Making Learning a Part of Life

Beyond the "Gift Wrapping" Approach of Technology

Gerhard Fischer
Center for LifeLong Learning & Design (L3D)
Department of Computer Science and Institute of Cognitive Science
University of Colorado, Boulder


There is general agreement as we approach the next century and next millennium that our society is changing into a knowledge and information society. We will face new opportunities and new challenges in all dimensions of our lives. But the future is not out there to be "discovered": It has to be invented and designed. Human-centered systems must be built upon the basic goal to "make learning a part of life," and the implications this has on how-under the influence of new media, new social structures, and new objectives for a quality of life-human beings will think, create, work, learn, and collaborate in the future.

Learning: Current Theories

Current trends in educational theory make the following fundamental assumptions about learning:

Lifelong Learning

Lifelong Learning: A Ubiquitous Goal. Lifelong learning has emerged as one of the major challenges for the worldwide knowledge society of the future. A variety of recent events support this claim: (1) 1996 is the "European Year of Lifelong Learning," (2) UNESCO has included "Lifetime Education" as one of the key issues in its planning, and (3) the G7 group of countries has named "Lifelong Learning" as a main strategy in the fight against unemployment. Despite this great interest, there are few encompassing efforts to tackle the problem in a coherent way. Lifelong learning cannot be investigated in isolation by looking just at one small part of it, such as K-12 education, university education or worker re-education.

Learning as a New Form of Labor. The previous notions of a divided lifetime-education followed by work-are no longer tenable. Learning can no longer be dichotomized, spatially and temporally, into a place and time to acquire knowledge (school) and a place and time to apply knowledge (the workplace). Professional activity has become so knowledge-intensive and fluid in content that learning has become an integral and inseparable part of "adult" work activities. Professional work can no longer simply proceed from a fixed educational background; rather, education must be smoothly incorporated as part of work activities fostering growth and exploration. Similarly, children require educational tools and environments whose primary aim is to help cultivate the desire to learn and create, and not to simply communicate subject matter divorced from meaningful and personalized activity.

Lifelong learning is a continuous engagement in acquiring and applying knowledge and skills in the context of authentic, self-directed problems. L3D's theoretical framework for lifelong learning is grounded in descriptive and prescriptive goals such as: (1) learning should take place in the context of authentic, complex problems (because learners will refuse to quietly listen to someone else's answers to someone else's questions); (2) learning should be embedded in the pursuit of intrinsically rewarding activities; (3) learning-on-demand needs to be supported because change is inevitable, complete coverage is impossible, and obsolescence is unavoidable; (4) organizational and collaborative learning must be supported because the individual human mind is limited; and (5) skills and processes that support learning as a lifetime habit must be developed.

Beyond the "Gift Wrapping" Approach of Educational Reform-Rethinking, Reinventing, and Reengineering Education

A deeper understanding and more effective support for lifelong learning will contribute to the transformation that must occur in the way our society works and learns. A major finding in current business reengineering efforts is that the use of information technology had disappointing results compared to the investments made in it. While a detailed causal analysis for this shortcoming is difficult to obtain, it is generally agreed that a major reason is that information technologies have been used to mechanize old ways of doing business-rather than fundamentally rethinking the underlying work processes and promoting new ways to create artifacts and knowledge.

We claim that a similar argument can be made for current uses of technology in education: it is used as an add-on to existing practices rather than a catalyst for fundamentally rethinking what education should be about in the next century. For example, the "innovation" of making transparencies available on the World-Wide Web (WWW) rather than distributing copies of them in a class takes advantage of the WWW as an electronic information medium. This may change the economics of teaching and learning, but it contributes little to introducing new epistemologies. "Old" frameworks, such as instructionism, fixed curriculum, memorization, decontextualized learning, etc., are not changed by technology itself. This is true whether we use computer-based training, intelligent tutoring systems, multimedia presentations, or the WWW. We need computational environments to support "new" frameworks for education such as lifelong learning, integration of working and learning, learning on demand, authentic problems, self-directed learning, information contextualized to the task at hand, (intrinsic) motivation, collaborative learning, and organizational learning. Rather than "gift-wrapping " old frameworks, we need a richer conceptual framework, leading not just to the addition of technology to existing practices, but to fundamentally new approaches.

Myths and Misconceptions

The current debate about the ability of computation and communication to fundamentally change education are (in my opinion) based on a number of fundamental myths and misconceptions. The most prevalent ones are:


"Making Learning a Part of Life" creates many challenges, requiring creative new approaches and collaboration among many different stakeholders. For illustration, just a few of them will be mentioned here.

  1. The educated and informed citizen of the future: 'super-couch potato' consumers or enlightened designers-The major innovation that many powerful interest groups push for with the information superhighway is to have a future where everyone shows her or his creativity and engagement by selecting one of at least 500 TV channels with a remote control. The major technical challenge derived from this perspective becomes the design of a "user-friendly" remote control. Rather than serving as the "reproductive organ of a consumer society" (Illich), educational institutions must fight this trend by cultivating "designers," i.e., by creating mindsets and habits that help people become empowered and willing to actively contribute to the design of their lives and communities. This goal creates specific challenges for computational artifacts, such as the support of end-user programming and authoring.

  2. The "basic skills" debate-If the hypothesis that most job-relevant knowledge must be learned on demand is true, we have to ask ourselves: What is the role of "basic skills"? If, for example, the use of software packages dominates the use of mathematics in the workplace, shouldn't a new function of mathematics education be teaching students to use these mathematical artifacts intelligently? Another important challenge is that the "old basic skills" such as reading, writing, and arithmetic, once acquired, were relevant for the duration of a human life; modern "basic skills" (tied to rapidly changing technologies) will change over time.

  3. Can we change motivation?-As mentioned, there is substantial empirical evidence that the chief impediments to learning are not cognitive but motivational. This raises the challenge of whether we can create learning environments in which learners work hard, not because they have to, but because they want to. We need to alter the perception that serious learning has to be unpleasant rather than personally meaningful, empowering, engaging, and even fun. In our research efforts we have developed computational environments to address these motivational issues; for example, our systems have explored making information relevant to the task at hand, providing challenges matched to current skills, creating communities (among peers, over the net), and providing access to real practitioners and experts.

  4. School-to-work transition-If the world of working and living (a) relies on collaboration, creativity, definition, and framing of problems; (b) deals with uncertainty, change, and distributed cognition; (c) copes with symmetry of ignorance; and (d) augments and empowers humans with powerful technological tools, then the world of schools and universities needs to prepare students to function in this world. Industrial-age models of education and work are inadequate to prepare students to compete in the knowledge-based workplace.

More Information

  1. About the L3D Center:
  2. Details about the arguments made in this position paper: