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Product of Random Stochastic Matrices

Behrouz Touri and Angelia Nedić

Abstract

The paper deals with the convergence properties of the products of random (row-)stochastic matrices.

The limiting behavior of such products is studied from a dynamical system point of view. In particular, by

appropriately defining a dynamic associated with a given sequence of random (row-)stochastic matrices,

we prove that the dynamics admits a class of time-varying Lyapunov functions, including a quadratic

one. Then, we discuss a special class of stochastic matrices, a class P∗, which plays a central role in

this work. We then introduce balanced chains and using some geometric properties of these chains, we

characterize the stability of a subclass of balanced chains. As a special consequence of this stability

result, we obtain an extension of a central result in the non-negative matrix theory stating that, for any

aperiodic and irreducible row-stochastic matrix A, the limit limk→∞Ak exists and it is a rank one

stochastic matrix. We show that a generalization of this result holds not only for sequences of stochastic

matrices but also for independent random sequences of such matrices.

I. INTRODUCTION

Averaging dynamics or distributed averaging dynamics has played a fundamental role in

the recent studies of various distributed systems and algorithms. Examples of such distributed

problems and algorithms include distributed optimization [34], [21], [20], [11], distributed control

of robotic networks [3], and study of opinion dynamics in social networks [13], [8].

The study of averaging dynamics is closely related to the study of products of stochastic

matrices. Such products have been studied from two perspectives: the theory of Markov chains

and the distributed averaging settings. The notable works in the domain of the theory of Markov

chain are the early studies of Hajnal and Wolfowitz in [7] and [35], respectively, where sufficient

conditions are derived for the convergence of the products of row-stochastic matrices to a rank
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one matrix. The exploration of this domain from the distributed averaging perspective was started

by the work of [5] and the seminal work of J. Tsitsiklis [33].

Products of random stochastic matrices have also attracted many mathematicians as such

products are examples of convolutions of probability measures on semigroups [17], [24], [6],

[23]. Due to the technicalities involved, such studies are confined to identically independently

distributed (i.i.d.) random chains or their generalizations in the domain of stationary ergodic

chains. From the engineering perspective, this area have been recently explored in [26], [27],

[32], [29], [28], [30], [31]. In [26], a necessary and sufficient condition for ergodicity of products

of i.i.d. stochastic matrices has been derived. A generalization of such result for stationary and

ergodic chains is discussed [27]. In a sequence of papers, [32], [30], [29], [28], we have defined

fundamental concepts of infinite flow property, infinite flow graph, and `1-approximation. We

have showed that these properties are very closely related to the convergence properties of the

product of random stochastic matrices that are not necessarily identically distributed. The current

work is a continuation of the line of the aforementioned papers.

In particular, in this paper, we derive a set of necessary and sufficient conditions for ergodicity

and convergence of a product of independent random stochastic matrices. Specifically, we study

a class of random stochastic matrices, which we refer to as balanced chains and show that this

class contains many of the previously studied chains of random and deterministic stochastic

matrices. This property was first introduced in our earlier work [29] for discrete-time dynamics

and in [9] for continuous-time dynamics. Much research has been done on such a criterion

since then (see e.g. [25], [16], [2]). Unlike the prior work, our work adopts dynamical system

point of view for the averaging dynamics: we first draw the connection between the products

of random stochastic matrices and the random dynamics driven by such matrices. Then, we

show that every dynamics driven by a chain of independent random stochastic matrices admits

a time-varying quadratic Lyapunov function. In fact, we show more by establishing that for

any convex function, there exists a Lyapunov function adjusted to such a convex function. This

result opens up a new window for the study of averaging dynamics and distributed algorithms,

as quadratic Lyapunov function has proven to be a powerful tool to study such dynamics for

different sub-classes of stochastic chains (see e.g., [18] and [32]). However, the non-existence

of quadratic time-invariant Lyapunov functions was suspected for general class of averaging

dynamics [10], and it was proven later in [22].
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After proving the existence of time-varying quadratic Lyapunov functions for averaging dy-

namics, we introduce a special class of stochastic chains, P∗ chains, and we show that the

products of matrices drawn from this sub-class converge almost surely. We then provide the

definition of balanced-ness for random stochastic chains and we show that many previously

studied classes of stochastic chains are examples of such balanced chains. Finally, using a

geometric property of the balanced chains, we show that such chains are examples of P∗ chains,

which leads to the main result of this paper which can be interpreted as a generalization of

the known convergence of Ak to a rank-one stochastic matrix (for aperiodic and irreducible

stochastic matrix A) to the case of inhomogeneous chains of stochastic matrices, as well as

independent random chains of such matrices.

The contribution of this work is as follows: 1) we prove the existence of a family of time-

varying Lyapunov functions for random averaging dynamics; 2) we introduce class P∗ of

random stochastic chains, and provide necessary and sufficient conditions for the stability of

the corresponding dynamics; 3) we introduce balanced chains and we use them to establish

some necessary and sufficient conditions for the stability of the resulting dynamics; and 4) we

provide an extension of the fundamental convergence result in the non-negative matrix theory.

The paper is organized as follows: in Section II, we formulate and provide the random setting

for our study of the products of random stochastic matrices which will be considered throughout

the paper. In Section III, we study the dynamics related to such matrices and draw the connection

between the study of such products and the associated dynamics, and we prove that the dynamics

admits a class of time-varying Lyapunov functions, including a quadratic one. Then, we discuss

the class P∗ in Section IV which plays a central role in our development. We then introduce

the class of balanced chains and using the geometric structure of these chains, as well as the

developed results in the preceding sections, we characterize the stability of a subclass of those

chains. Finally, in Section VI, we apply the developed results to prove an extension of a central

result in the non-negative matrix theory on the convergence of Ak to a rank-one matrix. We

conclude this work by a discussion in Section VII.

II. PROBLEM SETTING

We work exclusively with row-stochastic matrices, so we simply refer to them as stochastic

matrices. Let (Ω,F ,Pr ) be a probability space and let {W (k)} be a chain of m ×m random
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stochastic matrices, i.e. for all k ≥ 1, the matrix W (k) is a stochastic almost surely and Wij(k) :

Ω→ R is a Borel-measurable function for all i, j ∈ [m], where [m] = {1, . . . ,m}. Throughout

this paper, we denote random sequences of stochastic matrices by last alphabet letters such as

{W (k)} and {U(k)}, and we use the first alphabet letters such as {A(k)} and {B(k)} to denote

deterministic sequences of stochastic matrices. We also refer to a sequence of stochastic matrices

as a stochastic chain, or just simply as a chain.

Let {W (k)} be an independent random chain. Then, we say that {W (k)} is strongly aperiodic

if there exists a γ ∈ (0, 1] such that

E[Wii(k)Wij(k)] ≥ γE[Wij(k)] for all i 6= j ∈ [m] and all k ≥ 1.

Note that if Wii(k) ≥ γ almost surely for all i ∈ [m] and all k ≥ 1, then such a chain is strongly

aperiodic. Also, note that by summing both sides of the above inequality over j 6= i, we obtain

E[Wii(k)] ≥ E[Wii(k)(1−Wii(k))] ≥ γ(1− E[Wii(k)]).

