Oblivious Equilibrium for General Stochastic Games with Many Players

Vineet Abhishek1, Sachin Adlakha2, Ramesh Johari3 and Gabriel Weintraub4

1) Department of Electrical Engineering, Stanford University.
2) Department of Electrical Engineering, Stanford University.
3) Department of Management Science and Engineering, Stanford University.
4) Columbia Business School, Columbia University.
Introduction

• We study a solution of large stochastic games.

• A common equilibrium notion for stochastic games is *Markov perfect equilibrium (MPE)*.

• In MPE, strategies of players depend on the current state of *all* players.

• MPE is used extensively in economics literature to study models of industry dynamics [Ericson and Pakes].
Related Work

• MPE is typically obtained numerically using dynamic programming.

• MPE computation is intractable for large problems [Pakes and McGuire].

• *Oblivious Equilibrium (OE)* was proposed for approximating MPE [Weintraub et al].

• In OE, a firm’s strategy depends only on its state and the long run average behavior of the industry.

• Oblivious equilibrium computation is significantly simpler than MPE.
Contributions

- The concept of OE was developed for an industry specific model and dynamics.

- We generalize the concept of OE solution for general class of stochastic games.
 - We have a more general action dependent payoff function.
 - We allow the possibility of heterogeneity in state evolution and payoff function.

- We isolate a set of parsimonious assumptions under which OE is a good approximation to MPE.
Model

- Consider an m player stochastic game evolving over infinite horizon.

- Let $x_{i,t}$ be the state and $a_{i,t}$ be the action taken by player i at time t.

- State evolution of a player i is given by a conditional probability mass function as:

 $$x_{i,t+1} \sim h^{\theta_i}(x | x_{i,t}, a_{i,t})$$

 where θ_i is the type of the player.

- The single period payoff of a player i given as

 $$\pi^{\theta_i} (x_{i,t}, a_{i,t}, f_{-i,t}(m), m),$$

 where, $f_{-i,t}(y)$ is the fraction of the players excluding player i that have their state as y.
Markov Perfect Equilibrium (MPE)

- Each player chooses an action $a_{i,t} = \mu_{m,\theta_i}(x_{i,t}, f_{-i,t})$ to maximize its expected present value.

- Value function for a player i under a vector of control policy μ^m is given as

$$V_{\theta_i}^j(x, f, m| \mu^{m, \theta_i}, \mu^{m}_{-i}) \triangleq \mathbb{E} \left[\sum_{\tau=t}^{\infty} \beta^{\tau-t} \pi_{\theta_i}^{j}(x_{i,\tau}, a_{i,\tau}, f_{-i,\tau}^{(m)}, m) \bigg| x_{i,t} = x, f_{-i,t}^{(m)} = f \right]$$

where $0 < \beta < 1$ is the discount factor.

- The vector of policies μ^m is an MPE if for all j, and $\mu' \in \mathcal{M}_{\theta_i}^j$, we have

$$\sup_{\mu'} V_{\theta_j}^j (x, f, m| \mu', \mu^m_{-j}) = V_{\theta_j}^j (x, f, m| \mu^{m, \theta_j}, \mu^{m}_{-j}) \ \forall x, f.$$

- We focus on symmetric MPE, i.e., all players with same type θ use the same policy $\mu^{m, \theta}$.
Oblivious Equilibrium (OE)

- In OE, a player i chooses a policy $\tilde{\mu}^{m,\theta_i}$ that depends only on its current state and the average aggregate state of its competitors.

- Let $\tilde{f}^{(m)}$ denote the long-run average aggregate state of competitors and is defined as

$$\tilde{f}^{(m)}(y) \triangleq \mathbb{E} \left(f^{(m)}_{-i}(y) \right) = \frac{1}{m - 1} \sum_{j \neq i} q^{\mu^{m,\theta_j}}(y).$$

- We assume that the initial state of player i is sampled from the stationary distribution $q^{\tilde{\mu}^{m,\theta_i}}$.
Oblivious Equilibrium

- **Oblivious value function** for player i is defined as

$$
\tilde{V}^\theta_i(x, m|\tilde{\mu}^{m,\theta_i}, \tilde{\mu}^{-i}_m) \triangleq E \left[\sum_{\tau=t}^{\infty} \beta^{\tau-t} \pi^\theta_i (x_{i,\tau}, a_{i,\tau}, \tilde{f}^{(m)}_{-i}, m) \mid x_{i,t} = x; \tilde{\mu}^{m,\theta_i} \right].
$$

