method can be applied to solve the corresponding optimality condition

\[
\nabla f(x^*) = 0,
\]
resulting in \(x_{k+1} = x_k - \nabla f^2(x_k)^{-1} \nabla f(x_k) \).
This is known as pure Newton method
As discussed, in this form the method may not always converge.
Newton’s direction

\[d_k = -\nabla^2 f(x_k)^{-1} \nabla f(x_k) \]

Interpretations:

• Second-order Taylor’s expansion at \(x_k \) yields

\[f(x_k + d) = f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \nabla^2 f(x_k) d + o(\|d\|^2) \]

• The right-hand side without the small order term, provides a (quadratic) approximation of \(f \) in a (small) neighborhood of \(x_k \)

\[f(x_k + d) \approx f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \nabla^2 f(x_k) d \]

• Minimizing the quadratic approximation w/r to \(d \) yields:

\[\nabla f(x_k)^T + \nabla^2 f(x_k) d = 0 \]

• Newton’s \(d_k \) can be also viewed as solving linearized optimality condition

\[\nabla f(x_k + d) \approx \nabla f(x_k) + \nabla^2 f(x_k) d = 0 \]
Newton Decrement

- Newton’s decrement at \(x_k \) is defined by:
 \[
 \lambda(x_k) = \left(\nabla f(x_k)^T \nabla^2 f(x_k)^{-1} \nabla f(x_k) \right)^{1/2}
 \]

- Provides a measure of the proximity of \(x \) to \(x^* \)

- Obtained by evaluating the difference between \(f(x_k) \) and the quadratic approximation of \(f \) at \(x_k \) evaluated at the optimal \(d \) (Newton’s direction)
 \[
 f(x_k) - \left[f(x_k) + \nabla f(x_k)^T d_k + \frac{1}{2} d_k^T \nabla^2 f(x_k) d_k \right] = \frac{1}{2} \lambda(x_k)^2
 \]

Properties:
- Equal to the norm of the Newton step in the quadratic Hessian norm
 \[
 \lambda(x_k) = \left[d_k \nabla^2 f(x_k) d_k \right]^{1/2} = \| d_k \| \nabla^2 f(x_k)
 \]
- Affine invariant (unlike \(\| \nabla f(x) \| \))
Newton’s Method

Given a starting point $x \in \text{dom} f$, error tolerance $\epsilon > 0$, and parameters $\sigma \in (0, 1/2)$ and $\beta \in (0, 1)$.

Repeat

1. *Compute the Newton’s direction and decrement:*

 \[d := -\nabla^2 f(x)^{-1} \nabla f(x), \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \]

2. *Stopping criterion: quit if* $\lambda^2 / 2 \leq \epsilon$

3. *Line search: Choose stepsize α by backtracking line search, i.e., starting with* $\alpha = 1$ do

 (a) If $f(x + \alpha d) < f(x) + \sigma \alpha \nabla f(x)^T d$ go to Step 4

 (b) Else $\alpha = \beta \alpha$ and go to (b).

4. *Update* $x := x + \alpha d$.
Classical Convergence Analysis - Main Results

Assumption 1:

- The level set \(L_0 = \{ x \mid f(x) \leq f(x_0) \} \) is closed
- \(f \) strongly convex on \(L_0 \) with a constant \(m \)
- \(\nabla^2 f \) is Lipschitz continuous on \(L_0 \), with a constant \(L > 0 \):
 \[
 \| \nabla^2 f(x) - \nabla^2 f(y) \| \leq L \| x - y \|_2
 \]
 \(L \) measures how well \(f \) can be approximated by a quadratic function

Analysis outline: there exists a constant \(\eta \in (0, 2m^2/L) \) such that

- When \(\| \nabla f(x_k) \| \geq \eta \), then \(f(x_{k+1}) - f(x_k) \leq -\gamma \) for \(\gamma = \sigma \beta \eta^2 \frac{m}{M^2} \)
- When \(\| \nabla f(x_k) \| < \eta \), then
 \[
 \frac{L}{2m^2} \| \nabla f(x_{k+1}) \|_2 \leq \left[\frac{L}{2m^2} \| \nabla f(x_k) \|_2 \right]^2
 \]
Two Phases of Newton’s Method

Damped Newton phase \((\|\nabla f(x)\| \geq \eta; \text{ far from } x^*) \)

- Most iterations require backtracking steps
- Function value decreases by at least \(\gamma \) at each iteration
- This phase ends after at most \((f(x_0) - f^*)/\gamma \) iterations

Quadratically convergent phase \((\|\nabla f(x)\| < \eta; \text{ locally near } x^*) \)

- All iterations in this phase use stepsize \(\alpha = 1 \)
- The gradient \(\|\nabla f(x)\| \) converges to zero quadratically:

\[
\frac{L}{2m^2} \|\nabla f(x_l)\| \leq \left[\frac{L}{2m^2} \|\nabla f(x_k)\| \right]^{2^{l-k}} \leq \left(\frac{1}{2} \right)^{2^{l-k}} \quad \text{for } l \geq k
\]
Analysis of Newton Method

Theorem Let Assumption 1 hold. Then, there exists a constant \(\eta \in (0, 2m^2/L) \) such that

- When \(\|\nabla f(x_k)\| \geq \eta \), then \(f(x_{k+1}) - f(x_k) \leq -\gamma \) for \(\gamma = \sigma \beta \eta^2 \frac{m}{M^2} \)
- When \(\|\nabla f(x_k)\| < \eta \), then

\[
\frac{L}{2m^2} \|\nabla f(x_{k+1})\|_2 \leq \left[\frac{L}{2m^2} \|\nabla f(x_k)\|_2 \right]^2
\]

Proof Let \(\|\nabla f(x_k)\| \geq \eta \). Let estimate the stepsize \(\alpha_k \) at the end of the backtracking line search. First note that \(\{x_k\} \subset L_0 \). Since \(f \) is strongly convex, the level set \(L_0 \) is bounded, hence \(\nabla f \) is Lipschitz continuous over \(L_0 \) with some constant \(M \).