Hence, E[Wii(k)] ≥ γ
1−γ for all i ∈ [m] and all k ≥ 1. Thus, for a strongly aperiodic chain

{W (k)}, the expected chain {E[W (k)]} is strongly aperiodic. It follows that a deterministic

chain {A(k)} is strongly aperiodic if and only if Aii(k) ≥ γ̃ for some γ̃ > 0, and for all i ∈ [m]

and k ≥ 1.

For the subsequent use, for an m×m random (or deterministic) matrix W and a non-trivial

index set S ⊂ [m] (i.e. S 6= ∅ and S 6= [m]), we define the quantity WSS̄ =
∑

i∈S,j∈S̄Wij , where

S̄ is the complement of the index set S.

We say that an independent random chain {W (k)} is balanced if there exists some α > 0

such that

E[WSS̄(k)] ≥ αE[WS̄S(k)] for all nontrivial S ⊂ [m] and all k ≥ 1. (1)

From this definition, it can be seen that α ≤ 1.

Finally, with a given random chain {W (k)}, let us associate a random graph G∞ = ([m], E∞)

with the vertex set [m] and the edge set E∞ given by

E∞(ω) =

{
{i, j} |

∞∑
k=1

(Wij(k, ω) +Wji(k, ω)) =∞

}
.

We refer to G∞ as the infinite flow graph of {W (k)}. By the Kolmogorov’s 0-1 law, the infinite

flow graph of an independent random chain {W (k)} is almost surely equal to a deterministic
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graph. It has been shown that this determinstic graph is equal to the infinite flow graph of the

expected chain {E[W (k)]} ([30], Theorem 5).

For a matrix W , let Wi and W j denote the ith row vector and the jth column vector of W ,

respectively. Also, for a chain {W (k)}, we let

W (k : t0) = W (k) · · ·W (t0 + 1) for k > t0 ≥ 0,

with W (k : k) = I for all k ≥ 0. With these preliminary definitions and notation in place, we

can state the main result of the current study.

Theorem 1. Let {W (k)} be an independent random stochastic chain which is balanced and

strongly aperiodic. Then, for any t0 ≥ 0, the product W (k : t0) = W (k) · · ·W (t0 +1) converges

to a random stochastic matrix W (∞ : t0) almost surely. Furthermore, for all i, j in the same

connected component of the infinite flow graph of {W (k)}, we have Wi(∞ : t0) = Wj(∞ : t0)

almost surely.

To prove Theorem 1, we develop some auxiliary results in the forthcoming sections, while

deferring the proof to the last section.

As an immediate consequence of Theorem 1, it follows that W (∞ : t0) has rank at most τ

where τ is the number of the connected components of the infinite flow graph G∞ of {W (k)}.

Thus, if G∞ is a connected graph, the limiting random matrix W (∞ : t0) = limk→∞W (k : t0)

is a rank-one random stochastic matrix almost surely, i.e. W (∞ : t0) = evT (t0) almost surely for

some stochastic vector v(t0). This and Theorem 1 imply that: if an independent random chain

{W (k)} is balanced and strongly aperiodic, then {W (k)} is almost surely strongly ergodic (as

defined in [5]) if and only if the infinite flow graph of {W (k)} is connected.

III. DYNAMIC SYSTEM PERSPECTIVE

In order to prove Theorem 1, we establish some intermediate results, some of which are

applicable to a more general category of random stochastic chains, namely adapted random

chains. For this, let {W (k)} be a random chain adapted to a filtration {Fk}. For an integer

t0 ≥ 0 and a vector v ∈ Rm, consider the trivial random vector x(t0) : Ω → Rm defined by

x(t0, ω) = v for all ω ∈ Ω. Now, recursively define:

x(k + 1) = W (k + 1)x(k) for all k ≥ t0. (2)
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Note that x(t0) is measurable with respect to the trivial σ-algebra {∅,Ω} and hence, it is

measurable with respect to Ft0 . Also, since {W (k)} is adapted to {Fk}, it follows that for

any k > t0, x(k) is measurable with respect to Fk. We refer to {x(k)} as a random dynamics

driven by {W (k)} started at the initial point (t0, v) ∈ Z+ × Rm. We say that a given property

holds for any dynamics {x(k)} driven by {W (k)} if that property holds for any initial point

(t0, v) ∈ Z+ × Rm.

If limk→∞W (k : t0) = W (∞ : t0) exists almost surely, then the random dynamics {x(k)}

converges to W (∞ : t0)v almost surely for any initial point (t0, v) ∈ Z+ × Rm. Also, note that

for any i, j ∈ [m], we have limk→∞ ‖Wi(k, t0) −Wj(k, t0)‖ = 0 almost surely if and only if

limk→∞ (xi(k)− xj(k)) = 0 almost surely for any initial point. When verifying the latter relation,

due to the linearity of the dynamics, it suffices to check that limk→∞ (xi(k)− xj(k)) = 0 for

all the initial points of the form (t0, e`) with ` ∈ [m], where {e1, . . . , em} is the standard basis

for Rm.

In order to study the limiting behavior of the products W (k : t0), we study the limiting behavior

of the dynamics {x(k)} driven by {W (k)}. This enables us to use the dynamic system’s tools

and its stability theory to draw conclusions about the limiting behavior of the products W (k : t0).

A. Why the Infinite Flow Graph

In this section we provide a result showing the relevance of the infinite flow graph to the study

of the product of stochastic matrices. Let us consider a deterministic chain {A(k)} of stochastic

matrices and let us define mutual ergodicity and an ergodic index as follows.

Definition 1. For an m×m chain {A(k)} of stochastic matrices, we say that an index i ∈ [m]

is ergodic if limk→∞Ai(k : t0) exists for all t0 ≥ 0. Also, we say that two disctinct indices

i, j ∈ [m] are mutually ergodic if limk→∞ ‖Ai(k : t0)− Aj(k : t0)‖ = 0.

From the definition it immediately follows that an index i ∈ [m] is ergodic for a chain {A(k)}

if and only if limk→∞ xi(k) exists for any dynamics {x(k)} driven by {A(k)}. Similarly, indices

i, j ∈ [m] are mutually ergodic if and only if limk→∞ (xi(k)− xj(k)) = 0 for any dynamics

driven by {A(k)}.

The following result illustrates the relevance of the infinite flow graph to the study of the

products of stochastic matrices.
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Lemma 1. ([30], Lemma 2) Two distinct indices i, j ∈ [m] are mutually ergodic only if i and

j belong to the same connected component of the infinite flow graph G∞ of {A(k)}.

Generally, if i and j are mutually ergodic indices, it is not necessarily true that they are ergodic

indices. As an example, consider the 4× 4 stochastic chain {A(k)} defined by:

A(2k) =


1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 1

 , A(2k + 1) =


1 0 0 0

0 0 0 1

0 0 0 1

0 0 0 1

 for all k ≥ 1.