- The vector of policies $\tilde{\mu}^m$ represents an **oblivious equilibrium** if for all j, and $\mu' \in \tilde{M}^\theta_j$, we have

$$
\sup_{\mu'} \tilde{V}^\theta_j (x, m| \mu', \tilde{\mu}^-_m) = \tilde{V}^\theta_j (x, m| \tilde{\mu}^{m,\theta_j}, \tilde{\mu}^-_m), \ \forall x.
$$

Here \tilde{M}^θ is the set of all oblivious policies available to a player of type θ.
Asymptotic Markov Property (AME)

- The AME property says that oblivious policy is approximately optimal when compared against Markov policy.

- A sequence of oblivious policies $\tilde{\mu}_m$ possesses the asymptotic Markov equilibrium (AME) property if for all x and i, and $\mu' \in M^{\theta_i}$, we have

$$\lim_{m \to \infty} \mathbb{E} \left[\sup_{\mu'} V^{\theta_i}(x, f, m \mid \mu', \tilde{\mu}_m) - V^{\theta_i}(x, f, m \mid \tilde{\mu}_m^{\theta_i}, \tilde{\mu}_m) \right] = 0.$$
Assumptions

• [A1] The Markov chain associated with the state evolution of each player \(i \) (with type \(\theta_i \)) playing an oblivious policy \(\tilde{\mu}_{m,\theta_i} \) is positive recurrent, and reaches a stationary distribution \(q_{\tilde{\mu}_{m,\theta_i}} \).

• [A2] Markov perfect equilibrium and oblivious equilibrium exist for the stochastic game under consideration.

• [A3] We assume that the payoff function is uniformly bounded. That is

\[
\sup_{x,a,(f(m),m)} \pi^\theta(x, a, f(m), m) < \infty \quad \forall \theta.
\]

Here \(\pi^\theta(x, a, f(m), m) \) is the payoff function for all players \(j \) with type \(\theta_j = \theta \).

• [A4] We assume that the payoff \(\pi^\theta \) is Gateaux differentiable with respect to \(f(m)(y) \).
Assumptions - Light Tail

- We define \(g^\theta(y) \) as the maximum rate of change of \(\pi^\theta \) with respect to a small change in fraction of competitors at state \(y \). That is

\[
g^\theta(y) \triangleq \sup_{x,a,f(m),m} \left| \frac{\partial \pi^\theta(x,a,f(m),m)}{\partial f(m)(y)} \right|
\]

- [A5] We assume that \(g^\theta(y) \) is finite for all \(\theta \) and \(y \). Also, given \(\epsilon > 0 \), \(\forall \theta \), there exists a state value \(z^\theta \), such that

\[
\mathbb{E} \left[g^\theta(\tilde{U}(m)) \mathbf{1}_{\tilde{U}(m) > z^\theta} | \tilde{U}(m) \sim \tilde{f}(m,\theta) \right] \leq \epsilon, \quad \forall m.
\]

Here \(\tilde{U}(m) \) is a random variable distributed according to \(\tilde{f}(m,\theta) \).

- Light tail implies that the probability of competitors at larger state \(y \) goes to zero uniformly over \(m \).

- It also captures the effect of competitors at a higher state on the single period payoff of a player.
Main Theorem

Under the assumptions [A1]-[A5], a sequence of oblivious equilibrium policies $\tilde{\mu}^m$ satisfies the AME property. That is, for all i, x, and $\mu' \in \mathcal{M}^{\theta_i}$, we have

$$\lim_{m \to \infty} \mathbb{E} \left[\sup_{\mu'} V^{\theta_i} (x, f, m \mid \mu', \tilde{\mu}^m_{-i}) - V^{\theta_i} (x, f, m \mid \tilde{\mu}^{m, \theta_i}, \tilde{\mu}^m_{-i}) \right] = 0.$$
Conclusions

• We generalized the concept of OE for stochastic games.

• Under mild technical conditions, the AME property holds and OE approximates MPE.

• OE allows analysis of problems with high dimension where MPE computation is intractable.

• For games with finite state space light tail condition trivially holds.