By \(Q \)-approximation Lemma, we have for any \(\alpha > 0 \)

\[
f(x_k + \alpha d) \leq f(x_k) + \alpha \nabla f(x_k)^T d_k + \frac{\alpha^2 M}{2} \|d_k\|^2.
\]
Using the Newton decrement $\lambda_k = (\nabla f(x_k)^T \nabla^2 f(x_k)^{-1} \nabla f(x_k)^T)^{1/2}$, and the fact $d_k = -\nabla^2 f(x_k)^{-1} \nabla f(x_k)$ we can write

$$f(x_k + \alpha d_k) \leq f(x_k) - \alpha \lambda_k^2 + \frac{\alpha^2 M}{2} \|d_k\|^2.$$

Note that

$$\lambda_k^2 = \nabla f(x_k)^T \nabla^2 f(x_k)^{-1} \nabla f(x_k) = d_k^T \nabla^2 f(x_k) d_k \geq m \|d_k\|^2,$$

by strong convexity of f. Hence $\|d_k\|^2 \leq \lambda_k^2 / m$ implying that

$$f(x_k + \alpha d_k) \leq f(x_k) - \alpha \lambda_k^2 + \frac{\alpha^2 M}{2m} \lambda_k^2$$

$$\leq f(x_k) - \alpha \left(1 - \frac{\alpha M}{2m}\right) \lambda_k^2.$$
Thus the stepsize $\alpha = \frac{m}{M}$ satisfies the exit condition in the backtracking line search (with $\sigma \leq 1/2$), since for $\alpha = \frac{m}{M}$ we have

$$f(x_k + \alpha d_k) \leq f(x_k) - \frac{m}{2M} \lambda_k^2 < f(x_k) - \sigma \frac{m}{M} \lambda_k^2.$$

Therefore, the backtracking line search stops with some $\alpha_k \geq \frac{m}{M} \geq \beta \frac{m}{M}$. Thus, when the line search is exited with step α_k, we have

$$f(x_k + \alpha_k d_k) < f(x_k) - \sigma \alpha_k \lambda_k^2 \leq f(x_k) - \sigma \beta \frac{m}{M} \lambda_k^2.$$

Since $\nabla^2 f(x) \leq MI$, we have

$$\lambda_k^2 = \nabla f(x_k)^T \nabla^2 f(x_k)^{-1} \nabla f(x_k)^T \geq \frac{1}{M} \|\nabla f(x_k)\|.$$
Hence, when $\|\nabla f(x_k)\| \leq \eta$, we have

$$f(x_k + \alpha_k d_k) < f(x_k) - \sigma \beta \frac{m}{M^2} \eta^2.$$

Suppose now $\|\nabla f(x_k)\| \leq \eta$.

Strong Q-lemma: For a continuously differentiable function g over \mathbb{R}^n with Lipschitz gradients with constant L, we have

$$\|g(x + y) - g(x) - \nabla g(x)^T y\| \leq \frac{L}{2} ||y||^2.$$

Applying this lemma to $\nabla f(x)$, we have

$$\|\nabla f(x_k + d) - \nabla f(x) - \nabla^2 f(x) d\| \leq \frac{L}{2} ||d||^2.$$
letting d be the Newton direction, we obtain

$$\|\nabla f(x_{k+1})\| \leq \frac{L}{2}\|\nabla^2 f(x_k)^{-1}\nabla f(x_k)\|^2 \leq \frac{L}{2}\|\nabla^2 f(x_k)^{-1}\|^2 \|\nabla f(x_k)\|^2.$$

Since $mI \leq \nabla^2 f(x)$, it follows

$$\|\nabla f(x_{k+1})\| \leq \frac{L}{2m^2}\|\nabla f(x_k)\|^2.$$

Hence, $\|\nabla f(x_{k+1})\| \leq \eta$. Furthermore, for any $K \geq 0$,

$$\|\nabla f(x_{K+1})\| \leq \frac{2m^2}{L}\left(\frac{L}{2m^2}\|\nabla f(x_K)\|\right)^2 \leq \cdots \leq \left(\frac{L}{2m^2}\|\nabla f(x_k)\|\right)^{2K},$$

showing the quadratic convergence rate.
Conclusions

The number of iterations until \(f(x) - f^* \leq \epsilon \) is bounded above by

\[
\frac{f(x_0) - f^*}{\gamma} + \log_2 \log_2 \left(\frac{\epsilon_0}{\epsilon} \right)
\]

- \(\gamma = \sigma \beta \eta^2 \frac{m}{M^2} \), \(\epsilon_0 = 2m^3/L^2 \)
- The second term is small (of the order of 6) and almost constant for practical purposes:
 six iterations of the quadratically convergent phase results in accuracy

\[
\approx 5 \cdot 10^{-20} \epsilon_0
\]

- In practice, the constants \(m, L \) (hence \(\gamma, \epsilon_0 \)) are usually unknown
- The analysis provides qualitative insight in the convergence properties (i.e., explains two algorithm phases)