It can be verified that for any starting time t0 ≥ 0 and any k > t0, we have A(k : t0) =

A(k). Thus, it follows that indices 2 and 3 are mutually ergodic, while limk→∞A2(k : t0) and

limk→∞A3(k : t0) do not exist.

The following result shows that under special circumstances, we can assert that some indices

are ergodic if we know that a certain mutual ergodicity pattern exists in a chain.

Lemma 2. Let S be a connected component of the infinite flow graph G∞ of a chain {A(k)}.

Suppose that indices i and j are mutually ergodic for all distinct i, j ∈ S. Then, every index

i ∈ S is ergodic.

Proof: Without loss of generality let us assume that S = {1, . . . , i∗} for some i∗ ∈ [m]. Let

S̄ be the complement of S. For the given chain {A(k)} and the connected component S, let the

chain {B(k)} be defined by:

Bij(k) =


Aij(k) if i 6= j and i, j ∈ S or i, j ∈ S̄,

0 if i 6= j and i ∈ S, j ∈ S̄ or i ∈ S̄, j ∈ S,

Aii(k) +
∑

`∈S̄ Ai`(k) if i = j ∈ S,

Aii(k) +
∑

`∈S Ai`(k) if i = j ∈ S̄.

Then, B(k) has the block diagonal structure of the following form

B(k) =

 B1(k) 0

0 B2(k)

 for all k ≥ 1.

By construction the chain {B(k)} is stochastic. It can be verified that
∑∞

k=1 |Aij(k)−Bij(k)| <

∞ for all i, j ∈ [m]. Thus, {B(k)} is an `1-approximation of {A(k)} as defined in [30]. Then,

by Lemma 1 in [30], it follows that indices i and j are mutually ergodic for the chain {B(k)} for
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all distinct i, j ∈ S. By the block diagonal form of {B(k)}, it follows that i and j are mutually

ergodic for the |S| × |S| chain {B1(k)} and all i, j ∈ S. This, however, implies that the chain

{B1(k)} is weakly ergodic (as defined in [5]) and, as proven in Theorem 1 in [5], this further

implies that {B1(k)} is strongly ergodic, i.e. any index i ∈ S is ergodic for {B1(k)}. Again, by

the application of Lemma 1 in [30], we conclude that any index i ∈ S is ergodic for {A(k)}.

B. Time-varying Lyapunov Functions

Here, we show that under general conditions, a rich family of time-varying Lyapunov functions

exists for the dynamics {x(k)} driven by a random chain {W (k)}.

Let us define an absolute probability process for an adapted chain {W (k)}, which is an

extension of the concept of the absolute probability sequence introduced by A. Kolmogorov for

deterministic chains in [12].

Definition 2. We say that a random (vector) process {π(k)} is an absolute probability process

for a random chain {W (k)} adapted to {Fk} if

1) the random process {π(k)} is adapted to {Fk},

2) the vector π(k) is stochastic almost surely for all k ≥ 1, and

3) the following relation holds almost surely

E
[
πT (k + 1)W (k + 1) | Fk

]
= πT (k) for all k ≥ 0.

When an absolute probability process exists for a chain, we say that the chain admits an

absolute probability process.

For a deterministic chain of stochastic matrices {A(k)}, Kolmogorov showed in [12] that

there exists a sequence of stochastic vectors {v(k)} such that vT (k+ 1)A(k+ 1) = vT (k) for all

k ≥ 0. Note that, for an independent random chain, any absolute probability sequence for the

expected chain is an absolute probability process for the random chain. Thus, the existence of

an absolute probability process for an independent random chain of stochastic matrices follows

immediately from the Kolmogorov’s existence result. As another non-trivial example of random

chains that admit an absolute probability process, one may consider an adapted random chain

{W (k)} that is doubly stochastic almost surely. In this case, the static sequence { 1
m
e} is an

absolute probability process for {W (k)}, where e ∈ Rm is the vector with all components equal

to 1.
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Now, suppose that we have an adapted chain {W (k)} which admits an absolute probability

sequence {π(k)}. Also, let g : R→ R be an arbitrary convex function. Let us define the function

Vg,π : Rm × Z+ → R, as follows:

Vg,π(x, k) =
m∑
i=1

πi(k)g(xi)− g(πT (k)x) for all x ∈ Rm and all k ≥ 0. (3)

From the definition of an absolute probability process, it follows that Vg,π(x(k), k) is measurable

with respect to Fk for any dynamics {x(k)} driven by a chain {W (k)} that is adapted to {Fk}.

Also, since π(k) is almost surely stochastic vector and g is a convex function, it follows that

for any x ∈ Rm, we have Vg,π(x, k) ≥ 0 almost surely for all k ≥ 0.

Next, we show that Vg,π is a time-varying Lyapunov function for the dynamics (2) for any

convex function g. In particular, we prove that {Vg,π(x(k), k)} is a super-martingale sequence

irrespective of the initial point for the dynamics {x(k)}.

Theorem 2. Let {W (k)} be an adapted chain that admits an absolute probability process

{π(k)}. Then, for the dynamics (2) started at any initial point (t0, v) ∈ Z+ × Rm, we have

E[Vg,π(x(k + 1), k + 1) | Fk] ≤ Vg,π(x(k), k) for all k ≥ t0.

Proof: By the definition of Vg,π in (3), we have almost surely

Vg,π(x(k + 1), k + 1) =
m∑
i=1

πi(k + 1)g(xi(k + 1))− g(πT (k + 1)x(k + 1))

=
m∑
i=1

πi(k + 1)g([W (k + 1)x(k)]i)− g(πT (k + 1)x(k + 1))

≤
m∑
i=1

πi(k + 1)
m∑
j=1

Wij(k + 1)g(xj(k))− g(πT (k + 1)x(k + 1)), (4)

where in the second equality we use [·]i to denote the ith component of a vector, while the

inequality is obtained by using the convexity of g(·) and the fact that matrix W (k) is stochastic

almost surely. Since {π(k)} is an absolute probability process for {W (k)}, it follows that

E
[
πT (k + 1)W (k + 1) | Fk

]
= πT (k). Also, since x(k) is measurable with respect to Fk, by

taking the conditional expectation with respect to Fk on both sides of Eq. (4), we obtain almost
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surely

E[Vg,π(x(k + 1), k + 1) | Fk] ≤
m∑
j=1

πj(k)g(xj(k))− E
[
g(πT (k + 1)x(k + 1)) | Fk

]
≤

m∑
j=1

πj(k)g(xj(k))− g(E
[
πT (k + 1)x(k + 1) | Fk

]
),

where the last inequality follows by the convexity of g and Jensen’s inequality. The result follows

by using x(k + 1) = W (k + 1)x(k) and the definition of absolute probability process.

Theorem 2 shows that the dynamics (2) admits infinitely many time-varying Lyapunov func-

tions, provided that {W (k)} admits an absolute probability process.

Since Vg,π(x(k), k) ≥ 0 almost surely for all k ≥ 0, it follows that {Vg,π(x(k), k)} is a

bounded super-martingale. Hence, it is convergent almost surely irrespective of the initial point

of the dynamics {x(k)} and the choice of the convex function g.

