Lecture 12
Unconstrained Optimization (contd.)
Constrained Optimization

October 15, 2008
Outline

- Gradient descent algorithm
 - Improvement to result in Lec 11
 - At what rate will it converge?

- Constrained minimization over simple sets
Unconstrained Minimization

minimize \(f(x) \)
subject \(x \in \mathbb{R}^n \).

- Assumption 1:
 - The function \(f \) is convex and continuously differentiable over \(\mathbb{R}^n \)
 - The optimal value \(f^* = \inf_{x \in \mathbb{R}^n} f(x) \) is finite.

- Gradient descent algorithm

\[
x_{k+1} = x_k - \alpha \nabla f(x_k)
\]
Theorem 1: Bounded Gradients

- **Theorem 1** Let Assumption 1 hold, and suppose that the gradients are bounded. Then, the gradient method generates the sequence \(\{x_k\} \) such that

\[
\liminf_{k \to \infty} f(x_k) \leq f^* + \frac{\alpha L^2}{2}
\]

- We first proved that for \(y \in \mathbb{R}^n \) and for all \(k \),

\[
\|x_{k+1} - y\|^2 \leq \|x_k - y\|^2 - 2\alpha_k (f(x_k) - f(y)) + \alpha_k^2 \|\nabla f(x_k)\|^2.
\]
Theorem 2: Lipschitz Gradients

- **Q-approximation Lemma**

 For continuously differentiable function with Lipschitz gradients, we have

 \[f(y) \leq f(x) + \nabla f(x)^T(y - x) + \frac{M}{2}\|y - x\|^2 \quad \text{for all } x, y \in \mathbb{R}^n, \]

- **Theorem** Let Assumption 1 hold, and assume that the gradients of \(f \) are Lipschitz. Then, for \(\alpha \) with \(\alpha < \frac{2}{M} \), we have

 \[\lim_{k \to \infty} \|\nabla f(x_k)\| = 0. \]

 If in addition, an optimal solution exists [i.e., the \(\min_x f(x) \) is attained at some \(x^* \)], then every accumulation point of the sequence \(\{x_k\} \) is optimal.
• \textbf{Proof:} Using Q-approximation Lemma with $y = x_{k+1}$ and $x = x_k$, we have

\[
f(x_{k+1}) \leq f(x_k) - \alpha \|\nabla f(x_k)\|^2 + \frac{\alpha^2 M}{2} \|\nabla f(x_k)\|^2
\]

\[
= f(x_k) - \frac{\alpha}{2} (2 - \alpha M) \|\nabla f(x_k)\|^2
\]

By summing these relations and using $2 - \alpha M > 0$, we can see that

\[
\sum_k \|\nabla f(x_k)\|^2 < \infty,
\]

implying $\lim_{k \to \infty} \|f(x_k)\| = 0$.

Suppose a solution exists, and the sequence $\{x_k\}$ has an accumulation point \bar{x}. Then, by continuity of the gradient we have $\nabla f(x_k) \to \nabla f(\bar{x})$ along an appropriate subsequence.
Since $\nabla f(x_k) \to 0$, it follows $\nabla f(\bar{x}) = 0$, implying that \bar{x} is a solution.

- Where do we use convexity?

- Correct Theorem 2: Assume that the gradients of f are Lipschitz. Then, for α with $\alpha < \frac{2}{M}$, we have

\[
\sum_{k=1}^{\infty} \|\nabla f(x_k)\|^2 < \infty.
\]

If in addition, an optimal solution exists [i.e., the $\min_x f(x)$ is attained at some x^*], then every accumulation point of the sequence $\{x_k\}$ is optimal.

- $\{x_k\}$ need not converge. Note difference between limit point and accumulation point.

- Example: $f(x) = \frac{1}{1+x^2}$. Satisfies conditions and $x_k \to \infty$.
What does convexity buy?

• **Answer:** Convergence of the sequence \(\{x_k\} \)

• Recall/Define \(X^\ast \) as optimal set.