Corollary 1. Let {W (k)} be an adapted chain that admits an absolute probability process

{π(k)}. Then, for any dynamics {x(k)} driven by {W (k)} and for any convex function g : R→

R, the limit limk→∞ Vg,π(x(k), k) exists almost surely.

C. Time-varying Quadratic Lyapunov Function

In the sequel, we focus on the particular choice of function g(s) = s2 in relation (3). For

convenience, we let

Vπ(x, k) =
m∑
i=1

πi(k)(xi − πT (k)x)2 =
m∑
i=1

πi(k)x2
i − (πT (k)x)2.

For this function, we can provide a lower bound for the decrease of the conditional expectations

E[Vg(x(k + 1), k + 1) | Fk], which is exact under certain conditions.

Theorem 3. Let {W (k)} be an adapted random chain with an absolute probability process

{π(k)}. Then, for any dynamics {x(k)} driven by {W (k)}, we have almost surely

E[Vπ(x(k + 1), k + 1) | Fk] ≤ Vπ(x(k), k)−
∑
i<j

Hij(k)(xi(k)− xj(k))2 for all k ≥ t0,

where H(k) = E
[
W T (k + 1)diag(π(k + 1))W (k + 1) | Fk

]
with diag(v) denoting the diagonal

matrix induced by a vector v (i.e., with components vi on the main diagonal), and
∑

i<j =∑m
i=1

∑m
j=i+1. Furthermore, if πT (k + 1)W (k + 1) = πT (k) almost surely, then the inequality

holds as an equality.
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Proof: We have for all k ≥ t0,

Vπ(x(k), k) =
m∑
i=1

πi(k)x2
i (k)− (πT (k)x(k))2 = xT (k)diag(π(k))x(k)− (πT (k)x(k))2. (5)

Thus, by letting ∆(x(k), k) = Vπ(x(k), k)− Vπ(x(k + 1), k + 1) and using x(k + 1) = W (k +

1)x(k), we obtain for all k ≥ t0,

∆(x(k), k) = xT (k)diag(π(k))x(k)− (πT (k)x(k))2

−
{
xT (k + 1)diag(π(k + 1))x(k + 1)− (πT (k + 1)x(k + 1))2

}
= xT (k)

[
diag(π(k))−W T (k + 1)diag(π(k + 1))W (k + 1)

]
x(k)

+
{

(πT (k + 1)x(k + 1))2 − (πT (k)x(k))2
}

= xT (k)L(k)x(k) +
{

(πT (k + 1)x(k + 1))2 − (πT (k)x(k))2
}
,

where L(k) = diag(π(k))−W T (k + 1)diag(π(k + 1))W (k + 1).

Note that the sequence {πT (k)x(k)} is a martingale, implying that {−(πT (k)x(k))2} is a

super-martingale. Thus, by taking the conditional expectation on both sides of the preceding

equality and noticing that x(k) is measurable with respect to Fk, we have almost surely

E[∆(x(k), k) | Fk] ≥ E
[
xT (k)L(k)x(k) | Fk

]
= xT (k)E[L(k) | Fk]x(k) for all k ≥ t0. (6)

Further, letting e ∈ Rm be the vector with all components equal to 1, from the definition of

L(k) we almost surely have for all k ≥ t0:

E[L(k) | Fk] e = E
[
diag(π(k))e−W T (k + 1)diag(π(k + 1))W (k + 1)e | Fk

]
= π(k)− E

[
W T (k + 1)π(k + 1) | Fk

]
= 0,

which holds since W (k) is stochastic almost surely and {π(k)} is an absolute probability

process for {W (k)}. Thus, the random matrix E[L(k) | Fk] is symmetric and E[L(k) | Fk] e = 0

almost surely. It can be shown that for a symmetric matrix A with Ae = 0, we have xTAx =

−
∑

i<j Aij(xi − xj)2. Then, it follows that almost surely

xT (k)E[L(k) | Fk]x(k) = −
∑
i<j

Hij(k)(xi(k)− xj(k))2,

where H(k) = E
[
W T (k + 1)diag(π(k + 1))W (k + 1) | Fk

]
. Using this relation in inequality (6),

we conclude that almost surely

E[Vπ(x(k + 1), k + 1) | Fk] ≤ Vπ(x(k), k)−
∑
i<j

Hij(k)(xi(k)− xj(k))2 for all k ≥ t0. (7)
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In the proof of inequality (7), the inequality sign appears due to relation (6) only. If πT (k +

1)W (k+ 1) = πT (k)W (k) almost surely, then we have πT (k+ 1)x(k+ 1) = πT (k)x(k) almost

surely. Thus, relation (6) holds as an equality and, consequently, so does relation (7).

One of the important implications of Theorem 3 is the following result.

Corollary 2. Let {W (k)} be an adapted random chain that admits an absolute probability

process {π(k)}. Then, for any random dynamics {x(k)} driven by {W (k)}, we have for all

t0 ≥ 0,

E

[
∞∑
k=t0

∑
i<j

Lij(k) (xi(k)− xj(k))2

]
≤ E[Vπ(x(t0), t0)] <∞,

where L(k) = W T (k + 1)diag(π(k + 1))W (k + 1).

Proof: By taking expectation on both sides of the relation in Theorem 3, we obtain for all

k ≥ t0:

E[Vπ(x(k + 1), k + 1)] ≤ E[Vπ(x(k), k)]− E

[∑
i<j

E[Lij(k) | Fk] (xi(k)− xj(k))2

]
. (8)

Since x(k) is measurable with respect to Fk, it follows that

E[Lij(k) | Fk] (xi(k)− xj(k))2 = E
[
Lij(k)(xi(k)− xj(k))2 | Fk

]
= E

[
Lij(k)(xi(k)− xj(k))2

]
.

Using this relation in Eq. (8), we see that for all k ≥ t0:

E[Vπ(x(k + 1), k + 1)] ≤ E[Vπ(x(k), k)]− E

[∑
i<j

Lij(k)(xi(k)− xj(k))2

]
.

Hence,
∑∞

k=t0
E
[∑

i<j Lij(k)(xi(k)− xj(k))2
]
≤ E[Vπ(x(t0), t0)] for any t0 ≥ 0.

IV. CLASS P∗

In this section, we introduce a class of random chains, which we refer to as the class P∗,

and we prove one of the central results of this work. In particular, we show that the claim of

Theorem 1 holds for any chain that is in the class P∗ and satisfies some form of aperiodicity.

Definition 3. The class P∗ is the class of random adapted chains that admit an absolute

probability process {π(k)} which is uniformly bounded away from zero almost surely, i.e.,

πi(k) ≥ p∗ almost surely for some scalar p∗ > 0, and for all k ≥ 0 and all i ∈ [m]. We

write this concisely as {π(k)} ≥ p∗ > 0.
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It may appear that the definition of the class P∗ is a rather restrictive. Later on, we show that

in fact the class P∗ contains a broad family of deterministic and random chains.

To establish the main result of this section, we make use of the following intermediate result.

Lemma 3. Let {A(k)} be a deterministic chain with the infinite flow graph G∞ = ([m], E∞).

Let (t0, v) ∈ Z+ × Rm be an initial point for the dynamics driven by {A(k)}. If

lim
k→∞

(xi0(k)− xj0(k)) 6= 0,

for some i0, j0 belonging to the same connected component of G∞, then we have
∞∑
k=t0

∑
i<j

[(Aij(k + 1) + Aji(k + 1))(xi(k)− xj(k))2] =∞.

Proof: Let i0 and j0 be in the same connected component of G∞ and such that

lim sup
k→∞

(xi0(k)− xj0(k)) = α > 0.

Without loss of generality we may assume that x(t0) ∈ [−1, 1]m, for otherwise we can consider

the dynamics started at y(t0) = 1
‖x(t0)‖∞x(t0). Let S be the vertex set of the connected component

in G∞ containing i0, j0, and without loss of generality assume that S = {1, 2, . . . , q} for some

q ∈ [m], q ≥ 2. Then, by the definition of the infinite flow graph, there exists a large enough

K ≥ t0 such that
∞∑
k=K

AS(k + 1) ≤ α

32q
,

where AS(k+1) = ASS̄(k+1)+AS̄S(k+1). Furthermore, since lim supk→∞ (xi0(k)− xj0(k)) =

α > 0, there exists a time instance t1 ≥ K such that xi0(t1)− xj0(t1) ≥ α
2

.

Let σ : [q]→ [q] be a permutation such that xσ(1)(t1) ≥ xσ(2)(t1) ≥ · · · ≥ xσ(q)(t1), i.e. σ is an

ordering of {xi(t1) | i ∈ [q]}. Since xi0(t1)−xj0(t1) ≥ α
2

, it follows that xσ(1)(t1)−xσ(q)(t1) ≥ α
2

and, therefore, there exists ` ∈ [q] such that xσ(`)(t1)− xσ(`+1)(t1) ≥ α
2q

. Let

T1 = arg min
t>t1

t∑
k=t1

∑
i,j∈[q]

i≤`,`+1≤j

(Aσ(i)σ(j)(k + 1) + Aσ(j)σ(i)(k + 1)) ≥ α

32q
.

Since S is a connected component of the infinite flow graph G∞, we must have T1 < ∞;

otherwise, S could be decomposed into two disconnected components {σ(1), . . . , σ(l)} and

{σ(l + 1), . . . , σ(q)}.
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Now, let R = {σ(1), . . . , σ(l)}. We have for any k ∈ [t1, T1]:

T1−1∑
k=t1

AR(k + 1) =

T1−1∑
k=t1

 ∑
i,j∈[q]

i leq`,`+1≤j

(Aσ(i)σ(j)(k + 1) + Aσ(j)σ(i)(k + 1))

+
∑

i≤`,j∈S̄

Aσ(i)j(k + 1) +
∑

i∈S̄,j≤l

Aiσ(j)(k + 1)


≤

T1−1∑
k=t1

∑
i,j∈[q]

i≤`,`+1≤j

(Aσ(i)σ(j)(k + 1) + Aσ(j)σ(i)(k + 1)) +
∞∑
k=K

AS(k + 1) ≤ α

16q
,

which follows by the definition of T1 and the choice of t1 ≥ K. By Lemma 1 in [32], it follows

that for k ∈ [t1, T1],

max
i∈R

xi(k) ≤ max
i∈R

xi(t1) + 2
α

16q
, min

i∈S\R
xi(k) ≥ min

i∈S\R
xi(t1)− 2

α

16q
.

Thus, for any i, j ∈ [q] with i ≤ l and j ≥ l + 1, and for any k ∈ [t1, T1], we have

xσ(i)(k)− xσ(j)(k) ≥ 2

(
2
α

16q

)
=

α

4q
.

Therefore,
T1∑
k=t1

∑
i,j∈[q]

i≤`,`+1≤j

(Aσ(i)σ(j)(k + 1) + Aσ(j)σ(i)(k + 1))(xσ(i)(k)− xσ(j)(k))2

≥ (
α

4q
)2

T1∑
k=t0

∑
i,j∈[q]

i≤l,j≥l+1

(Aσ(i)σ(j)(k + 1) + Aσ(j)σ(i)(k + 1)) ≥
(
α

4q

)2
α

32q
= β > 0.

Further, it follows that:
T1∑
k=t1

∑
i<j

(Aij(k + 1) + Aji(k + 1))(xi(k)− xj(k))2

≥
T1∑
k=t1

∑
i,j∈[q]

i≤`,`+1≤j

(Aσ(i)σ(j)(k + 1) + Aσ(j)σ(i)(k + 1))(xσ(i)(k)− xσ(j)(k))2 ≥ β.

Since lim supk→∞ (xi0(k)− xj0(k)) = α > 0, there exists a time t2 > T1 such that xi0(t2)−

xj0(t2) ≥ α
2

. Then, using the above argument, there exists T2 > t2 such that
∑T2

k=t2

∑
i<j(Aij(k+

1) + Aji(k + 1))(xi(k)− xj(k))2 ≥ β. Hence, using the induction, we can find time instances

· · · > Tξ+1 > tξ+1 > Tξ > tξ > Tξ−1 > tξ−1 > · · · > T1 > t1 ≥ t0,
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such that
∑Tξ

k=tξ

∑
i<j(Aij(k+1)+Aji(k+1))(xi(k)−xj(k))2 ≥ β for any ξ ≥ 1. The intervals

[tξ, Tξ] are non-overlapping subintervals of [t0,∞), implying that
∞∑
k=t0

∑
i<j

(Aij(k + 1) + Aji(k + 1))(xi(k)− xj(k))2 =∞.

For our main result, let us define the weak aperiodicity for an adapted random chain.

Definition 4. We say that an adapted random chain {W (k)} is weakly aperiodic if for some

γ > 0, and for all distinct i, j ∈ [m] and all k ≥ 0,

E
[
W iT (k + 1)W j(k + 1) | Fk

]
≥ γE[Wij(k + 1) +Wji(k + 1) | Fk] .

Now, we establish the main result of this section.

Theorem 4. Let {W (k)} ∈ P∗ be an adapted chain that is weakly aperiodic. Then, limk→∞W (k :

t0) = W (∞ : t0) exists almost surely for any t0 ≥ 0. Moreover, the event under which

Wi(∞ : t0) = Wj(∞ : t0) for all t0 ≥ 0 is almost surely equal to the event that i, j are

belonging to the same connected component of the infinite flow graph of {W (k)}.

Proof: Since {W (k)} is in P∗, {W (k)} admits an absolute probability process {π(k)} such

that {π(k)} ≥ p∗ > 0 almost surely. Thus, it follows that

p∗E
[
W T (k + 1)W (k + 1) | Fk

]
≤ E

[
W T (k + 1)diag(π(k + 1))W (k + 1) | Fk

]
= H(k + 1).