• **Theorem 3:** Let Assumption 1 hold. Further, assume that the gradients of \(f \) are Lipschitz and \(\alpha \) with \(\alpha < \frac{2}{M} \). If \(X^\ast \) is nonempty then

\[
\lim_{k \to \infty} x_k = x^\ast, \quad x^\ast \in X^\ast.
\]

• Proof (outline): Previous theorem tells us a lot. Every convergent subsequence of \(\{x_k\} \) is a point in \(X^\ast \). Questions
 • Is there a convergent subsequence?
 • Do all the subsequence converge to the same point in \(X^\ast \)?
Conditions of Lemma 1 are satisfied. Fix \(y = \tilde{x} \), where \(\tilde{x} \in X^* \)

\[
\|x_{k+1} - \tilde{x}\|^2 \leq \|x_k - \tilde{x}\|^2 - 2\alpha(f(x_k) - f^*) + \alpha^2\|\nabla f(x_k)\|^2.
\]

Drop the negative term

\[
\|x_{k+1} - \tilde{x}\|^2 \leq \|x_k - \tilde{x}\|^2 + \alpha^2\|\nabla f(x_k)\|^2.
\]

Note from Theorem 2 that

\[
\sum_{l=1}^{\infty} \|\nabla f(x_l)\|^2 < \infty.
\]
Therefore adding $\alpha^2 \sum_{l=k+1}^{\infty} \| \nabla f(x_l) \|^2$ to both sides we obtain

$$\| x_{k+1} - \tilde{x} \|^2 + \alpha^2 \sum_{l=k+1}^{\infty} \| \nabla f(x_l) \|^2 \leq \| x_k - \tilde{x} \|^2 + \alpha^2 \sum_{l=k}^{\infty} \| \nabla f(x_l) \|^2.$$

Define

$$u_k = \| x_k - \tilde{x} \|^2 + \alpha^2 \sum_{l=k}^{\infty} \| \nabla f(x_l) \|^2.$$

Thus, equation is

$$u_{k+1} \leq u_k,$$

which implies $\{u_k\}$ converges. We already know $\sum_{l=k}^{\infty} \| \nabla f(x_l) \|^2$ converges as $k \to \infty$. Therefore, $\| x_k - \tilde{x} \|$ converges. Therefore, $\{x_k\}$ is bounded \Rightarrow convergent subsequence exists.

Take a convergent subsequence $\{x_{s_k}\}$ and let limit point be \bar{x}. We know
\(\bar{x} \in X^* \) from previous Theorem. Thus,

\[
\lim_{k \to \infty} \| x_{s_k} - \bar{x} \| = 0.
\]

But we just showed that \(\lim_{k \to \infty} \| x_k - \bar{x} \| \) exists. Therefore, the limit must be 0 and \(\{ x_k \} \) converge to \(\bar{x} \).

- Quick Summary:
 - Without convexity no convergence of iterates.
 - With convexity convergence of iterates.

- Go back and check \(f(x) = \frac{1}{1+x^2} \). It can't be convex.

- General note: What do I get from all this analysis?
Rates of convergence

• Successfully solved the problem. Finish course and go home? Unfortunately, no. Gradient descent has poor rates of convergence. Empirically observed when we simulate.
• See last page for an example.
• Let’s consider the class of strongly convex functions. Recall,
 • \(\nabla^2 f(x) \succeq mI \) for all \(x \in \mathbb{R}^n \)
 • \(f(y) \geq f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} \)
 • \(\frac{1}{2m} \| \nabla f(x) \|^2 \geq f(x) - f^* \geq \frac{m}{2} \| x - x^* \|^2 \)
• **Theorem 4:** Let Assumption 1 hold. Further, assume that f is strongly convex, gradients of f are Lipschitz and α with $\alpha < \frac{\min(2,m)}{M}$. Then,

$$\|x_k - x^*\| \leq cq^k, \quad 0 < q < 1.$$

Note: Geometric rate of convergence. (Normal people call it exponential;))