On the other hand, by the weak aperiodicity, we have

γE[Wij(k + 1) +Wji(k + 1) | Fk] ≤ E
[
W iT (k + 1)W j(k + 1) | Fk

]
,

for some γ ∈ (0, 1] and for all distinct i, j ∈ [m]. Thus, we have p∗γE[Wij(k + 1) +Wji(k + 1) | Fk] ≤

Hij(k + 1). By Corollary 2, for the random dynamics {x(k)} driven by {W (k)} and started at

arbitrary (t0, v) ∈ Z+ × Rm, it follows that

p∗γ
∞∑
k=t0

E

[∑
i<j

(Wij(k) +Wji(k))(xi(k)− xj(k))2

]
≤ E[Vπ(x(t0), t0)] .

As a consequence,
∞∑
k=t0

∑
i<j

(Wij(k) +Wji(k))(xi(k)− xj(k))2 <∞ almost surely.
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Therefore, by Lemma 3, we conclude that limk→∞ (xi(k, ω)− xj(k, ω)) = 0 for any i, j belong-

ing to the same connected component of G∞(ω), for almost all ω ∈ Ω. By Lemma 2 it follows

that every index i ∈ [m] is ergodic for almost all ω ∈ Ω. By considering the initial conditions

(t0, e`) ∈ Z+ × Rm for all ` ∈ [m], the assertion follows.

Theorem 4 shows that the dynamics in (2) is convergent almost surely for aperiodic chains

{W (k)} ∈ P∗. Moreover, the theorem also characterizes the limiting points of such a dynamics

as well as the limit matrices of the products W (k : t0) as k →∞.

V. BALANCED CHAINS

In this section, we characterize a subclass of P∗ chains, namely the class of strongly aperiodic

balanced chains. We first show that this class includes many of the chains that have been

studied in the existing literature. Then, we prove that any aperiodic balanced chain belongs to

the class P∗. We also show that a balanced independent random chain is strongly aperiodic, thus

concluding Theorem 1.

Before continuing our analysis on balanced chains, let us discuss some of the well-known

subclasses of such chains:

1) Balanced Bidirectional Chains: We say that an independent chain {W (k)} is a balanced

bidirectional chain if there exists some α > 0 such that E[Wij(k)] ≥ αE[Wji(k)] for all

k ≥ 1 and i, j ∈ [m]. These chains are in fact balanced, since for any S ⊂ [m] we have:

E[WSS̄(k)] = E

 ∑
i∈S,j∈S̄

Wij(k)

 ≥ E

 ∑
i∈S,j∈S̄

αWji(k)

 = αE[WS̄S(k)] .

Examples of such chains are bounded bidirectional deterministic chains, which are the

chains such that Aij(k) > 0 implies Aji(k) > 0 for all i.j ∈ [m] and all k ≥ 1, and

the positive entries are uniformly bounded from below by some γ > 0 (i.e., Aij(k) > 0

implies Aij(k) ≥ γ for all i, j ∈ [m] and all k ≥ 1). In this case, for Aij(k) > 0, we have

Aij(k) ≥ γ ≥ γAji(k) and for Aij(k) = 0, we have Aji(k) = 0 and, hence, in either of the

cases Aij(k) ≥ γAji(k). Therefore, bounded bidirectional chains are examples of balanced

bidirectional chains. Such chains have been considered in [15], [1], [4] and, among others,

include the Hegselman-Krause model for opinion dynamics [13], [8].

2) Chains with Common Steady State π > 0: This ensemble consists of independent random

chains {W (k)} such that E
[
πTW (k)

]
= E

[
πT (k)

]
for some stochastic vector π > 0 and
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all k ≥ 1, which are generalizations of doubly stochastic chains, where we have π = 1
m
e (e

is a vector of ones). Doubly stochastic chains and the chains with a common steady state

π > 0 have been studied in [19], [32], [30].

To show that a chain with a common steady state π > 0 is a balanced chain, let us prove the

following lemma.

Lemma 4. Let A be a stochastic matrix and π > 0 be a stochastic left-eigenvector of A

corresponding to the unit eigenvalue, i.e., πTA = πT . Then, ASS̄ ≥ πmin

πmax
AS̄S for any non-trivial

S ⊂ [m], where πmax = maxi∈[m] πi and πmin = mini∈[m] πi.

Proof: Let S ⊂ [m]. Since πTA = πT , we have∑
j∈S

πj =
∑

i∈[m],j∈S

πiAij =
∑

i∈S,j∈S

πiAij +
∑

i∈S̄,j∈S

πiAij. (9)

On the other hand, since A is a stochastic matrix, we have πi
∑

j∈[m] Aij = πi. Therefore,∑
i∈S

πi =
∑
i∈S

πi
∑
j∈[m]

Aij =
∑

i∈S,j∈S

πiAij +
∑

i∈S,j∈S̄

πiAij. (10)

Comparing Eq. (9) and Eq. (10), we see that
∑

i∈S̄,j∈S πiAij =
∑

i∈S,j∈S̄ πiAij . Therefore,

πminAS̄S ≤
∑

i∈S̄,j∈S

πiAij =
∑

i∈S,j∈S̄

πiAij ≤ πmaxASS̄.

Hence, we have ASS̄ ≥ πmin

πmax
AS̄S for any non-trivial S ⊂ [m].

The above lemma shows that a chain with a common steady state π > 0 is balanced with

balancedness coefficient α = πmin

πmax
. In fact, the lemma yields a much more general result, as

provided below.

Theorem 5. Let {W (k)} be an independent random chain with a sequence {π(k)} of stochastic

left-eigenvectors for the expected chain corresponding to the unit eigenvalue, i.e., πT (k)E[W (k)] =

πT (k) for all k ≥ 1. If {π(k)} ≥ p∗ for some scalar p∗ > 0, then {W (k)} is a balanced chain

with a balancedness coefficient α = p∗

1−(m−1)p∗
.

Proof: Since πT (k)E[W (k)] = πT (k) for all k ≥ 1, by Lemma 4 we have

E[WSS̄(k)] ≥ πmin(k)

πmax(k)
E[WS̄S(k)] for any non-trivial S ⊂ [m] and all k ≥ 1,
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By {π(k)} ≥ p∗ > 0, it follows thatπmin(k) ≥ p∗ for all k ≥ 1. Since π(k) is a stochastic vector,

it further follows πmax(k) ≤ 1− (m− 1)πmin(k) ≤ 1− (m− 1)p∗. Therefore, for all k ≥ 1,

E[WSS̄(k)] ≥ πmin(k)

πmax(k)
E[WS̄S(k)] ≥ p∗

1− (m− 1)p∗
E[WS̄S(k)] ,

for any non-trivial S ⊂ [m]. Thus, {W (k)} is balanced with a balancedness coefficient α =

p∗

1−(m−1)p∗
.

Theorem 5 not only characterizes a class of balanced chains, but it also provides an alternative

characterization of the balancedness for these chains. Thus, instead of verifying Definition 1 for

every nontrivial subset S ⊂ [m], for balancedness of independent random chains, it suffices to

find a sequence {π(k)} of stochastic (unit) left-eigenvectors of the expected chain {E[W (k)]}

such that the entries of the sequence do not vanish as time goes to infinity.