• Proof: Strongly convex \Rightarrow Unique minimum. Basic iterate relation
with \(y = x^* \) gives

\[
\|x_{k+1} - x^*\|^2 \leq \|x_k - x^*\|^2 - 2\alpha (f(x_k) - f^*) + \alpha \|\nabla f(x_k)\|^2 \\
\leq \|x_k - x^*\|^2 - 2\alpha \frac{m}{2} \|x_k - x^*\|^2 + \alpha \|\nabla f(x_k)\|^2 \\
= \|x_k - x^*\|^2 - 2\alpha \frac{m}{2} \|x_k - x^*\|^2 + \alpha \|\nabla f(x_k) - \nabla f(x^*)\|^2 \\
\leq \|x_k - x^*\|^2 - \alpha m \|x_k - x^*\|^2 + \alpha^2 M \|x_k - x^*\|^2 \\
= \left(1 - m\alpha + \alpha^2 M\right) \|x_k - x^*\|^2 \\
= \left(1 - m\alpha + \alpha^2 M\right)^{k+1} \|x_0 - x^*\|^2
\]

- Remark: Result holds when \(0 < \alpha < \frac{2}{m} \).

- Geometric is not bad. But, how many functions are strongly convex?
Constrained minimization over simple sets

minimize \(f(x) \)

subject \(x \in X \).

- **Assumption 2**
 - \(f \) is continuously differentiable and convex on an open interval containing \(X \)
 - \(X \) is closed and compact
 - \(f^* > -\infty \)

- Optimality condition \(\nabla f(x^*)^T(x - x^*) \leq 0 \)

- **Simple sets**: Easy projection. Ball, hyperplanes, halfspaces

- **Assumption 2**: The set \(X \) is closed and convex.
• Recall projection

 • $\|P_X[x] - x\| \leq \|P_X[x] - y\|$ when $y \in X$

 • $\|P_X[x] - P_X[y]\| \leq \|x - y\|$ when $x, y \in \mathbb{R}^n$

• Gradient projection algorithm

$$x_{k+1} = P_X[x_k - \alpha_k \nabla f(x_k)]$$

• Can we obtain results similar to Theorems 1-4?

• Lemma 1 and Theorem 1 Let Assumption 1 and 2 hold, and suppose that the gradients are bounded. Then, for any $y \in X$, and all k

$$\|x_{k+1} - y\|^2 \leq \|x_k - y\|^2 - 2\alpha_k(f(x_k) - f(y)) + \alpha_k^2\|\nabla f(x_k)\|^2.$$
and hence for $\alpha_k = \alpha$,

$$\liminf_{k \to \infty} f(x_k) \leq f^* + \frac{\alpha L^2}{2}$$

- **Proof:** By the definition of the method, it follows that for any k,

$$\|x_{k+1} - y\|^2 = \|P_X [x_k - \alpha_k \nabla f(x_k)] - y\|^2 \leq \|x_k - \alpha_k \nabla f(x_k) - y\|^2 \leq \|x_k - y\|^2 - 2\alpha_k \nabla f(x_k)^T(x_k - y) + \alpha_k^2 \|\nabla f(x_k)\|^2.$$

Rest identical

- **Theorem 2:** Not very interesting. After all, $\nabla f(x^*)$ need not be 0. What we could show is something like $\lim_{k \to \infty} \nabla f(x_k)^T(x - x_k) \leq 0$ for all x.
• **Theorem 3:** Let Assumption 2 hold. Further, assume that the gradients of f are Lipschitz and α with $\alpha < \frac{2}{M}$. If X^* is nonempty then

$$\lim_{k \to \infty} x_k = x^*, \quad x^* \in X^*.$$

• **Theorem 4:** Let Assumption 2 hold. Further, assume that f is strongly convex, gradients of f are Lipschitz and α with $\alpha < \frac{\min(2,m)}{M}$. Then,

$$\|x_k - x^*\| \leq \bar{c}\bar{q}^k, \quad 0 < \bar{q} < 1.$$
Proofs

Pack it. I am going home! Prof. Nedić will do it. I think.