A. Absolute Probability Sequence for Balanced Chains

In this section, we show that any independent random chain that is strongly aperiodic and

balanced must be in the class P∗. The road map to prove this result is as follows: we first show

that this result holds for deterministic chains with uniformly bounded positive entries. Then, using

this result and geometric properties of the set of strongly aperiodic balanced chains, we prove the

statement for deterministic chains, which immediately implies the result for independent random

chains. To show the result for deterministic chains with uniformly bounded positive entries, we

employ the technique that is used to prove Proposition 4 in [15]. However, the argument given

in [15] needs some extensions to fit in our more general assumption of balanced-ness.

Let {A(k)} be a deterministic chain of stochastic matrices. Let Sj(k) be the set of indices

corresponding to the positive entries in the jth column of A(k : 0), i.e.,

Sj(k) = {` ∈ [m] | A`j(k : 0) > 0} for all j ∈ [m] and all k ≥ 0.

Also, let µj(k) be the minimum value of these positive entries, i.e.,

µj(k) = min
`∈Sj(k)

A`j(k : 0) > 0.

Lemma 5. Let {A(k)} be a strongly aperiodic balanced chain such that the positive entries in

each A(k) are uniformly bounded from below by a scalar γ > 0. Then, Sj(k) ⊆ Sj(k + 1) and

µj(k) ≥ γ|Sj(k)|−1 for all j ∈ [m] and k ≥ 0.
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Proof: Let j ∈ [m] be arbitrary but fixed. By induction on k, we prove that Sj(k) ⊆ Sj(k+1)

for all k ≥ 0 as well as the desired relation for µj(k). For k = 0, we have A(0 : 0) = I by the

definition, so Sj(0) = {j}. Then, A(1 : 0) = A(1) and by the strongly aperiodic assumption on

the chain {A(k)} we have Ajj(1) ≥ γ, implying {j} = Sj(0) ⊆ Sj(1). Furthermore, we have

|Sj(0)| − 1 = 0 and µj(0) = 1 = γ0. Hence, the claim is true for k = 0.

Now suppose that the claim is true for some k ≥ 0, and consider k + 1. Then, for any

i ∈ Sj(k), we have:

Aij(k + 1 : 0) =
m∑
`=1

Ai`(k + 1)A`j(k : 0) ≥ Aii(k + 1)Aij(k : 0) ≥ γµj(k) > 0.

Thus, i ∈ Sj(k + 1), implying Sj(k) ⊆ Sj(k + 1).

To show the relation for µj(k + 1), we consider two cases:

Case ASj(k)S̄j(k)(k + 1) = 0: In this case for any i ∈ Sj(k), we have:

Aij(k + 1 : 0) =
∑

`∈Sj(k)

Ai`(k)A`j(k : 0) ≥ µj(k)
∑

`∈Sj(k)

Ai`(k + 1) = µj(k), (11)

where the inequality follows from i ∈ Sj(k) and ASj(k)S̄j(k)(k + 1) = 0, and the definition of

µj(k). Furthermore, by the balancedness of A(k) and ASj(k)S̄j(k)(k + 1) = 0, it follows that

0 = ASj(k)S̄j(k)(k + 1) ≥ αAS̄j(k)Sj(k)(k + 1) ≥ 0. Hence, AS̄j(k)Sj(k)(k + 1) = 0. Thus, for any

i ∈ S̄j(k), we have

Aij(k + 1 : 0) =
m∑
`=1

Ai`(k + 1)A`j(k : 0) =
∑

`∈S̄j(k)

Ai`(k + 1)A`j(k : 0) = 0,

where the second equality follows from A`j(k : 0) = 0 for all ` ∈ S̄j(k). Therefore, in this case

we have Sj(k+1) = Sj(k), which by (11) implies µj(k+1) ≥ µj(k). In view of Sj(k+1) = Sj(k)

and the inductive hypothesis, we further obtain

µj(k) ≥ γ|Sj(k)|−1 = γ|Sj(k+1)|−1,

implying µj(k + 1) ≥ γ|Sj(k+1)|−1.

Case ASj(k)S̄j(k)(k + 1) > 0: Since the chain is balanced, we have

AS̄j(k)Sj(k)(k + 1) ≥ αASj(k)S̄j(k)(k + 1) > 0,

implying that AS̄j(k)Sj(k)(k) > 0. Therefore, by the uniform boundedness of {A(k)}, there exists

ξ̂ ∈ S̄j(k) and ˆ̀∈ Sj(k) such that Aξ̂ ˆ̀(k + 1) ≥ γ. Hence, we have

Aξ̂j(k + 1 : 0) ≥ Aξ̂ ˆ̀(k + 1)Aˆ̀j(k : 0) ≥ γµj(k) = γ|Sj(k)|,



20

where the equality follows by the induction hypothesis. Thus, ξ̂ ∈ Sj(k + 1) while ξ̂ 6∈ Sj(k),

which implies |Sj(k + 1)| ≥ |Sj(k)| + 1. This, together with Aξ̂j(k + 1 : 0) ≥ γ|Sj(k)|, yields

µj(k + 1) ≥ γ|Sj(k)| ≥ γ|Sj(k+1)|−1.

The bound on µj(k) of Lemma 5 implies that the bound for the nonnegative entries given in

Proposition 4 of [15] can be reduced from γm
2−m+2 to γm−1.

Note that Lemma 5 holds for products A(k : t0) starting with any t0 ≥ 0, (with appropriately

defined Sj(k) and µj(k)). An immediate corollary of Lemma 5 is the following result.

Corollary 3. Under the assumptions of Lemma 5, we have for all k > t0 ≥ 0,

1

m
eTA(k : t0) ≥ min(

1

m
, γm−1)eT ,

where e is the vector of ones and the inequality is to be understood entry-wise.

Proof: Without loss of generality, let us assume that t0 = 0. Then, by Lemma 5 we have
1
m
eTAj(k : 0) ≥ 1

m
|Sj(k)|γ|Sj(k)|−1 for any j ∈ [m], where Aj denotes the jth column of A.

For γ ∈ [0, 1], the function t 7→ tγt−1 defined on [1,m] attains its minimum at either t = 1 or

t = m. Therefore, 1
m
eTA(k : 1) ≥ min( 1

m
, γm−1)eT .

Now, we relax the assumption on the bounded entries in Corollary 3.

Theorem 6. Let {A(k)} be a balanced and strongly aperiodic chain. Then, there is a scalar

γ ∈ (0, 1] such that 1
m
eTA(k : 0) ≥ min( 1

m
, γm−1)eT for all k ≥ 1.

Proof: Let α > 0 be a balancedness coefficient for {A(k)} and let Aii(k) ≥ β > 0 for

all i ∈ [m] and k ≥ 1. Further, let Bα,β be the set of balanced matrices with the balancedness

coefficient α and strongly aperiodic matrices with a coefficient β > 0, i.e.,

Bα,β :=
{
Q ∈ Rm×m | Q ≥ 0, Qe = e, (12)

QSS̄ ≥ αQS̄S for all non-trivial S ⊂ [m], Qii ≥ β for all i ∈ [m]} .

The description in relation (12) shows that Bα,β is a bounded polyhedral set in Rm×m. Let

{Q(ξ) ∈ Bα,β | ξ ∈ [nα,β]} be the set of extreme points of this polyhedral set indexed by the

positive integers between 1 and nα,β, which is the total number of extreme points of Bα,β .

Since A(k) ∈ Bα,β for all k ≥ 1, we can write A(k) as a convex combination of the extreme
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points in Bα,β , i.e., there exist coefficients λξ(k) ∈ [0, 1] such that

A(k) =

nα,β∑
ξ=1

λξ(k)Q(ξ) with
nα,β∑
ξ=1

λξ(k) = 1. (13)

Now, consider the following independent random matrix process defined by:

W (k) = Q(ξ) with probability λξ(k) for all k ≥ 1.

In view of this definition any sample path of {W (k)} consists of extreme points of Bα,β . Thus,

every sample path of {W (k)} has a coefficient bounded by the minimum positive entry of the

matrices in {Q(ξ) ∈ Bα,β | ξ ∈ [nα,β]}, denoted by γ = γ(α, β) > 0, where γ > 0 since nα,β is

finite. Therefore, by Corollary 3, we have 1
m
eTW (k : t0) ≥ min( 1

m
, γm−1)eT for all k > t0 ≥ 0.

Furthermore, by Eq. (13) we have E[W (k)] = A(k) for all k ≥ 1, implying

1

m
eTA(k : t0) =

1

m
eTE[W (k : t0)] ≥ min

(
1

m
, γm−1

)
eT ,

which follows from {W (k)} being independent.

Based on the above results, we are ready to prove the main result for deterministic chains.

Theorem 7. Any balanced and strongly aperiodic chain {A(k)} is in the class P∗.

Proof: As pointed out in [12] for any chain {A(k)}, there exists a sequence {tr} of time

indices, such that for all k ≥ 0, limr→∞A(tr : k) = Q(k) exists and, for any stochastic vector

π ∈ Rm, the sequence {QT (k)π} is an absolute probability sequence for {A(k)}. Since {A(k)}

is a balanced and strongly aperiodic chain, by Theorem 6 it follows that

1

m
eTQ(k) =

1

m
lim
r→∞

eTA(tr : k) ≥ p∗eT for all k ≥ 0,

with p∗ = min( 1
m
, γm−1) > 0. Thus, { 1

m
eTQ(k)} is a uniformly bounded absolute probability

sequence for {A(k)}.

The main result of this section follows immediately from Theorem 7.

Theorem 8. Any balanced and strongly aperiodic independent random chain is in the class P∗.

Proof: The proof follows immediately by noticing that, for an independent random chain,

{W (k)}, any absolute probability sequence for the expected chain {E[W (k)]} is an absolute

probability process for {W (k)}.
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As a result of Theorem 8 and Theorem 4, the proof of Theorem 1 follows immediately. In

particular by Theorem 8, any independent random chain that is balanced and strongly aperiodic

belongs to the class P∗. Thus, the result follows by Theorem 4.

VI. CONNECTION TO NON-NEGATIVE MATRIX THEORY

In this section, we show that Theorem 1 is a generalization of the following well-known result

in the non-negative matrix theory which plays a central role in the theory of ergodic Markov

chains.

Lemma 6. ([14], page 46) For an aperiodic and irreducible stochastic matrix A, the limit

limk→∞A
k exists and it is equal to a rank one stochastic matrix.

Recall that a stochastic matrix A is irreducible if there is no permutation matrix P such that

P TAP =

 X Y

0 Z

 ,
where X, Y, Z are i× i, i× (m− i), and (m− i)× (m− i) matrices for some i ∈ [m− 1] and

0 is the (m− i)× i matrix with all entries equal to zero.

Let us reformulate irreducibility using the tools we have developed in this paper.

Lemma 7. A stochastic matrix A is an irreducible matrix if and only if the static chain {A} is

balanced and its infinite flow graph is connected.

Proof: By the definition, a matrix A is irreducible if there is no permutation matrix P such

that

P TAP =

 X Y

0 Z

 .
Since A is a non-negative matrix, we have that A is reducible if and only if there exists a subset

S = {1, . . . , i} for some i ∈ [m− 1], such that

0 = [P TAP ]S̄S =
∑

i∈S̄,j∈S

ei[P
TAP ]ej =

∑
i∈S̄,j∈S

Aσiσj =
∑

i∈R̄,j∈R

Aij,

where σi = {j ∈ [m] | Pei = ej} (which is a singleton since P is a permutation matrix) and

R = {σi | i ∈ S}. Thus, A is irreducible if and only if ASS̄ > 0 for all non-trivial S ⊂ [m].
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Therefore, by letting

α = min
S⊂[m]
S 6=∅

ASS̄
AS̄S

,

and noting that α > 0, we conclude that {A} is balanced with a balancedness coefficient α.

Furthermore, since ASS̄ +AS̄S ≥ ASS̄ > 0 for all nontrivial S ⊂ [m], it follows that the infinite

flow graph of {A} is connected.

Now, suppose that {A} is balanced and its infinite flow graph of {A} is connected. Then,

ASS̄ > 0 or AS̄S > 0 for all non-trivial S ⊂ [m]. By the balancedness of the chain it follows

that min(ASS̄, AS̄S) > 0 for any non-trivial S ⊂ [m], implying that A is irreducible.

Note that for an aperiodic A, we can always find some h ≥ 1 such that Ahii ≥ γ > 0 for

all i ∈ [m]. Thus, based on Theorem 1, we have the following extension of Lemma 6 for

independent random chains.

Theorem 9. Let {W (k)} be a balanced and strongly aperiodic independent random chain with

a connected infinite flow graph. Then, for any t0 ≥ 0, the product W (k : t0) converges to a rank

one stochastic matrix almost surely (as k goes to infinity). Moreover, if {W (k)} does not have

the infinite flow property, the product W (k : t0) almost surely converges to a (random) matrix

that has rank at most τ for any t0 ≥ 0, where τ is the number of connected components of the

infinite flow graph of {E[W (k)]}.

Proof: The result follows immediately from Theorem 1.

An immediate consequence of Theorem 9 is a generalization of Lemma 6 to inhomogeneous

chains.

Corollary 4. Let {A(k)} be a balanced and strongly aperiodic stochastic chain. Then, A(∞ :

t0) = limk→∞A(k : t0) exists for all t0 ≥ 0. Moreover, A(∞ : t0) is a rank one matrix for all

t0 ≥ 0 if and only if the infinite flow graph of {A(k)} is connected.

VII. CONCLUSION

In this paper we studied the limiting behavior of the products of random stochastic matrices

from the dynamic system point of view. We showed that any dynamics driven by such products

admits time-varying Lyapunov functions. Then, we defined a class P∗ of random chains which

possess a well-behaved limits. We have introduced balanced chains and discussed how many
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of the previously well-studied random chains are examples of such chains. We have established

a general stability result for product of random stochastic matrices and showed that this result

extends a classical convergence result for time-homogeneous irreducible and aperiodic Markov

chains.
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